JPH03262127A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03262127A
JPH03262127A JP5993490A JP5993490A JPH03262127A JP H03262127 A JPH03262127 A JP H03262127A JP 5993490 A JP5993490 A JP 5993490A JP 5993490 A JP5993490 A JP 5993490A JP H03262127 A JPH03262127 A JP H03262127A
Authority
JP
Japan
Prior art keywords
film
wiring
crystal
based alloy
base alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5993490A
Other languages
Japanese (ja)
Inventor
Makiko Kageyama
影山 麻樹子
Hiroshi Tetsuda
鉄田 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP5993490A priority Critical patent/JPH03262127A/en
Publication of JPH03262127A publication Critical patent/JPH03262127A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable an Al base alloy film as a wiring to be easily crystal- orientated in a specific direction thereby enabling the Al base alloy wiring in high reliability to be easily formed by a method wherein a high melting point metallic film in the crystal structure similar to Al is formed by intensively crystal-orientating the film in specific direction and then an Al base alloy film as a wiring material is formed on said metallic film. CONSTITUTION:An insulating film 12 is deposited on an IC substrate 11 and then a Ti film is deposited on the film 12 to be intensively crystal-orientated in (200) direction by sputtering process so that the Ti film may be lamp-annealed in N2 atmosphere to be turned into a TiN film 13 intensively crystal-orientated in (111) direction. Later, an Al base alloy (e.g. Al-Si-Cu) film 14 is deposited on the TiN film 13 by sputtering process to be formed as the Al base alloy film intensively crystal-orientated in the same (111) direction as that of the TiN film 13. Finally, this Al base alloy film 14 is patterned to form the Al alloy wiring.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体装置の製造方法に係り、特にM系合金
配線の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing an M-based alloy wiring.

(従来の技術) 従来、半導体装置において配線は、M系合金(例えばA
l−5i)をスパッタにより堆積させ、フォトリソエツ
チングによりパターニングして形成している。
(Prior Art) Conventionally, wiring in semiconductor devices is made of M-based alloy (for example, A
1-5i) is deposited by sputtering and patterned by photolithography.

(発明が解決しようとする課題) しかしながら、上記の方法で形成されるM系合金配線で
は、熱処理時にヒロックが多く生し、層間ショートが生
じたり、パッシベーション膜によるストレスや電流によ
りマイグレーションが生し、配線の信頼性が低下すると
いう問題点があった。
(Problems to be Solved by the Invention) However, in the M-based alloy wiring formed by the above method, many hillocks occur during heat treatment, interlayer shorts occur, and migration occurs due to stress and current due to the passivation film. There was a problem in that the reliability of the wiring decreased.

これを抑制するためにM系合金中にCuやTiなどの不
純物を添加する方法もあるが、エンチングがしにくいな
どの問題点がある。
In order to suppress this, there is a method of adding impurities such as Cu or Ti to the M-based alloy, but there are problems such as difficulty in etching.

一方、M系合金の結晶を一定方向に強く配向させると、
信頼性が向上することは良く知られた事実である。一定
方向に強く結晶配向した薄膜では、隣接結晶粒間の方位
差角が小さいので、粒界移動が抑制され、ヒロックの発
生やマイグレーションが抑制されるからである。
On the other hand, if the crystals of the M-based alloy are strongly oriented in a certain direction,
It is a well-known fact that reliability is improved. This is because in a thin film whose crystals are strongly oriented in a certain direction, the misorientation angle between adjacent crystal grains is small, so grain boundary movement is suppressed, and the occurrence of hillocks and migration are suppressed.

しかしながら、従来のスパンタ法では、M系合金膜の結
晶を制御するのは困難であり、M系合金の結晶を一定方
向に強く配向させる有効な手段が未だ開発されていない
However, with the conventional spunter method, it is difficult to control the crystals of the M-based alloy film, and an effective means for strongly orienting the crystals of the M-based alloy in a certain direction has not yet been developed.

この発明は上記の点に鑑みなされたもので、配線として
のM系合金膜を容易に一定の方向に結晶配向させて信頼
性の高いM系合金配線を容易に得ることができる半導体
装置の製造方法を捉供することを目的とする。
The present invention has been made in view of the above points, and it is possible to manufacture a semiconductor device in which highly reliable M-based alloy wiring can be easily obtained by easily crystallizing an M-based alloy film as a wiring in a certain direction. The purpose is to provide information on how to do this.

(課題を解決するための手段) この発明は半導体装置の製造方法、特にM系合金配線の
製造方法において、まず半導体基板上に、M系合金配線
の下地として、Alと類似の結晶構造をもつ高融点金属
膜を一定の方向に強く結晶配向させて形成し、その上に
配線材料としてのM系合金膜を形成するものである。
(Means for Solving the Problems) The present invention provides a method for manufacturing a semiconductor device, particularly a method for manufacturing an M-based alloy wiring, in which a substrate having a crystal structure similar to that of Al is first formed on a semiconductor substrate as a base for the M-based alloy wiring. A high-melting point metal film is formed with strong crystal orientation in a certain direction, and an M-based alloy film is formed thereon as a wiring material.

(作 用) AIと類似の結晶構造をもつ高融点金属膜を一定の方向
に強く結晶配向させて下地として形成しておくと、その
上にだ系合金膜を形成した際、該M系合金膜も前記高融
点金属膜と同一方向に強く結晶配向して形成される。し
たがって、このM系合金膜をパターニングすれば、容易
に信頼性の高いM系合金配線が得られる。なお、高融点
金属膜も同様にパターニングされ、配線の一部となる。
(Function) If a high melting point metal film with a crystal structure similar to that of AI is formed as a base with strong crystal orientation in a certain direction, when a Da-based alloy film is formed on top of it, the M-based alloy The film is also formed with crystals strongly oriented in the same direction as the high melting point metal film. Therefore, by patterning this M-based alloy film, a highly reliable M-based alloy wiring can be easily obtained. Note that the high melting point metal film is also patterned in the same way and becomes part of the wiring.

なお、高融点金属膜は、スパッタ法や電子ビーム蒸着法
などにおいて基板温度、基板バイアスを制御することに
より、容易に一定の方向に強く結晶配向さセることがで
きる。
Note that the high melting point metal film can be easily crystallized strongly in a certain direction by controlling the substrate temperature and substrate bias in a sputtering method, an electron beam evaporation method, or the like.

また、ここで言う「Alと類似の結晶構造」とは、面心
立法で格子定数がAlと数%以内の差であるということ
である。そのような高融点金属の一例としてはTiNや
ZrNなどが挙げられる。
Furthermore, the term "crystal structure similar to Al" as used herein means that the lattice constant differs from Al by within a few percent in a face-centered cubic system. Examples of such high melting point metals include TiN and ZrN.

(実施例) 以下この発明の一実施例を図面を参照して説明する。第
1図はこの発明の一実施例を示す断面図である。この図
において、11ば図示しない拡散層やトランジスタなど
が形成されたIC基板である。このIC基板11上に絶
縁膜12(例えばCVD法によるBPSG膜)を600
0人堆積させる。そして、その上に、<200>方向で
強く結晶配向するようにTi膜をスパッタ法(例えば全
圧6〜7 mTorr 、パワー1.5〜2.0 kW
、基板無加熱)により500人堆積させ、これをN2中
でランプアニール(N2 2500SCCM、  80
0°C130秒)することにより、第2図の特性(a)
で示すように<111>に強く結晶配向したTiN膜1
3とする。しかる後、そのTiN膜1膜上3上系合金(
例えばAI−5i−Cu)膜14をスパッタ法で700
0人堆積させる。すると、このM光合金膜14は、第3
図の特性(a)で示すように、前記TiN膜13と同一
の<111>方向に強く結晶配向したM系合金膜として
形成される。しかる後、このM光合金膜14をパターニ
ングすることにより、M系合金配線を形成する。この時
、TiN膜13も同様にパターニングされ、配線の一部
となる。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the present invention. In this figure, reference numeral 11 indicates an IC substrate on which a diffusion layer, a transistor, etc. (not shown) are formed. On this IC substrate 11, an insulating film 12 (for example, a BPSG film made by CVD method) is formed with a thickness of 600 mm.
Deposit 0 people. Then, on top of that, a Ti film is sputtered so that the crystals are strongly oriented in the <200> direction (for example, the total pressure is 6 to 7 mTorr, the power is 1.5 to 2.0 kW).
, no heating of the substrate), and then lamp annealed in N2 (N2 2500SCCM, 80
0°C for 130 seconds), the characteristic (a) in Figure 2 is obtained.
TiN film 1 with strong <111> crystal orientation as shown in
Set it to 3. After that, a 3-substrate alloy (
For example, the AI-5i-Cu) film 14 is sputtered to a thickness of 700 cm.
Deposit 0 people. Then, this M photoalloy film 14
As shown in characteristic (a) in the figure, it is formed as an M-based alloy film with crystal orientation strongly in the same <111> direction as the TiN film 13. Thereafter, by patterning this M optical alloy film 14, an M-based alloy wiring is formed. At this time, the TiN film 13 is similarly patterned and becomes part of the wiring.

第2図の特性(b)、 (c1,(d)は、反応性スパ
ッタ法で窒素雰囲気中でスパッタして直接TiN膜を形
成する方法(上述実施例とは異なる)において、基板バ
イアスを0V(b)、−170V(c)、−600V(
d)に変えてTiN膜を形成した時の該TiN膜の結晶
配向強度を示し、第3図の特性(b)、 (c)、 (
d)は、その夫々のTiN膜」二にjV−5i−Cu合
金をスパッタにより堆積させた場合のMの結晶相のX線
回折パターンである。この特性(b) 、 (c) 、
 (d)ならびに前述実施例の特性(a)から明らかな
ように、下地TiN膜が<111>だと上層Mも<11
1>に配向しており、TiN膜が<200>だとMにも
<200>のピークが現われている。また、下地TiN
膜の結晶配向が強いと、上層M合金の結晶配向も強くな
っている。したがって、−例として上述実施例のように
下地TiN膜13を<1 r 1>に強く結晶配向して
形成しておけば、その上のM光合金膜I4も<111>
方向に強く結晶配向して形成されることになり、そのM
光合金膜14をパターニングすれば、ヒロックの減少や
マイグレーション耐性の向上した信頼性の高いM系合金
配線を容易に形成できる。
Characteristics (b), (c1, and (d) in Figure 2) are obtained using a reactive sputtering method in which a TiN film is directly formed by sputtering in a nitrogen atmosphere (different from the above embodiment), with a substrate bias of 0 V. (b), -170V (c), -600V (
The crystal orientation strength of the TiN film is shown when a TiN film is formed instead of (d), and the characteristics (b), (c), (
d) is an X-ray diffraction pattern of the M crystal phase when a jV-5i-Cu alloy was deposited on each TiN film by sputtering. This characteristic (b), (c),
As is clear from (d) and the characteristic (a) of the above-mentioned embodiment, when the underlying TiN film is <111>, the upper layer M is also <11>.
1>, and if the TiN film is <200>, a <200> peak also appears in M. In addition, the base TiN
When the crystal orientation of the film is strong, the crystal orientation of the upper layer M alloy is also strong. Therefore, as an example, if the base TiN film 13 is formed with a strong crystal orientation of <1 r 1> as in the above embodiment, the M photoalloy film I4 thereon also has a crystal orientation of <111>.
It is formed with strong crystal orientation in the direction, and its M
By patterning the optical alloy film 14, highly reliable M-based alloy wiring with reduced hillocks and improved migration resistance can be easily formed.

なお、上記実施例では、Alと頻僚の結晶構造をもつ高
融点金属膜としてTiN膜を形成したカベZrN膜など
を形成することもできる。
In addition, in the above embodiment, it is also possible to form a wall ZrN film on which a TiN film is formed as a high melting point metal film having a polymorphic crystal structure with Al.

また、それら高融点金属膜は、スパッタ法や電子ビーム
蒸着法などで基板温度や基板バイアスを制御することに
より、容易に一定の方向に強く結晶配向させることがで
きる。その配向方向も実施例の<111>方向に限定さ
れるものではなく、例えば<200>、<220>方向
でもよい。
Furthermore, these high melting point metal films can be easily and strongly crystallized in a certain direction by controlling the substrate temperature and substrate bias using sputtering, electron beam evaporation, or the like. The orientation direction is not limited to the <111> direction of the embodiment, but may also be, for example, the <200> or <220> direction.

(発明の効果) 以上詳述したように、この発明の製造方法によれば、M
系合金配線の下地として、Alと類似の結晶構造をもつ
高融点金属膜を一定の方向に強く結晶配向させて形成し
ておくことにより、その上にM系合金膜を形成すること
により、絶縁膜上のそれと比べて強く一定方向に結晶配
向したM系合金膜を形成することができ、そのM系合金
膜をパタニングすることにより、ヒロックの減少やマイ
グレーション耐性の向上した信頼性の高い、かつ微細化
に適したM系合金配線を形成することができる。
(Effect of the invention) As detailed above, according to the manufacturing method of the present invention, M
By forming a high-melting point metal film with a crystal structure similar to Al as a base for the alloy wiring, and forming the M-based alloy film on top of it, the insulation can be improved. It is possible to form an M-based alloy film with stronger crystal orientation in a certain direction than that on a film, and by patterning the M-based alloy film, it is possible to create a highly reliable film with reduced hillocks and improved migration resistance. M-based alloy wiring suitable for miniaturization can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の半導体装置の製造方法の一実施例を
示す断面図、第2図はさまざまな方法で形成したTiN
膜のTiN結晶相のX線回折パターンを示す図、第3図
はTiN膜上に形成したM系合金膜のMの結晶相のX線
回折パターンを示す特性図である。 1 l ・・・ ■ 金膜。 C基板、 3 ・・・TiN 膜、 14 ・・ A1系合
FIG. 1 is a cross-sectional view showing an embodiment of the method for manufacturing a semiconductor device of the present invention, and FIG.
FIG. 3 is a characteristic diagram showing the X-ray diffraction pattern of the M crystal phase of the M-based alloy film formed on the TiN film. 1 l... ■ Gold film. C substrate, 3...TiN film, 14...A1 system compound

Claims (1)

【特許請求の範囲】 (a)半導体基板上に、M系合金配線の下地として、A
lと類似の結晶構造をもつ高融点金属膜を一定の方向に
強く結晶配向させて形成し、 (b)その上にM系合金膜を形成し、 (c)これらの膜をパターニングすることにより配線を
形成したことを特徴とする半導体装置の製造方法。
[Claims] (a) On a semiconductor substrate, as a base for M-based alloy wiring, A
By forming a high-melting point metal film with a crystal structure similar to l with strong crystal orientation in a certain direction, (b) forming an M-based alloy film thereon, and (c) patterning these films. A method for manufacturing a semiconductor device, characterized in that wiring is formed.
JP5993490A 1990-03-13 1990-03-13 Manufacture of semiconductor device Pending JPH03262127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5993490A JPH03262127A (en) 1990-03-13 1990-03-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5993490A JPH03262127A (en) 1990-03-13 1990-03-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03262127A true JPH03262127A (en) 1991-11-21

Family

ID=13127460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5993490A Pending JPH03262127A (en) 1990-03-13 1990-03-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03262127A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2714527A1 (en) * 1993-12-28 1995-06-30 Fujitsu Ltd Method of manufacturing semiconductor devices with aluminum wiring.
JPH07326612A (en) * 1994-05-26 1995-12-12 Lg Semicon Co Ltd Wiring formation method for semiconductor element
US5703403A (en) * 1993-11-08 1997-12-30 Nippondenso Co., Ltd. Electrode for semiconductor device and method for producing the same
US6066891A (en) * 1994-04-28 2000-05-23 Nippondenso Co., Ltd Electrode for semiconductor device including an alloy wiring layer for reducing defects in an aluminum layer and method for manufacturing the same
US6650017B1 (en) 1999-08-20 2003-11-18 Denso Corporation Electrical wiring of semiconductor device enabling increase in electromigration (EM) lifetime

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703403A (en) * 1993-11-08 1997-12-30 Nippondenso Co., Ltd. Electrode for semiconductor device and method for producing the same
FR2714527A1 (en) * 1993-12-28 1995-06-30 Fujitsu Ltd Method of manufacturing semiconductor devices with aluminum wiring.
US6066891A (en) * 1994-04-28 2000-05-23 Nippondenso Co., Ltd Electrode for semiconductor device including an alloy wiring layer for reducing defects in an aluminum layer and method for manufacturing the same
US6348735B1 (en) 1994-04-28 2002-02-19 Nippondenso Co., Lt. Electrode for semiconductor device and method for manufacturing same
DE19515564B4 (en) * 1994-04-28 2008-07-03 Denso Corp., Kariya Electrode for a semiconductor device and method of making the same
JPH07326612A (en) * 1994-05-26 1995-12-12 Lg Semicon Co Ltd Wiring formation method for semiconductor element
US6650017B1 (en) 1999-08-20 2003-11-18 Denso Corporation Electrical wiring of semiconductor device enabling increase in electromigration (EM) lifetime
US6908857B2 (en) 1999-08-20 2005-06-21 Denso Corporation Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5994217A (en) Post metallization stress relief annealing heat treatment for ARC TiN over aluminum layers
JPS63301548A (en) Manufacture of semiconductor device
EP0480409B1 (en) Method of fabricating a Ti/TiN/Al contact, with a reactive sputtering step
JPH08274173A (en) Triple layer of diffusion barrier body for making reaction between metallized layers of integrated circuit as small as possible
JPH04324929A (en) Manufacture of semiconductor device
JPH03262127A (en) Manufacture of semiconductor device
JPH01160036A (en) Semiconductor device
US7135399B2 (en) Deposition method for wiring thin film
JPH02239665A (en) Semiconductor device and manufacture thereof
US6083830A (en) Process for manufacturing a semiconductor device
JP3168400B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPS62219921A (en) Semiconductor device
JPH05109656A (en) Formation of metal wiring using amorphous titanium nitride film
JPH04256313A (en) Manufacture of semiconductor device
JPS61208848A (en) Semiconductor device
JPH07176615A (en) Formation of wiring
JP2806757B2 (en) Method for manufacturing semiconductor device
JPS63316477A (en) Semiconductor device and manufacture thereof
JPS61160924A (en) Manufacture of semiconductor thin film crystal layer
JP3083301B2 (en) Manufacturing method of metal electrode wiring
JPH0311737A (en) Solid phase epitaxy
JPH09148328A (en) Manufacture of semiconductor device
JPH04315427A (en) Manufacture of semiconductor device
JPS62291146A (en) Manufacture of semiconductor device
JPS62206827A (en) Heat treatment method for titanium-silicide film