JPH04328846A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04328846A
JPH04328846A JP12541691A JP12541691A JPH04328846A JP H04328846 A JPH04328846 A JP H04328846A JP 12541691 A JP12541691 A JP 12541691A JP 12541691 A JP12541691 A JP 12541691A JP H04328846 A JPH04328846 A JP H04328846A
Authority
JP
Japan
Prior art keywords
substrate
region
buried layer
manufacturing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12541691A
Other languages
Japanese (ja)
Other versions
JP3086836B2 (en
Inventor
Hideshi Takasu
秀視 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP03125416A priority Critical patent/JP3086836B2/en
Publication of JPH04328846A publication Critical patent/JPH04328846A/en
Priority to US09/212,915 priority patent/US6884701B2/en
Application granted granted Critical
Publication of JP3086836B2 publication Critical patent/JP3086836B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To make it possible to form a buried layer having no surface defect by a method wherein after an impurity is ion-implanted in a substrate, the substrate is annealed in a non-oxidizing atmosphere and moreover, while the substrate is heated up, an ion-implanted region is expanded to form the buried layer and an epitaxial layer is grown. CONSTITUTION:An opening is formed in the surface, which is located over a region for forming a buried layer in a P-type substrate 1, of the substrate 1 to fonp a resist 2 on the surface and the opening, in which the resist 2 is not formed, is used as a window region W. An impurity is ion-implanted in the substrate 1 through the region W to fom an ion-implanted region, that is, a P<+> region 3, and after the resist 2 is removed, the substrate 1 is annealed in a non-oxidizing atmosphere. Morevoer, while the substrate 1 is heated up, the region 3 is expanded to form the P<+> buried layer 4 and while the layer 4 is formed, an epitaxial layer 5 is grown at a point of time when the region 3 does not reach the surface of the substrate 1. Thereby, with an auto-doping not generated in the substrate 1 surface, which is located over the region for forming the buried layer, the layer 4 having not a surface defect, can be formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、特に埋込層を形成する工程に特徴がある半導体
装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device characterized by the step of forming a buried layer.

【0002】0002

【従来の技術】半導体IC等の半導体装置におけるp+
 埋込層は、アップ・ダウン−アイソレーション方式を
行う場合、即ちアイソレーション領域をエピタキシャル
層の表面からだけでなく、エピタキシャル層の下から(
つまり基板側から)も上方向に再拡散させる場合などで
、アイソレーション時間の短縮によってアイソレーショ
ン(p拡散)領域の横拡がりを押さえて、チップ面積の
縮小化や、n+ のような上方拡散の低減による耐圧改
善を図ることを意図して設けられる。
[Prior Art] p+ in semiconductor devices such as semiconductor ICs
When performing up-down isolation, the buried layer is used not only from the surface of the epitaxial layer but also from the bottom of the epitaxial layer (
In other words, when re-diffusion is also performed upward (from the substrate side), shortening the isolation time suppresses the lateral expansion of the isolation (p-diffusion) region, reducing the chip area, and increasing the This is provided with the intention of improving withstand voltage by reducing the voltage.

【0003】埋込層を有する半導体装置としてnpn型
トランジスタを例にすると、このトランジスタの製造方
法における埋込層の作製工程は、図5〜図8に示す如く
である。まず、図5に示す段階1において、シリコン等
からなるp型基板11上に、埋込層を形成する領域の基
板11の表面が露出するように、SiO2 からなる酸
化膜マスク12を設ける。マスク12を設けない基板1
1の表面を窓領域Wとする。
Taking an npn type transistor as an example of a semiconductor device having a buried layer, the steps for manufacturing the buried layer in the method for manufacturing this transistor are as shown in FIGS. 5 to 8. First, in step 1 shown in FIG. 5, an oxide film mask 12 made of SiO2 is provided on a p-type substrate 11 made of silicon or the like so that the surface of the substrate 11 in a region where a buried layer is to be formed is exposed. Substrate 1 without mask 12
1 is defined as a window area W.

【0004】次に、図6の段階2で、p型不純物として
例えばボロン(B)を窓領域Wから基板11内にイオン
注入し、基板11内にイオン注入領域13を形成する。 図7の段階3では、乾燥酸素又は水蒸気のような酸化雰
囲気中にて、基板11全体を温度800〜1300℃程
度まで加熱する。これにより、p型不純物が基板11内
に拡散され、窓領域Wの下方に拡散領域としてのp+ 
領域14’が形成される。拡散の際、基板11の窓領域
WにはSiO2 酸化膜15も形成される。
Next, in step 2 in FIG. 6, ions of boron (B) as a p-type impurity, for example, are implanted into the substrate 11 from the window region W to form an ion implantation region 13 in the substrate 11. In step 3 of FIG. 7, the entire substrate 11 is heated to a temperature of about 800 to 1300° C. in an oxidizing atmosphere such as dry oxygen or water vapor. As a result, the p-type impurity is diffused into the substrate 11, and a p+ diffusion region is formed below the window region W.
A region 14' is formed. During the diffusion, an SiO2 oxide film 15 is also formed in the window region W of the substrate 11.

【0005】図8の段階4で、SiO2 マスク12と
SiO2 酸化膜15を除去し、基板11の窓領域Wに
p+ 領域14’を現出し、これをp+ 埋込層14と
する。なお、酸化膜15の除去により、窓領域Wの周辺
部に相当するp+ 埋込層14の部分には段差14aが
生ずる。得られた半導体は、npn型トランジスタとし
て完成させるために次の工程に供する。例えば、図9の
段階5に示すように、更に基板11の表面にエピタキシ
ャル層16を成長させる。
At step 4 in FIG. 8, the SiO2 mask 12 and the SiO2 oxide film 15 are removed to expose the p+ region 14' in the window region W of the substrate 11, which is to be used as the p+ buried layer 14. Note that by removing the oxide film 15, a step 14a is generated in a portion of the p+ buried layer 14 corresponding to the peripheral portion of the window region W. The obtained semiconductor is subjected to the next step in order to complete it as an npn type transistor. For example, as shown in step 5 of FIG. 9, an epitaxial layer 16 is further grown on the surface of the substrate 11.

【0006】[0006]

【発明が解決しようとする課題】上記の如き埋込層の作
製工程によると、埋込層14を形成するために、図6の
段階2でイオン注入を行い、図7の段階3で加熱処理を
施している。段階2でイオン注入を行うと、基板11の
窓領域Wの表面が大きな損傷を受ける。表面に損傷が有
る状態のまま、次の段階3で加熱処理を施してp+ 領
域14’を形成すると、図8の段階4でp+ 領域14
’をp+ 埋込層14とした際に、埋込層14に表面欠
陥が現れる。これは、製品としてのトランジスタに構造
欠陥を発生させる要因になるため好ましくない。
According to the buried layer manufacturing process as described above, in order to form the buried layer 14, ion implantation is performed in step 2 of FIG. 6, and heat treatment is performed in step 3 of FIG. is being carried out. When ion implantation is performed in step 2, the surface of the window region W of the substrate 11 is severely damaged. While the surface is still damaged, heat treatment is performed in the next step 3 to form the p+ region 14', and the p+ region 14' is formed in step 4 of FIG.
When ' is the p+ buried layer 14, surface defects appear in the buried layer 14. This is undesirable because it causes structural defects in the transistor as a product.

【0007】更に、最も好ましくないのは、図7の段階
3の加熱処理で拡散が基板1の表面まで達してしまい、
エピタキシャル成長時にオートドーピングが起きること
である。従って、本発明の目的は、上記問題点に鑑み、
埋込層を形成する領域となる基板表面にオートドーピン
グを生じさせないと共に、表面にできるだけ損傷を与え
ず、しかも表面欠陥のない埋込層を作製できる半導体装
置の製造方法を提供することにある。
Furthermore, what is most undesirable is that the diffusion reaches the surface of the substrate 1 during the heat treatment at step 3 in FIG.
Autodoping occurs during epitaxial growth. Therefore, in view of the above problems, the object of the present invention is to
To provide a method for manufacturing a semiconductor device that does not cause autodoping on the surface of a substrate, which is a region where a buried layer is to be formed, causes as little damage to the surface as possible, and can produce a buried layer free of surface defects.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明の半導体装置の製造方法は、基板上において
埋込層を形成する領域を開口して表面にレジストを形成
し、その開口に対して不純物をイオン注入し、レジスト
を除去した後、非酸化雰囲気中で基板をアニーリングし
、更に基板を徐々に昇温しながらイオン注入領域が基板
表面に達しないように不純物のイオン注入領域を拡張し
て埋込層を形成し、次いでエピタキシャル層を成長させ
る工程を有することを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the method for manufacturing a semiconductor device of the present invention includes opening a region on a substrate where a buried layer is to be formed, forming a resist on the surface, and forming a resist on the surface of the substrate. After ion-implanting impurities into the substrate and removing the resist, the substrate is annealed in a non-oxidizing atmosphere, and the impurity ion-implanted region is gradually heated to prevent the ion-implanted region from reaching the substrate surface. The method is characterized in that it includes a step of expanding a buried layer to form a buried layer, and then growing an epitaxial layer.

【0009】本発明の製造方法によれば、埋込層を作製
する工程において、従来の製造方法で採用していたイオ
ン注入と加熱処理とは組合せず、イオン注入後に非酸化
雰囲気中でアニーリングし、更に昇温しながら不純物の
イオン注入領域を拡張し、この拡張が基板表面に達しな
い時点でエピタキシャル成長に切り換え、エピタキシャ
ル成長を開始する。このため、埋込層を形成する領域と
なる基板表面の損傷は少ないと共に、基板表面にオート
ドーピングは起こらず、埋込層の表面の欠陥も全く生じ
ない。
According to the manufacturing method of the present invention, in the step of manufacturing the buried layer, the ion implantation and heat treatment employed in the conventional manufacturing method are not combined, but annealing is performed in a non-oxidizing atmosphere after the ion implantation. Then, the impurity ion implantation region is expanded while the temperature is further increased, and when this expansion does not reach the substrate surface, a switch is made to epitaxial growth, and epitaxial growth is started. Therefore, there is little damage to the substrate surface, which is the region where the buried layer is to be formed, autodoping does not occur on the substrate surface, and no defects occur on the surface of the buried layer.

【0010】本発明の製造方法でイオン注入する不純物
としては、p+ 埋込層を形成するので、伝導型がp型
であれば特に限定はなく、ボロン(B)、アルミニウム
(Al)が例示される。又、イオン注入後に行うアニー
リングによれば、注入した不純物イオンが活性化される
と同時に拡散され、イオン注入領域であるp+ 領域が
或る程度まで拡がる。この拡散は非酸化雰囲気中で行う
ため、従来の製造方法で起こるような酸化(図7の酸化
膜15の生起)は発生しない。アニーリングを行う際の
雰囲気となるガスは非酸化性であれば特定はない。例え
ば、H2 ガス、N2 ガス、Arガス、Heガスがあ
る。
The impurity to be ion-implanted in the manufacturing method of the present invention is not particularly limited as long as the conductivity type is p type since a p+ buried layer is formed, and boron (B) and aluminum (Al) are exemplified. Ru. Further, by annealing performed after ion implantation, the implanted impurity ions are activated and diffused at the same time, and the p+ region, which is the ion implantation region, expands to a certain extent. Since this diffusion is performed in a non-oxidizing atmosphere, oxidation (formation of oxide film 15 in FIG. 7) that occurs in conventional manufacturing methods does not occur. The gas used as the atmosphere during annealing is not particularly limited as long as it is non-oxidizing. For example, there are H2 gas, N2 gas, Ar gas, and He gas.

【0011】アニーリング後には、アニーリングによっ
て拡散されたp+領域を更に拡張する。この拡張は、埋
込層作製後に行うエピタキシャル成長を開始する温度(
約1000℃)まで基板の温度を徐々に上げていくこと
により行う。但し、p+ 領域が基板表面に達しないよ
うにp+ 領域を拡張することが肝要である。換言する
と注入イオンが格子点に入る程度まで活性化すればよい
。 そして、拡張を終えた時点でエピタキシャル成長を開始
し、エピタキシャル結晶を基板上に成長させる。
After the annealing, the p+ region diffused by the annealing is further expanded. This extension is based on the temperature (
This is done by gradually raising the temperature of the substrate to about 1000°C. However, it is important to extend the p+ region so that it does not reach the substrate surface. In other words, it is sufficient to activate the implanted ions to the extent that they enter the lattice points. Then, when the expansion is completed, epitaxial growth is started to grow epitaxial crystals on the substrate.

【0012】本発明の製造方法において、埋込層を作製
する工程以降の工程は、従来と同様の製造プロセスでよ
く、従来の製造プロセスを用いて、埋込層を設けた半導
体を半導体装置として完成させる。
In the manufacturing method of the present invention, the steps after the step of manufacturing the buried layer may be the same manufacturing process as the conventional manufacturing process, and the semiconductor provided with the buried layer is manufactured as a semiconductor device using the conventional manufacturing process. Finalize.

【0013】[0013]

【実施例】以下、本発明の半導体装置の製造方法を実施
例に基づいて説明する。本実施例では、前記従来技術に
開示の製造方法と対比させて本発明と従来との相違を明
確にするために、前記従来技術と同様にnpn型トラン
ジスタを例にして述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a semiconductor device according to the present invention will be explained below based on examples. In this embodiment, in order to clarify the difference between the present invention and the prior art by comparing it with the manufacturing method disclosed in the prior art, an npn type transistor will be described as an example as in the prior art.

【0014】図1〜図4にその埋込層の作製工程(段階
1〜4)までを示す。まず図1の段階1に示すように、
シリコン等からなるp型基板1上において、p+ 埋込
層を形成する領域を開口して表面をレジスト2で覆う。 レジスト2を設けない基板1の開口を窓領域Wとする。 なお、基板1上にSiO2膜を設けてもよく、実際には
基板1上には1000Å程度のSiO2 膜が存在する
。SiO2 膜により、損傷を更に低減できる。
FIGS. 1 to 4 show the manufacturing process (steps 1 to 4) of the buried layer. First, as shown in step 1 of Figure 1,
On a p-type substrate 1 made of silicon or the like, a region where a p+ buried layer is to be formed is opened and the surface is covered with a resist 2. The opening in the substrate 1 on which the resist 2 is not provided is defined as a window region W. Note that an SiO2 film may be provided on the substrate 1, and in reality, a SiO2 film of about 1000 Å is present on the substrate 1. Damage can be further reduced by the SiO2 film.

【0015】次に、図2に示す段階2で、p型不純物と
して例えばボロン(B)を窓領域Wから基板1内にイオ
ン注入し、基板1内にイオン注入領域(p+ 領域)3
を形成する。そして、図3の段階3で、レジスト2を除
去する。ここで、次の段階4に移る前に、基板1を化学
洗浄した後、基板1をエピタキシャル成長炉に入れる。 なお、SiO2 膜が在る場合は、これをエッチングに
より除去しておく。
Next, in step 2 shown in FIG. 2, boron (B) as a p-type impurity is ion-implanted into the substrate 1 from the window region W, and an ion-implanted region (p+ region) 3 is formed in the substrate 1.
form. Then, in step 3 of FIG. 3, the resist 2 is removed. Here, before proceeding to the next step 4, the substrate 1 is chemically cleaned and then placed in an epitaxial growth furnace. Note that if an SiO2 film is present, it is removed by etching.

【0016】その後、図4の段階4で、まず成長炉内に
存在する酸素に対して、N2 ガスによるパージングを
行って酸素を除く。次に、成長炉内にH2 ガスを導入
すると共に炉内のN2 ガスを排気し、N2 ガスをH
2 ガスに全部(100%)置換する。これにより、成
長炉内にH2 ガスを充満させ、非酸化雰囲気を調製す
る。このH2 ガスの雰囲気中で、基板1をアニーリン
グし、ボロンイオンを活性化すると同時に拡散させる。 この拡散では、ボロンイオンが活性化されればよく、p
+ 領域3の拡がりは大きくなくてもよい。ボロンイオ
ンを十分に活性化したら、アニーリングを終了する。
Thereafter, in step 4 of FIG. 4, the oxygen present in the growth reactor is first purged with N2 gas to remove oxygen. Next, H2 gas is introduced into the growth furnace, the N2 gas in the furnace is exhausted, and the N2 gas is replaced with H2 gas.
2 Replace all (100%) with gas. As a result, the growth furnace is filled with H2 gas to prepare a non-oxidizing atmosphere. In this H2 gas atmosphere, the substrate 1 is annealed to activate and simultaneously diffuse boron ions. In this diffusion, boron ions only need to be activated, and p
+ The spread of region 3 does not have to be large. After sufficiently activating boron ions, annealing is completed.

【0017】アニーリング後に、埋込層作製後に行うエ
ピタキシャル成長を開始する温度(約1000℃)まで
成長炉内を徐々に昇温して、基板1内のp+ 領域3が
基板1の表面の窓領域Wに達しないように注意しながら
p+ 領域3を更に拡張し、p+ 埋込層4を形成する
。p+ 領域3が基板1の表面の窓領域Wに達しない時
点で、エピタキシャル結晶が析出する温度(1000℃
以上)まで更に昇温した後、基板1上にエピタキシャル
層5を成長させる。なお、エピタキシャル成長前に、H
Clガスを成長炉内に流して基板1の表面を極薄く(1
000Å程度)エッチングしてクリーニングしておくと
一層好ましい。但し、エッチングによって、p+ 領域
3が基板1の表面に現れないようにすることが重要であ
る。
After annealing, the temperature inside the growth furnace is gradually raised to a temperature (approximately 1000° C.) at which epitaxial growth to be performed after the buried layer is formed, so that the p+ region 3 in the substrate 1 forms a window region W on the surface of the substrate 1. The p+ region 3 is further expanded, taking care not to reach the p+ buried layer 4. At the point when the p+ region 3 does not reach the window region W on the surface of the substrate 1, the temperature at which epitaxial crystals are precipitated (1000°C
After the temperature is further increased to (above), an epitaxial layer 5 is grown on the substrate 1. Note that before epitaxial growth, H
By flowing Cl gas into the growth furnace, the surface of the substrate 1 is made extremely thin (1
It is more preferable to perform etching (approximately 0.000 Å) and cleaning. However, it is important to prevent p+ region 3 from appearing on the surface of substrate 1 by etching.

【0018】このようにしてp+ 埋込層4を設けた半
導体は、更に通常の半導体製造プロセスを用いてnpn
型トランジスタとして完成させればよい。上記実施例で
は、半導体装置としてnpn型トランジスタを挙げたが
、本発明の製造方法は、これに限定されないことは言う
までもなく、埋込層を有する半導体装置であればどのよ
うな装置にも適用することができる。又、上記実施例で
は、p型基板を用いた例であるが、n型基板でも同様に
行うことができ、作用効果もp型基板の場合と遜色がな
い。
The semiconductor provided with the p+ buried layer 4 in this manner is further processed into an npn layer using a normal semiconductor manufacturing process.
It is sufficient to complete it as a type transistor. In the above embodiments, an npn transistor is used as a semiconductor device, but it goes without saying that the manufacturing method of the present invention is not limited to this, and can be applied to any semiconductor device having a buried layer. be able to. Further, in the above embodiment, a p-type substrate is used, but an n-type substrate can be used in the same manner, and the effect is comparable to that of a p-type substrate.

【0019】更に、本発明の製造方法は、n型不純物(
As又はSb)によるn+ 埋込層にも適用できる。こ
の場合、高エネルギーのイオン注入或いはダブルチャー
ジ方式を用いて注入すればよい。
Furthermore, the manufacturing method of the present invention includes an n-type impurity (
It can also be applied to an n+ buried layer made of As or Sb). In this case, high energy ion implantation or double charge method may be used for implantation.

【0020】[0020]

【発明の効果】以上説明したように、本発明の半導体装
置の製造方法は、その埋込層を形成する工程において不
純物のイオン注入後に、非酸化雰囲気中でアニーリング
を行い、更に徐々に昇温しながらイオン注入領域を拡張
して埋込層を形成しつつ、イオン注入領域が基板表面に
達しない時点でエピタキシャル成長に切り換えるので、
イオン注入と加熱処理を行う従来の製造方法に比べて下
記の効果を奏する。 (1)イオン注入後に非酸化雰囲気中で注入イオンを活
性化させて拡散させるため、OSF(Oxide in
duced Stacking Fault)等の結晶
欠陥を生じさせない。 (2)エピタキシャル成長を開始する時点で注入不純物
が基板表面に現れていないため、オートドーピングが起
こらず、エピタキシャル成長の不純物プロファイルの制
御を高精度に行える。 (3)埋込層を形成する領域となる基板表面の窓領域に
与える損傷が少なく、表面欠陥のない埋込層を作製する
ことができる。 (4)埋込層の製作工程を簡素化できる。
As explained above, in the method for manufacturing a semiconductor device of the present invention, after implanting impurity ions in the step of forming the buried layer, annealing is performed in a non-oxidizing atmosphere, and the temperature is gradually increased. While expanding the ion implantation region to form a buried layer, the process switches to epitaxial growth when the ion implantation region does not reach the substrate surface.
The following effects are achieved compared to conventional manufacturing methods that involve ion implantation and heat treatment. (1) After ion implantation, OSF (Oxide in
This method does not cause crystal defects such as reduced stacking faults. (2) Since the implanted impurity does not appear on the substrate surface at the time of starting epitaxial growth, autodoping does not occur, and the impurity profile of epitaxial growth can be controlled with high precision. (3) There is little damage to the window region on the substrate surface, which is the region where the buried layer is to be formed, and a buried layer without surface defects can be produced. (4) The manufacturing process of the buried layer can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の製造方法における埋込層作製工程の段
階1を説明するための図である。
FIG. 1 is a diagram for explaining step 1 of the buried layer manufacturing process in the manufacturing method of the present invention.

【図2】本発明の製造方法における埋込層作製工程の段
階2を説明するための図である。
FIG. 2 is a diagram for explaining step 2 of the buried layer manufacturing process in the manufacturing method of the present invention.

【図3】本発明の製造方法における埋込層作製工程の段
階3を説明するための図である。
FIG. 3 is a diagram for explaining step 3 of the buried layer manufacturing process in the manufacturing method of the present invention.

【図4】本発明の製造方法における埋込層作製工程の段
階4を説明するための図である。
FIG. 4 is a diagram for explaining step 4 of the buried layer manufacturing process in the manufacturing method of the present invention.

【図5】従来の製造方法における埋込層作製工程の段階
1を説明するための図である。
FIG. 5 is a diagram for explaining step 1 of a buried layer manufacturing process in a conventional manufacturing method.

【図6】従来の製造方法における埋込層作製工程の段階
2を説明するための図である。
FIG. 6 is a diagram for explaining step 2 of a buried layer manufacturing process in a conventional manufacturing method.

【図7】従来の製造方法における埋込層作製工程の段階
3を説明するための図である。
FIG. 7 is a diagram for explaining step 3 of a buried layer manufacturing process in a conventional manufacturing method.

【図8】従来の製造方法における埋込層作製工程の段階
4を説明するための図である。
FIG. 8 is a diagram for explaining step 4 of a buried layer manufacturing process in a conventional manufacturing method.

【図9】従来において埋込層作製工程の次の工程の段階
5を説明するための図である。
FIG. 9 is a diagram for explaining step 5 of the next step in the conventional buried layer manufacturing process.

【符号の説明】[Explanation of symbols]

1  p型基板 2  レジスト 3  イオン注入領域(p+ 領域) 4  p+ 埋込層 5  エピタキシャル層 1 p-type substrate 2 Resist 3 Ion implantation region (p+ region) 4 p+ buried layer 5 Epitaxial layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上において埋込層を形成する領域を開
口して表面にレジストを形成し、その開口に対して不純
物をイオン注入し、レジストを除去した後、非酸化雰囲
気中で基板をアニーリングし、更に基板を徐々に昇温し
ながらイオン注入領域が基板表面に達しないように不純
物のイオン注入領域を拡張して埋込層を形成し、次いで
エピタキシャル層を成長させる工程を有することを特徴
とする半導体装置の製造方法。
1. A region where a buried layer is to be formed is opened on a substrate, a resist is formed on the surface, impurity ions are implanted into the opening, the resist is removed, and then the substrate is opened in a non-oxidizing atmosphere. The method includes the steps of annealing, gradually increasing the temperature of the substrate, expanding the impurity ion implantation region so that the ion implantation region does not reach the substrate surface to form a buried layer, and then growing an epitaxial layer. A method for manufacturing a featured semiconductor device.
JP03125416A 1991-04-27 1991-04-27 Method for manufacturing semiconductor device Expired - Lifetime JP3086836B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03125416A JP3086836B2 (en) 1991-04-27 1991-04-27 Method for manufacturing semiconductor device
US09/212,915 US6884701B2 (en) 1991-04-27 1998-12-16 Process for fabricating semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03125416A JP3086836B2 (en) 1991-04-27 1991-04-27 Method for manufacturing semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12141699A Division JP3365972B2 (en) 1999-04-28 1999-04-28 Semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
JPH04328846A true JPH04328846A (en) 1992-11-17
JP3086836B2 JP3086836B2 (en) 2000-09-11

Family

ID=14909566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03125416A Expired - Lifetime JP3086836B2 (en) 1991-04-27 1991-04-27 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3086836B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035452A1 (en) * 1999-11-10 2001-05-17 Shin-Etsu Handotai Co., Ltd. Production method for silicon epitaxial wafer and silicon epitaxial wafer
JP2011192823A (en) * 2010-03-15 2011-09-29 Fuji Electric Co Ltd Method of manufacturing superjunction semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151349A (en) * 1979-05-15 1980-11-25 Matsushita Electronics Corp Forming method of insulation isolating region
JPS5927521A (en) * 1982-08-06 1984-02-14 Hitachi Ltd Fabrication of semiconductor substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151349A (en) * 1979-05-15 1980-11-25 Matsushita Electronics Corp Forming method of insulation isolating region
JPS5927521A (en) * 1982-08-06 1984-02-14 Hitachi Ltd Fabrication of semiconductor substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035452A1 (en) * 1999-11-10 2001-05-17 Shin-Etsu Handotai Co., Ltd. Production method for silicon epitaxial wafer and silicon epitaxial wafer
US6589336B1 (en) 1999-11-10 2003-07-08 Shin-Etsu Handotai Co., Ltd. Production method for silicon epitaxial wafer and silicon epitaxial wafer
JP2011192823A (en) * 2010-03-15 2011-09-29 Fuji Electric Co Ltd Method of manufacturing superjunction semiconductor device

Also Published As

Publication number Publication date
JP3086836B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
US6852604B2 (en) Manufacturing method of semiconductor substrate
JPH0582439A (en) Manufacture of semiconductor device with grown layer on insulating layer and mos semiconductor device
JPS62208638A (en) Manufacture of semiconductor device
JPH0521448A (en) Manufacture of semiconductor device
JPH04328846A (en) Manufacture of semiconductor device
JPH0582441A (en) Silicon carbide bipolar semiconductor device and its manufacture
JPH05235005A (en) Semiconductor substrate and manufacture thereof
JPH10214844A (en) Manufacturing method of semiconductor substrate
JPH06216137A (en) Semiconductor device and manufacture thereof
JP3365972B2 (en) Semiconductor manufacturing method
JP2718074B2 (en) Method of forming thin film semiconductor layer
US6884701B2 (en) Process for fabricating semiconductor device
JPH07176742A (en) Manufacture of semiconductor device and semiconductor device
JPH0235455B2 (en)
JPH1187258A (en) Manufacture of semiconductor device
JPH05102183A (en) Manufacture of semiconductor device
JPH1098004A (en) Semiconductor device and manufacture thereof
JPH03297148A (en) Manufacture of semiconductor device
JPH04293241A (en) Manufacture of semiconductor substrate
JP2743451B2 (en) Method for manufacturing semiconductor device
JPS6386565A (en) Manufacture of semiconductor device
JPS61124127A (en) Manufacture of semiconductor device
JPS62219529A (en) Manufacture of semiconductor device
JPH1187336A (en) Manufacture of semiconductor device
JPS59145522A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10