JPH04324687A - Base metal electrode material - Google Patents

Base metal electrode material

Info

Publication number
JPH04324687A
JPH04324687A JP3094296A JP9429691A JPH04324687A JP H04324687 A JPH04324687 A JP H04324687A JP 3094296 A JP3094296 A JP 3094296A JP 9429691 A JP9429691 A JP 9429691A JP H04324687 A JPH04324687 A JP H04324687A
Authority
JP
Japan
Prior art keywords
base metal
internal electrode
laminated
electrode material
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3094296A
Other languages
Japanese (ja)
Inventor
Kenji Kumamoto
憲二 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP3094296A priority Critical patent/JPH04324687A/en
Publication of JPH04324687A publication Critical patent/JPH04324687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To make an integrally calcining type ceramic element using a base metal for its internal electrode calcinable in an oxidizing neutral atmosphere and to obtain an internal electrode material for laminated ceramic elements which is inexpensive and has an excellent characteristic by adding a substance which discharges hydrogen at a temperature higher than a debindering temperature to the base metal electrode material. CONSTITUTION:An internal electrode is formed by using a base metal, such as Cu, Ni, Fe, Cr, Ti, etc., and internal electrode paste is prepared by using a metal hydride, such as titanium hydride, etc., as a hydrogen discharging material and adding an organic binder. A laminated element is formed by screen- printing the paste on a ceramic green sheet of lead zirconate titanate, piling up the green sheet thus prepared, and the laminate body is subjected to vacuum thermo-compression bonding. Then this internal electrode material for laminated type ceramic elements is obtained by calcining the laminated element thus obtained in an oxidizing neutral atmosphere. Therefore, a lead type laminated ceramic element which is inexpensive and highly reliable, has a stable dielectric characteristic, and uses a base metal for its internal electrode can be manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は積層型セラミックス素
子の内部電極材料としての卑金属電極材料に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a base metal electrode material used as an internal electrode material for a laminated ceramic element.

【0002】0002

【従来の技術】従来、一体焼成型の積層セラミックス素
子を製造する場合には、内部電極材料としてPt、Au
、Ag、Pd等の貴金属が用いられている。しかし、こ
の様な貴金属は高価であり、内部電極として使用した場
合に、製品の大幅なコストアップを招くために、Ni、
Cu等の安価な金属を内部電極材料として用いる様にな
りつゝある。
[Prior Art] Conventionally, when manufacturing a monolithically fired multilayer ceramic element, Pt, Au, etc. are used as internal electrode materials.
, Ag, Pd, and other noble metals are used. However, such precious metals are expensive, and when used as internal electrodes, they lead to a significant increase in the cost of the product.
Cheap metals such as Cu are increasingly being used as internal electrode materials.

【0003】0003

【発明が解決しようとする課題】併し、この様な安価な
内部電極材料としてのNi、Cu等の材料を焼成する場
合には酸化を防ぐために還元雰囲気で焼成する必要があ
る。また、多くの誘電、圧電セラミックスは還元雰囲気
で焼成されると、容易に還元されて十分な絶縁性が得ら
れなくなる。特に、鉛系の誘電、圧電セラミックスは還
元され易く、本来の電気的特性が発現しなくなる欠点が
ある。また、耐還元性の誘電セラミックス材料として、
チタン酸バリウム系の材料が開発されているが、誘電率
のバイアス依存性、温度依存性および容量の経時変化が
鉛材料よりも劣る等の欠点が見られる。
[Problems to be Solved by the Invention] However, when firing such inexpensive materials such as Ni and Cu as internal electrode materials, it is necessary to perform the firing in a reducing atmosphere to prevent oxidation. Furthermore, when many dielectric and piezoelectric ceramics are fired in a reducing atmosphere, they are easily reduced and cannot provide sufficient insulation. In particular, lead-based dielectric and piezoelectric ceramics are easily reduced and have the disadvantage of not exhibiting their original electrical properties. In addition, as a reduction-resistant dielectric ceramic material,
Barium titanate-based materials have been developed, but they have drawbacks such as bias dependence of dielectric constant, temperature dependence, and change in capacitance over time, which are inferior to lead materials.

【0004】従って、この発明の目的は、この様な従来
における課題を解決するために、Ni、Cu等の卑金属
を内部電極とした一体焼成型のセラミックス素子を酸化
、中性雰囲気で焼成可能とした安価で優れた特性を示す
積層型セラミックス素子用の内部電極材料としての卑金
属電極材料を提供することにある。
[0004] Therefore, in order to solve the problems in the prior art, it is an object of the present invention to provide an integrated firing type ceramic element with internal electrodes made of base metals such as Ni and Cu, which can be fired in an oxidizing and neutral atmosphere. The object of the present invention is to provide a base metal electrode material as an internal electrode material for a multilayer ceramic element that is inexpensive and exhibits excellent properties.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに、この発明に依れば、積層型セラミックス素子用の
内部電極材料としての卑金属電極材料は、脱バインダー
温度以上で水素を放出する物質を含有することを特徴と
している。
[Means for Solving the Problems] In order to achieve the above object, according to the present invention, a base metal electrode material as an internal electrode material for a multilayer ceramic element releases hydrogen at a temperature equal to or higher than the debinding temperature. It is characterized by containing a substance.

【0006】この発明においては、脱バインダー温度以
上で水素を放出する物質を卑金属粉末に混合して卑金属
電極材料として用いたり、或は水素放出物質として水素
化チタン等の金属水素化物を用いるか、或は水素放出物
質として卑金属電極粉末に水素を吸蔵させた卑金属電極
材料を用いる等して積層型セラミックス素子用の内部電
極材料として用いることによって、上述の目的を達成す
ることが出来る。殆どの金属は水素を吸蔵する。金属に
吸蔵された水素は高温に加熱されると放出される。従っ
て、水素放出温度が脱バインダー温度以上である金属粉
末を、内部電極材料として用いれば、セラミックスの焼
結時にのみ水素が放出される。積層体では、放出された
水素ガスが散逸し難いために内部電極近傍のみを還元雰
囲気に保って卑金属内部電極の酸化を防止し乍ら酸化、
中性雰囲気で誘電、圧電セラミックスを焼成することが
出来る。これによって、耐還元性に乏しい鉛系誘電、圧
電セラミックスにより卑金属内部電極を有する一体焼成
型のセラミックス素子を製造することが可能になる。
In the present invention, a substance that releases hydrogen at a temperature above the debinding temperature is mixed with base metal powder and used as the base metal electrode material, or a metal hydride such as titanium hydride is used as the hydrogen releasing substance. Alternatively, the above-mentioned object can be achieved by using a base metal electrode material in which hydrogen is occluded in a base metal electrode powder as a hydrogen releasing substance, and by using the material as an internal electrode material for a multilayer ceramic element. Most metals absorb hydrogen. Hydrogen stored in metals is released when heated to high temperatures. Therefore, if a metal powder whose hydrogen release temperature is higher than the debinding temperature is used as the internal electrode material, hydrogen will be released only during sintering of the ceramic. In the laminated body, the released hydrogen gas is difficult to dissipate, so only the vicinity of the internal electrodes is maintained in a reducing atmosphere to prevent oxidation of the base metal internal electrodes.
Dielectric and piezoelectric ceramics can be fired in a neutral atmosphere. This makes it possible to manufacture an integrally fired ceramic element having base metal internal electrodes using lead-based dielectric or piezoelectric ceramics that have poor reduction resistance.

【0007】すなわち、この発明の卑金属電極材料は、
Cu、Ni、Fe、Cr、Ti等の卑金属を内部電極と
して用いて有機バインダーを加えて内部電極ペーストと
して、これをチタン酸ジルコン酸鉛のセラミックスグリ
ーンシート上にスクリーン印刷し、これを積層して真空
加熱圧着して積層素子とし、酸化、中性雰囲気で焼成し
て積層型セラミックス素子用の内部電極材料とされる。 或はまた、内部電極ペーストとして、Cu、Ni、Fe
、Cr、Ti等の卑金属に水素を吸蔵させて、これに有
機バインダーを加えて内部電極ペーストとして用いるこ
とも出来る。
[0007] That is, the base metal electrode material of the present invention is
Base metals such as Cu, Ni, Fe, Cr, and Ti are used as internal electrodes and an organic binder is added to form an internal electrode paste. This is screen printed on a ceramic green sheet of lead zirconate titanate, and this is laminated. A laminated element is formed by vacuum heat and pressure bonding, and is then fired in an oxidizing and neutral atmosphere to form an internal electrode material for a laminated ceramic element. Alternatively, as an internal electrode paste, Cu, Ni, Fe
It is also possible to store hydrogen in a base metal such as Cr, Ti, etc., and add an organic binder thereto to use it as an internal electrode paste.

【0008】[0008]

【発明の効果】この様に、この発明の卑金属電極材料に
依れば、卑金属を内部電極とした鉛系の積層セラミック
ス素子の製造が可能となり、鉛系誘電セラミックス材料
を用いて積層コンデンサを製造すれば、安価で誘電特性
が安定し、信頼性が高い素子を供給することが出来る。 また、卑金属電極材料として鉛系圧電セラミックス材料
を用いれば、積層型圧電素子を安価に製造することが出
来る様になる。特に、圧電素子では、印加される電圧が
高いために、従来使用されているAgーPd系の内部電
極ではエレクトロマイグレーション(電子移行)が起こ
って信頼性に問題が見られる。また、この発明の卑金属
電極材料に依れば、Ni、Fe、Cr、Ti等のエレク
トロマイグレーションを起こし難い金属を内部電極とし
て使用することが可能となるために、積層型圧電素子の
信頼性を大幅に改善することが出来る。
[Effects of the Invention] As described above, according to the base metal electrode material of the present invention, it is possible to manufacture a lead-based multilayer ceramic element using a base metal as an internal electrode, and a multilayer capacitor can be manufactured using a lead-based dielectric ceramic material. By doing so, it is possible to provide an inexpensive element with stable dielectric properties and high reliability. Furthermore, if a lead-based piezoelectric ceramic material is used as the base metal electrode material, a multilayer piezoelectric element can be manufactured at low cost. In particular, since the voltage applied to piezoelectric elements is high, electromigration (electron migration) occurs in conventionally used Ag-Pd-based internal electrodes, causing reliability problems. Furthermore, according to the base metal electrode material of the present invention, it is possible to use metals such as Ni, Fe, Cr, and Ti that do not easily cause electromigration as internal electrodes, thereby improving the reliability of the multilayer piezoelectric element. It can be significantly improved.

【0009】更に、卑金属内部電極を有する素子を焼成
する場合には、従来では焼成雰囲気中の酸素分圧を極め
て低く抑える必要があるために、水素や一酸化炭素等の
還元性ガスを使用するか、炉内を真空にして雰囲気を完
全に置換しなくてはならなかったが、この発明に依れば
、大気炉や簡易雰囲気炉で卑金属内部電極を有する素子
を焼成できるために焼成炉への設備費を少なくすること
が出来る等の効果が得られる。
Furthermore, when firing an element having a base metal internal electrode, it is necessary to keep the oxygen partial pressure in the firing atmosphere extremely low, so a reducing gas such as hydrogen or carbon monoxide is conventionally used. However, according to this invention, elements with base metal internal electrodes can be fired in an atmospheric furnace or simple atmosphere furnace, so it is not necessary to go to a firing furnace. Effects such as being able to reduce equipment costs can be obtained.

【0010】0010

【実施例】次に、この発明の卑金属電極材料の実施例に
就いて説明する。 実施例  1 卑金属の内部電極として平均粒径が1μmのNi粉末を
用い、これに水素放出物質として水素化チタンを10重
量%加えて良く混合した。また、エチルセルロースとブ
チルカルビトールを1:10の割合で混合、溶解して有
機バインダーとした。Ni、TiーH2粉末の混合物に
45重量%の有機バインダーを加え、3本ロールで混練
して無機物を均一に分散させた。更に、ブチルカルビト
ールを約30重量%加えて粘度を500ポイズに調整し
て、内部電極ペーストとした。比較用として、水素化チ
タンを加えないNi粉末のみの内部電極ペーストも同様
にして用意した。セラミックスグリーンシートは、1μ
mに粉砕したチタン酸ジルコン酸鉛(PZT)粉末に水
20重量%、分散剤0.5重量%、有機バインダー20
重量%を加えてスラリーとして、このスラリーをドクタ
ーブレードで100μmの厚さに成形することによって
得た。
EXAMPLES Next, examples of the base metal electrode material of the present invention will be described. Example 1 Ni powder with an average particle size of 1 μm was used as a base metal internal electrode, and 10% by weight of titanium hydride was added as a hydrogen releasing substance and mixed well. Further, ethyl cellulose and butyl carbitol were mixed and dissolved in a ratio of 1:10 to obtain an organic binder. 45% by weight of an organic binder was added to the mixture of Ni and Ti-H2 powders, and the mixture was kneaded with three rolls to uniformly disperse the inorganic materials. Furthermore, about 30% by weight of butyl carbitol was added to adjust the viscosity to 500 poise to obtain an internal electrode paste. For comparison, an internal electrode paste containing only Ni powder without adding titanium hydride was also prepared in the same manner. Ceramic green sheet is 1μ
20% by weight of water, 0.5% by weight of dispersant, and 20% of organic binder in lead zirconate titanate (PZT) powder ground to
% by weight was added to form a slurry, and this slurry was molded to a thickness of 100 μm using a doctor blade.

【0011】この様にして得たチタン酸ジルコン酸鉛(
PZT)セラミックスグリーンシート上にスクリーン印
刷法によって上記内部電極ペーストを20〜25μmの
厚さに印刷し、これを100枚積層して真空加熱圧着し
て積層素子とした。得られた積層素子を空気中で温度2
50℃まで昇温して48時間保持し、脱バインダーを行
った。焼結は、空気中と窒素中とで1200℃で1時間
行った。また、これを図1および図2に示される様に、
テーブル5上の中央のセッター3の上に適宜な数、例え
ば4個の積層素子1を配置して、これらセッター3上の
積層素子1を、4個のスペーサー4によってテーブル5
上に設置された匣鉢2で覆って、電気容量と誘電損失等
の特性の相違を調べた。この結果を次の表1に示す。
Lead zirconate titanate (
The internal electrode paste was printed on a PZT ceramic green sheet to a thickness of 20 to 25 μm using a screen printing method, and 100 sheets of this were laminated and bonded under vacuum heat and pressure to form a laminated element. The obtained laminated device is heated in air at a temperature of 2
The temperature was raised to 50°C and held for 48 hours to remove the binder. Sintering was performed at 1200° C. for 1 hour in air and nitrogen. In addition, as shown in FIGS. 1 and 2,
An appropriate number, for example, four laminated elements 1 are placed on the center setter 3 on the table 5, and the laminated elements 1 on the setter 3 are separated from the table 5 by four spacers 4.
It was covered with a sagger 2 placed on top, and differences in characteristics such as electric capacity and dielectric loss were investigated. The results are shown in Table 1 below.

【0012】0012

【表1】[Table 1]

【0013】上記の表において、水素チタン(TiーH
2)を加えない場合に、ニッケル(Ni)が酸化して体
積が増加するためか、デラミネーション(離層)が多数
発生した。また、電気容量も非常に小さくて1%以下で
あり、Niが内部電極として機能していない。水素化チ
タンを加えた場合に、窒素雰囲気で焼成すると、電気容
量は積層素子仕様から期待される計算値の97%の値が
測定され、ほゞ完全に内部電極が形成されていることが
伺える。また、大気中で積層素子を匣鉢で覆って焼成し
ても、良好な誘電特性が得られ、誘電損失も小さく、圧
電セラミックスの還元は起こっていない。
In the above table, titanium hydrogen (Ti-H
When 2) was not added, many delaminations occurred, probably because nickel (Ni) was oxidized and the volume increased. Further, the capacitance is very small, less than 1%, and Ni does not function as an internal electrode. When titanium hydride is added and fired in a nitrogen atmosphere, the capacitance is 97% of the calculated value expected from the multilayer element specifications, indicating that the internal electrodes are almost completely formed. . In addition, even when the laminated element is fired in the atmosphere while covered with a sagger, good dielectric properties are obtained, dielectric loss is small, and reduction of the piezoelectric ceramic does not occur.

【0014】実施例  2 平均粒径1μmのNi粉末を圧力容器の中に入れ、容器
内を真空脱気した後に水素ガスを圧力10kg/cm2
まで導入した。この容器を温度200℃の恒温槽内に2
4時間放置し、Ni粉末中に水素を吸蔵させた。実施例
1と同様に、水素を吸蔵させたNi粉末に有機バインダ
ーを加えて内部電極ペーストとし、グリーンシートに印
刷して、これを100枚積層し、真空加熱圧着して積層
素子とした。得られた積層素子を実施例1と同様に脱バ
インダーと焼成を行った。この結果を次の表2に示す。
Example 2 Ni powder with an average particle size of 1 μm was placed in a pressure vessel, and after the inside of the vessel was vacuum degassed, hydrogen gas was introduced at a pressure of 10 kg/cm2.
has been introduced. Place this container in a constant temperature bath at a temperature of 200℃ for 2 hours.
It was left to stand for 4 hours to allow hydrogen to be absorbed into the Ni powder. In the same manner as in Example 1, an organic binder was added to hydrogen-absorbing Ni powder to obtain an internal electrode paste, which was printed on green sheets, 100 sheets of which were laminated, and vacuum heat and pressure bonded to form a laminated element. The resulting laminated device was subjected to binder removal and firing in the same manner as in Example 1. The results are shown in Table 2 below.

【0015】[0015]

【表2】[Table 2]

【0016】表2から理解される様に、水素を吸蔵させ
たNi粉末を用いた場合にのみ良好な誘電特性が示され
ており、この発明の効果が明確に現れている。
As can be seen from Table 2, good dielectric properties were exhibited only when Ni powder occluded with hydrogen was used, and the effects of the present invention are clearly evident.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の卑金属電極部材の焼成の一実施例を
示す平面図である。
FIG. 1 is a plan view showing an example of firing a base metal electrode member of the present invention.

【図2】図1の実施例での一部断面した側面図である。FIG. 2 is a partially sectional side view of the embodiment of FIG. 1;

【符号の説明】[Explanation of symbols]

1    積層素子 2    匣鉢 3    セッター 4    スペーサー 5    テーブル 1 Laminated element 2   Sagger bowl 3 Setter 4 Spacer 5 Table

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  脱バインダー温度以上で水素を放出す
る物質を含有することを特徴とする卑金属電極材料。
1. A base metal electrode material comprising a substance that releases hydrogen at a temperature equal to or higher than the debinding temperature.
【請求項2】  水素放出物質として水素化チタン等の
金属水素化物を用いることを特徴とする請求項1記載の
卑金属電極材料。
2. The base metal electrode material according to claim 1, wherein a metal hydride such as titanium hydride is used as the hydrogen releasing substance.
【請求項3】  水素放出物質として卑金属電極粉末自
身に水素を吸蔵させたものを用いることを特徴とする卑
金属電極材料。
3. A base metal electrode material characterized in that a base metal electrode powder in which hydrogen is occluded in the base metal electrode powder itself is used as a hydrogen releasing substance.
JP3094296A 1991-04-24 1991-04-24 Base metal electrode material Pending JPH04324687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3094296A JPH04324687A (en) 1991-04-24 1991-04-24 Base metal electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3094296A JPH04324687A (en) 1991-04-24 1991-04-24 Base metal electrode material

Publications (1)

Publication Number Publication Date
JPH04324687A true JPH04324687A (en) 1992-11-13

Family

ID=14106309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3094296A Pending JPH04324687A (en) 1991-04-24 1991-04-24 Base metal electrode material

Country Status (1)

Country Link
JP (1) JPH04324687A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024287A2 (en) * 1999-09-30 2001-04-05 Robert Bosch Gmbh Internal electrodes for a stacked piezoactuator and method for producing the same
WO2001045138A2 (en) * 1999-12-16 2001-06-21 Epcos Ag Piezoelectric component
WO2002004379A3 (en) * 2000-07-11 2002-06-27 Bosch Gmbh Robert Sintered, electrically conductive material, ceramic multilayer component comprising this material, and method for the production thereof
JP2002261345A (en) * 2000-12-28 2002-09-13 Denso Corp Laminated one-body baked type electromechanical conversion element
JP2021100020A (en) * 2019-12-20 2021-07-01 太陽誘電株式会社 Multilayer ceramic electronic component and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024287A3 (en) * 1999-09-30 2002-04-04 Bosch Gmbh Robert Internal electrodes for a stacked piezoactuator and method for producing the same
WO2001024287A2 (en) * 1999-09-30 2001-04-05 Robert Bosch Gmbh Internal electrodes for a stacked piezoactuator and method for producing the same
JP2003529917A (en) * 1999-12-16 2003-10-07 エプコス アクチエンゲゼルシャフト Piezoelectric structure element
WO2001045138A3 (en) * 1999-12-16 2002-03-14 Epcos Ag Piezoelectric component
WO2001045138A2 (en) * 1999-12-16 2001-06-21 Epcos Ag Piezoelectric component
DE10062672B4 (en) * 1999-12-16 2010-01-21 Epcos Ag Piezoelectric component
US7855488B2 (en) 1999-12-16 2010-12-21 Epcos Ag Piezoceramic device
JP4744052B2 (en) * 1999-12-16 2011-08-10 エプコス アクチエンゲゼルシャフト Piezoelectric structure element
US8209828B2 (en) 1999-12-16 2012-07-03 Epcos Ag Method for making a piezoceramic device
DE10062672B9 (en) * 1999-12-16 2012-07-12 Epcos Ag Piezoelectric component
WO2002004379A3 (en) * 2000-07-11 2002-06-27 Bosch Gmbh Robert Sintered, electrically conductive material, ceramic multilayer component comprising this material, and method for the production thereof
JP2002261345A (en) * 2000-12-28 2002-09-13 Denso Corp Laminated one-body baked type electromechanical conversion element
JP2021100020A (en) * 2019-12-20 2021-07-01 太陽誘電株式会社 Multilayer ceramic electronic component and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US3872360A (en) Capacitors with nickel containing electrodes
JP2004521508A (en) Electrical multilayer component and method of manufacturing the same
KR101792275B1 (en) Conductive paste for internal electrode, multilayer ceramic components using the same and manufacturing method of the same
JP2002060877A (en) Ni ALLOY POWDER FOR ELECTRICALLY CONDUCTIVE PASTE
JP2004128328A (en) Electronic component and its manufacturing method
US20050142027A1 (en) Copper alloy powder for electroconductive paste
JPH04324687A (en) Base metal electrode material
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP2012195557A (en) Electrode sintered body, laminated electronic component, internal electrode paste, manufacturing method of electrode sintered body, and manufacturing method of laminated electronic component
JP3142014B2 (en) Manufacturing method of multilayer ceramic capacitor
JP4471453B2 (en) Multilayer electronic components
JP2011216877A (en) Laminated varistor and manufacturing method of the same
JPH09205019A (en) Composite function element and its manufacturing method
CN100383899C (en) High-frequency chip multilayer ceramic capacitor and method for making same
JP2676620B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4076393B2 (en) Conductive paste and electronic components
JP4231653B2 (en) Manufacturing method of laminated piezoelectric actuator
JPH0650700B2 (en) Dielectric ceramic composition, laminated ceramic capacitor using the same, and method for producing the same
JPH07106187A (en) Manufacture of laminated ceramic electronic component
JPH05275271A (en) Multilayer ceramic capacitor
JP2725314B2 (en) Manufacturing method of lead-based dielectric porcelain
JPH07201637A (en) Multilayer ceramic electronic device
JP2001052950A (en) Laminated ceramic electronic part and manufacture thereof
JP2000150293A (en) Layered ceramic capacitor
JP3039117B2 (en) Multilayer type grain boundary insulating semiconductor ceramic capacitor