JP2676620B2 - Multilayer ceramic capacitor and manufacturing method thereof - Google Patents
Multilayer ceramic capacitor and manufacturing method thereofInfo
- Publication number
- JP2676620B2 JP2676620B2 JP63275814A JP27581488A JP2676620B2 JP 2676620 B2 JP2676620 B2 JP 2676620B2 JP 63275814 A JP63275814 A JP 63275814A JP 27581488 A JP27581488 A JP 27581488A JP 2676620 B2 JP2676620 B2 JP 2676620B2
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- alloy
- ceramic capacitor
- temperature
- fired
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、Ag若しくはAg−Pg導体を内部電極とする積
層セラミックコンデンサとその製造方法に関する。The present invention relates to a laminated ceramic capacitor having an Ag or Ag-Pg conductor as an internal electrode and a method for manufacturing the same.
[従来の技術] 電子部品の小型化、高密度化に伴って、小型で大きな
静電容量が取得出来るコンデンサとして、積層セラミッ
クコンデンサが注目されるようになった。さらに、この
積層セラミックコンデンサの多用化に伴い、これに対す
る製造コストの低減の要望が高まり、この要望を満たす
為に、様々な手法の開発が進められている。例えば、低
温焼結可能な誘電体セラミック材料の開発を図り、これ
により焼成費用を低下させたり、内部電極や外部電極を
形成する印刷用ペースト材料を、比較的低温焼成が可能
で、低価格の金属を主体とするペーストで形成する事が
出来るようにする等の対策がその代表的な例である。こ
れにより、セラミックコンデンサとして必要とされる特
性を維持したまま、製造費用の削減が試みられ、その成
果としてコストダウンが図られてる。[Prior Art] With the miniaturization and high density of electronic components, a monolithic ceramic capacitor has come to the spotlight as a capacitor that is small and can obtain a large capacitance. Further, with the diversification of this monolithic ceramic capacitor, there has been an increasing demand for a reduction in manufacturing cost for the monolithic ceramic capacitor, and various techniques are being developed to meet this demand. For example, we have tried to develop a dielectric ceramic material that can be sintered at low temperature, thereby reducing the firing cost, and the paste material for printing that forms internal electrodes and external electrodes can be fired at a relatively low temperature, and the cost is low. A typical example is a measure such as being able to form a paste mainly composed of metal. As a result, it is attempted to reduce the manufacturing cost while maintaining the characteristics required for the ceramic capacitor, and as a result, the cost is reduced.
積層セラミックコンデンサは、未焼成のセラミックシ
ート上に、導電性ペーストを方形に印刷した後、上記導
電ペーストのパターンが交互にずれるように積層する。
その後、対向する端面に上記導電ペーストのパターンが
交互に露出するようにチップ状に裁断する。こうして形
成された積層チップは、焼成炉に導入して焼成さた後、
同チップの対向する端部に、導電ペーストの塗布、焼付
け、さらにはメッキ等の手段で、外部電極を形成する。
これにより、積層セラミックコンデンサが完成する。The monolithic ceramic capacitor is obtained by printing a conductive paste in a rectangular shape on an unfired ceramic sheet and then stacking the conductive paste so that the patterns of the conductive paste are alternately displaced.
Then, it is cut into chips so that the patterns of the conductive paste are alternately exposed on the opposite end faces. The laminated chip thus formed is introduced into a firing furnace and fired,
External electrodes are formed on opposite ends of the same chip by means of applying a conductive paste, baking, and further plating.
As a result, the monolithic ceramic capacitor is completed.
第1図は、こうして製造された積層セラミックコンデ
ンサの構造を示し、5は上記セラミックシートが焼結す
ることにより形成された誘電体、6は、同誘電体を挟ん
で交互に対向する電極、3は、これら対向する電極6、
6…に各々電気的に接続するよう、積層体の対向する端
面とこれに連なる上下面及び側面にわたって形成された
外部電極である。FIG. 1 shows the structure of the monolithic ceramic capacitor manufactured in this manner, 5 is a dielectric formed by sintering the ceramic sheet, 6 is electrodes facing each other with the dielectric sandwiched therebetween, and 3 Are these opposing electrodes 6,
6 are external electrodes formed so as to be electrically connected to the end surfaces of the laminated body, and the upper and lower surfaces and side surfaces that are continuous with the opposed end surfaces.
積層セラミックコンデンサの前記内部電極6、6…を
形成するための材料となる印刷用の導電ペーストとして
は、これまで、導体としてPdを主として用いたものが使
用されていたが、これにAgを含ませたAg−Pd合金を導体
とする導電ペーストを用い、誘電体セラミック材料とし
て比較的低温で焼成が可能なものを用いることにより、
コスト低減が図られていた。As the conductive paste for printing, which is a material for forming the internal electrodes 6, 6 of the monolithic ceramic capacitor, the one mainly using Pd as a conductor has been used so far, but it contains Ag. By using a conductive paste that uses a rare Ag-Pd alloy as a conductor, by using a dielectric ceramic material that can be fired at a relatively low temperature,
The cost was reduced.
[発明が解決しようとする課題] しかし、実際には、次のような点で問題点が存在して
いる。[Problems to be Solved by the Invention] However, in reality, there are problems in the following points.
まず、導電ペーストのコストの面について考慮する
と、PdがAgに比べて市場において約10倍の価格を有する
ことから、Agの比率が少ない場合はコストメリットが得
られず、現実にはAgが50%以上の比率であってはじめて
コストメリットが得られる。また、導体の電気抵抗につ
いて考慮した場合でも、Agの量が50重量%以上の場合、
Agの量が多ければ多いほど、形成された内部電極の電気
抵抗も低くなる。具体的には、Agの比率が70重量%以上
でないと、内部電極の電気抵抗が高くなり、積層コンデ
ンサの高周波特性が悪くなって、実用的ではない。First, considering the cost of the conductive paste, since Pd has about 10 times the price in the market compared to Ag, if the ratio of Ag is small, no cost advantage can be obtained, and in reality Ag is 50 The cost advantage can be obtained only when the ratio is at least%. Even when considering the electric resistance of the conductor, if the amount of Ag is 50% by weight or more,
The larger the amount of Ag, the lower the electric resistance of the formed internal electrode. Specifically, unless the Ag content is 70% by weight or more, the electrical resistance of the internal electrodes becomes high, and the high frequency characteristics of the multilayer capacitor deteriorate, which is not practical.
他方、導電ペースト用の導体として用いられるAgある
いはAgの比率が70重量%を越えるAg−Pd合金は、融点若
しくは固相線温度が低い。Agの融点は、960℃であり、A
g−Pd合金は、例えば合金中のAgの比率が80重量%の場
合、固相線温度は1070℃である。On the other hand, Ag used as a conductor for a conductive paste or an Ag-Pd alloy in which the ratio of Ag exceeds 70% by weight has a low melting point or solidus temperature. The melting point of Ag is 960 ℃, A
The g-Pd alloy has a solidus temperature of 1070 ° C., for example, when the proportion of Ag in the alloy is 80% by weight.
積層コンデンサのチップを焼成する場合、内部電極を
形成するための導電ペーストを、その導体材料の融点ま
たは固相線温度に低い温度で焼成すると、導体材料が誘
電体セラミックの内部に拡散し、誘電体セラミックの絶
縁性の低下をもたらし、コンデンサの信頼性が低下す
る。そこでこの問題を解消するため、従来では上記導体
材料の融点または固相線温度より100℃程低い温度、具
体的には、合金中のAgの比率が80重量%のAg−Pd合金ペ
ーストを用いた場合でも、970℃前後の温度で積層体を
焼成することが行なわれていた。When firing a chip of a multilayer capacitor, when the conductive paste for forming the internal electrodes is fired at a temperature lower than the melting point or solidus temperature of the conductor material, the conductor material diffuses inside the dielectric ceramic and The insulation of the body ceramic is lowered, and the reliability of the capacitor is lowered. Therefore, in order to solve this problem, conventionally, a temperature lower than the melting point or solidus temperature of the conductor material by about 100 ° C., specifically, an Ag-Pd alloy paste having an Ag ratio in the alloy of 80% by weight is used. Even in such a case, the laminate was fired at a temperature of around 970 ° C.
しかし、積層体を低い温度で焼成するためには、低温
焼成可能な誘電体セラミック材料を用いる必要があり、
そのため、セラミック原料粉末を微粉末化したり、原料
中に焼結助剤を多量に加える等の手段をとらねばならな
い。ところが、微粉末原料を用いた誘電体セラミック材
料は、高価であり、積層コンデンサのコストを上昇させ
る欠点があり、また焼結助剤を多く加えると、誘電体セ
ラミックの比誘電率やコンデンサの品質係数(Q)の低
下を招くという欠点がある。However, in order to fire the laminate at a low temperature, it is necessary to use a dielectric ceramic material that can be fired at a low temperature,
Therefore, it is necessary to take measures such as pulverizing the ceramic raw material powder or adding a large amount of a sintering aid to the raw material. However, the dielectric ceramic material using the fine powder raw material is expensive and has the drawback of increasing the cost of the multilayer capacitor. Also, if a large amount of sintering aid is added, the relative dielectric constant of the dielectric ceramic and the quality of the capacitor will increase. There is a drawback in that the coefficient (Q) is lowered.
さらに、上記のような970℃前後という、低い温度で
積層体を焼成しても、なお完全に誘電体セラミック中へ
の導体の拡散を防止することができず、コンデンサの特
性の悪化を防ぐことができない、という課題があった。Furthermore, even if the laminated body is fired at a low temperature of around 970 ° C as described above, it is still impossible to completely prevent the diffusion of the conductor into the dielectric ceramic and prevent the deterioration of the capacitor characteristics. There was a problem that I could not do it.
そこで、本発明の目的は、上記課題を解消する事がで
きる積層セラミックコンデンサとその製造方法を提供す
る事にある。Therefore, an object of the present invention is to provide a monolithic ceramic capacitor and a method for manufacturing the same that can solve the above problems.
[課題を解決する為の手段] すなわち、上記目的を達成するための本発明による手
段の要旨は、第一にAg若しくはAg合金を含む導体により
形成された内部電極が誘導体セラミック層を介して対向
している積層セラミックコンデンサに於いて、誘導体セ
ラミックと内部電極とが50000ppm以下の低酸素濃度雰囲
気中において、Agの融点若しくはAg合金の固相線濃度よ
り低い温度で焼成された事を特徴とする積層セラミック
コンデンサである。[Means for Solving the Problems] That is, the gist of the means according to the present invention for achieving the above-mentioned object is, firstly, that the internal electrodes formed of a conductor containing Ag or an Ag alloy are opposed to each other via a dielectric ceramic layer. In the monolithic ceramic capacitor, the dielectric ceramic and the internal electrode are fired at a temperature lower than the melting point of Ag or the solidus concentration of Ag alloy in a low oxygen concentration atmosphere of 50,000 ppm or less. It is a monolithic ceramic capacitor.
第二に、未焼成の誘電体セラミックシート上に、Ag若
しくはAg合金を含む導電ペーストを塗布し、これらセラ
ミックシートを積層して焼成することにより、導体によ
り形成された内部電極が誘導体セラミックを介して対向
した積層セラミックコンデンサを製造する方法に於い
て、セラミックシートの積層体とを50000ppm以下の低酸
素濃度雰囲気中において、Agの融点若しくはAg合金の固
相線温度より低い温度で焼成する事を特徴とする積層セ
ラミックコンデンサの製造方法である。Secondly, by applying a conductive paste containing Ag or an Ag alloy on an unfired dielectric ceramic sheet and stacking these ceramic sheets and firing them, the internal electrodes formed by the conductors pass through the dielectric ceramic. In the method of manufacturing the laminated ceramic capacitors facing each other, firing the laminated body of ceramic sheets at a temperature lower than the melting point of Ag or the solidus temperature of Ag alloy in a low oxygen concentration atmosphere of 50,000 ppm or less. It is a method for producing a characteristic multilayer ceramic capacitor.
第三に、セラミックペーストと、Ag若しくはAg合金を
含む導電ペーストを交互に塗布し、得られた積層体を焼
成することにより、導体により形成された内部電極が誘
導体セラミックを介して対向して積層セラミックコンデ
ンサを製造する方法に於いて、セラミックシートの積層
体を50000ppm以下の低酸素濃度雰囲気中において、Agの
融点若しくはAg合金の固相線温度より低い温度で焼成す
る事を特徴とする積層セラミックコンデンサの製造方法
である。Thirdly, the ceramic paste and the conductive paste containing Ag or Ag alloy are alternately applied, and by firing the obtained laminated body, the internal electrodes formed by the conductors are laminated facing each other through the derivative ceramic. A method for producing a ceramic capacitor, wherein a laminated body of ceramic sheets is fired at a temperature lower than the melting point of Ag or the solidus temperature of Ag alloy in an atmosphere of low oxygen concentration of 50,000 ppm or less. It is a method of manufacturing a capacitor.
[作用] Ag若しくはAg合金を含む導電ペーストを、大気中より
十分酸則の濃度が低い雰囲気、より具体的には酸素濃度
50000ppm以下の雰囲気中で焼成すると、Agの活性が低下
し、焼成時にセラミック中へのAgの拡散が極度に抑えら
れる。このため、内部に前記導電ペースト層を有するセ
ラミックの積層体を、Agの融点若しくはAg合金の固相線
温度に近い温度で焼成しても、セラミック基板の中へAg
が拡散しにくい。よって、セラミックの絶縁抵抗が低下
しない。従って従来に比べてAgの含有率の多い導電ペー
ストを使用しながら、従来より高い温度で誘電体セラミ
ックと導電ペーストを焼成することが可能になる。[Function] Conductive paste containing Ag or Ag alloy is used in an atmosphere in which the concentration of acid law is sufficiently lower than in the atmosphere, more specifically, the oxygen concentration.
When fired in an atmosphere of 50,000 ppm or less, the activity of Ag is lowered and the diffusion of Ag into the ceramic during firing is extremely suppressed. Therefore, even if a ceramic laminate having the conductive paste layer inside is fired at a temperature close to the melting point of Ag or the solidus temperature of Ag alloy,
Is hard to spread. Therefore, the insulation resistance of the ceramic does not decrease. Therefore, it becomes possible to fire the dielectric ceramic and the conductive paste at a higher temperature than the conventional one while using the conductive paste having a higher Ag content than the conventional one.
[実 施 例] 次に、本発明の具体的な実施例について詳細に説明す
る。[Examples] Next, specific examples of the present invention will be described in detail.
(実施例1) TiO2が97重量%、CuOが2重量%、ZrO2が1重量%か
らなるセラミック原料粉末と、トルエン、エタノールが
1対1の混合溶媒中に、ポリビニルブチラールを溶解し
た有機バインダと、ジブチルフタレート(可塑剤)と、
オレイン酸(分散剤)とをボールミルで混合し、セラミ
ック原料のスラリを用意した。Example 1 An organic material prepared by dissolving polyvinyl butyral in a mixed solvent of ceramic raw material powder consisting of 97% by weight of TiO 2, 2 % by weight of CuO and 1% by weight of ZrO 2 , and toluene and ethanol in a ratio of 1: 1. Binder, dibutyl phthalate (plasticizer),
Oleic acid (dispersant) was mixed with a ball mill to prepare a ceramic raw material slurry.
このスラリを真空脱泡機で脱泡した後、これからドク
ターブレード法によって、厚さ40μmの長尺なグリーン
シートを形成した。このグリーンシートを所定の大き
さ、例えば150mm×120mmに切断した。グリーンシート上
に、前記Ag:Pdが重量比が8:2の市販のAg−Pdペースト
(固相線温度約1070℃)をスクリーン印刷した。このよ
うなシートを、導電ペーストのパターンが交互にずれる
ように複数枚重ねて、100℃に保温したまま、400kg/cm2
の圧力で熱圧着した。こうして作られた未焼成セラミッ
ク基板を、前記導体ペーストにより形成された内部電極
の一端が積層体の両端面に交互に露出するようにチップ
状に裁断した。After degassing the slurry with a vacuum degassing machine, a long green sheet having a thickness of 40 μm was formed by the doctor blade method. This green sheet was cut into a predetermined size, for example, 150 mm × 120 mm. On the green sheet, a commercially available Ag-Pd paste having a weight ratio of Ag: Pd of 8: 2 (solidus temperature about 1070 ° C) was screen-printed. Multiple such sheets are stacked so that the patterns of the conductive paste are staggered alternately, and while keeping the temperature at 100 ° C, 400 kg / cm 2
It was thermocompression bonded under the pressure of. The thus-prepared unfired ceramic substrate was cut into chips so that one ends of the internal electrodes formed of the conductor paste were alternately exposed on both end faces of the laminate.
これをまず大気中で、1.5℃/minの温度勾配で室温か
ら500℃まで昇温させ、続いて500℃の温度を2時間保持
し、その後−3℃/minの温度勾配で室温まで冷却し、脱
バインタ処理を行った。First, in the air, the temperature was raised from room temperature to 500 ° C at a temperature gradient of 1.5 ° C / min, then the temperature of 500 ° C was maintained for 2 hours, and then cooled to room temperature at a temperature gradient of -3 ° C / min. , Debinder processing was performed.
次ぎに炉内に窒素ガスを導入し、これで炉内のガスを
置換した後、5℃/minの温度勾配で室温から1050℃まで
昇温させ、続いて1050℃の温度を1時間保持した後、−
5℃/minの温度勾配で室温まで冷却した。この時の炉内
の酸素濃度をジルコニア式酸素濃度計によって測定した
10ppmであった。Next, nitrogen gas was introduced into the furnace, the gas in the furnace was replaced with this, and the temperature was raised from room temperature to 1050 ° C at a temperature gradient of 5 ° C / min, and then the temperature of 1050 ° C was maintained for 1 hour. After that, −
It was cooled to room temperature with a temperature gradient of 5 ° C / min. The oxygen concentration in the furnace at this time was measured by a zirconia oxygen analyzer.
It was 10 ppm.
焼成後の上記積層チップの端面とこれに連なる上下の
面と側面の端部寄りとに、Agを主成分とする導電ペーク
トを塗布し、これを大気中で600℃の温度に焼き付け
て、外部電極を形成した。さらに、この外部電極の上に
Niメッキと半田メッキを施した。To the end face of the laminated chip after firing, the upper and lower faces connected to this and the end portion of the side face, a conductive paste containing Ag as a main component is applied, and this is baked at a temperature of 600 ° C. in the atmosphere, and the external The electrode was formed. Furthermore, on this external electrode
Ni-plated and solder-plated.
以上の方法で作られた積層セラミックコンデンサの絶
縁抵抗をDC100Vにて20個測定した結果、その平均値は3.
5×1012Ωであった。以上の結果を下表のE1の欄に示し
た。As a result of measuring 20 insulation resistances of the monolithic ceramic capacitors manufactured by the above method at DC100V, the average value is 3.
It was 5 × 10 12 Ω. The above results are shown in column E1 of the table below.
(実施例2〜6) 上記実施例1に於いて、焼成時の炉内雰囲気の窒素ガ
スと空気とが2500:1、500:1、100:1、20:1、及び3.2:1
の割合で混合された混合ガスに代えた事以外は、同実施
例1と同様の条件で積層セラミックコンデンサを各々製
造した。この時の炉内の酸素濃度は、各々下表のE2〜E6
の欄に示す通りであった。(Examples 2 to 6) In Example 1 described above, the nitrogen gas and air in the furnace atmosphere during firing were 2500: 1, 500: 1, 100: 1, 20: 1, and 3.2: 1.
A monolithic ceramic capacitor was manufactured under the same conditions as in Example 1 except that the mixed gas mixed in the ratio was changed. At this time, the oxygen concentration in the furnace is E2 to E6 in the table below.
It was as shown in the column.
こうして製造された積層セラミックコンデンサ20個ず
つについて測定した絶縁抵抗の測定値の平均は、E2〜E6
の欄に示す値であった。The average insulation resistance measured for each of the 20 multilayer ceramic capacitors manufactured in this way is E2-E6.
It was the value shown in the column.
(実施例7) 上記実施例1に於いて、セラミック顔料粉末の組成
を、TiO2が95重量%、CuOが4重量%、ZrOが1重量%と
した事、使用した導電ペーストをAgペストとした事、焼
成温度を1050℃から940℃とした事以外は、同実施例1
と同様の条件で積層セラミックコンデンサを各々製造し
た。この時の炉内の酸素濃度は、下表のE7の欄に示す通
りであった。(Example 7) In Example 1, the composition of the ceramic pigment powder was 95 wt% TiO 2 , 4 wt% CuO and 1 wt% ZrO, and the conductive paste used was Ag pest. Example 1 except that the firing temperature was changed from 1050 ° C to 940 ° C
Multilayer ceramic capacitors were manufactured under the same conditions as above. The oxygen concentration in the furnace at this time was as shown in column E7 in the table below.
こうして製造された積層セラミックコンデンサ20個ず
つについて測定した絶縁抵抗の測定値の平均、E7の欄に
示す値であった。The average of the measured values of the insulation resistance measured for each of 20 manufactured multilayer ceramic capacitors was the value shown in the column of E7.
(比較例1、2) 上記実施例1に於いて、焼成時の炉内雰囲気の窒素ガ
スと空気との比を1:1とした場合、及び同炉内雰囲気を
全て空気とした場合につき、同実施例1と同様の条件で
各々積層セラミックコンデンサを製作した。(Comparative Examples 1 and 2) In the above-mentioned Example 1, when the ratio of nitrogen gas to air in the furnace atmosphere during firing was 1: 1 and when the furnace atmosphere was entirely air, Multilayer ceramic capacitors were manufactured under the same conditions as in Example 1.
こうして製造された積層セラミックコンデンサ20個ず
つについて測定した絶縁抵抗の測定値の平均は、P1、P2
の欄に示す値であった。The average insulation resistance measured for each of the 20 multilayer ceramic capacitors manufactured in this way is P1, P2.
It was the value shown in the column.
(比較例3) 上記実施例7に於いて、焼成時の炉内雰囲気を窒素ガ
スに代えて全て空気とした事以外は、同実施例7と同様
の条件で各々積層セラミックコンデンサを製作した。Comparative Example 3 A laminated ceramic capacitor was manufactured under the same conditions as in Example 7 except that the atmosphere in the furnace during firing was replaced by nitrogen gas instead of nitrogen gas.
こうして製造した積層セラミックコンデンサ20個ずつ
について測定した絶縁抵抗の測定値の平均は、P3の欄に
示す値であった。The average of the measured values of the insulation resistance measured for each of the 20 manufactured multilayer ceramic capacitors was the value shown in the column of P3.
第2図は、上記実施例と比較例の結果をもとに、積層
セラミックコンデンサの絶縁抵抗の平均値と最大、最小
値を積層チップの焼成雰囲気の酸素濃度との関係を表わ
したグラフである。 FIG. 2 is a graph showing the relationship between the average value and the maximum value and the minimum value of the insulation resistance of the multilayer ceramic capacitor based on the results of the above Examples and Comparative Examples and the oxygen concentration in the firing atmosphere of the multilayer chip. .
[発明の効果] 以上説明した通り、本発明によれは、Ag若しくはAg合
金を導体とした積層セラミックコンデンサを、その絶縁
性を低下させることなく、従来より高い温度で焼成する
事が可能になる。これによって、セラミックコンデンサ
として必要な特性を保持したまま、信頼性の高い積層セ
ラミックコンデンサを安価に提供出来ると言う効果が達
成される。[Effects of the Invention] As described above, according to the present invention, it is possible to fire a laminated ceramic capacitor using Ag or Ag alloy as a conductor at a higher temperature than before without lowering its insulating property. . This achieves the effect that a highly reliable multilayer ceramic capacitor can be provided at low cost while maintaining the characteristics required as a ceramic capacitor.
第1図は、積層セラミックコンデンサの一例を示す一部
断面概念斜視図、第2図は、積層セラミックコンデンサ
の絶縁抵抗の平均値と最大、最小値を積層チップの焼成
雰囲気の酸素濃度との関係で表わしたグラフである。 3……外部電極、5……誘電体、6……内部電極FIG. 1 is a partially sectional conceptual perspective view showing an example of a monolithic ceramic capacitor, and FIG. 2 is a relationship between the average value and the maximum and the minimum value of the insulation resistance of the monolithic ceramic capacitor with the oxygen concentration in the firing atmosphere of the monolithic chip. Is a graph represented by. 3 ... External electrode, 5 ... Dielectric, 6 ... Internal electrode
Claims (3)
れた内部電極が誘電体セラミック層を介して対向してい
る積層セラミックコンデンサに於いて、誘電体セラミッ
クと内部電極とが50000ppm以下の低酸素濃度雰囲気中に
おいて、Agの融点若しくはAg合金の固相線温度より低い
温度で焼成された事を特徴とする積層セラミックコンデ
ンサ。1. A monolithic ceramic capacitor in which internal electrodes formed of a conductor containing Ag or an Ag alloy are opposed to each other through a dielectric ceramic layer, wherein the dielectric ceramic and the internal electrodes have a low oxygen content of 50,000 ppm or less. A monolithic ceramic capacitor characterized by being fired at a temperature lower than the melting point of Ag or the solidus temperature of Ag alloy in a concentrated atmosphere.
若しくはAg合金を含む導電ペーストを塗布し、これらセ
ラミックシートを積層して焼成することにより、導体に
より形成された内部電極が誘電体セラミックを介して対
向した積層セラミックコンデンサを製造する方法に於い
て、セラミックシートの積層体とを50000ppm以下の低酸
素濃度雰囲気中において、Agの融点若しくはAg合金の固
相線温度より低い温度で焼成する事を特徴とする積層セ
ラミックコンデンサの製造方法。2. Ag on a non-fired dielectric ceramic sheet
Alternatively, in a method for producing a laminated ceramic capacitor in which a conductive paste containing an Ag alloy is applied, and these ceramic sheets are laminated and fired, the internal electrodes formed by the conductors face each other through a dielectric ceramic, A method for producing a monolithic ceramic capacitor, comprising: firing a laminated body of ceramic sheets in a low oxygen concentration atmosphere of 50,000 ppm or less at a temperature lower than a melting point of Ag or a solidus temperature of Ag alloy.
を含む導電ペーストを交互に塗布し、得られた積層体を
焼成することにより、導体により形成された内部電極が
誘電体セラミックを介して対向した積層セラミックコン
デンサを製造する方法に於いて、セラミックシートの積
層体とを50000ppm以下の低酸素濃度雰囲気中において、
Agの融点若しくはAg合金の固相線温度より低い温度で焼
成する事を特徴とする積層セラミックコンデンサの製造
方法。3. A ceramic paste and a conductive paste containing Ag or an Ag alloy are applied alternately, and the resulting laminate is fired so that the internal electrodes formed by the conductors face each other with the dielectric ceramic interposed therebetween. In a method of manufacturing a monolithic ceramic capacitor, a ceramic sheet laminate and a low oxygen concentration atmosphere of 50,000 ppm or less,
A method for manufacturing a monolithic ceramic capacitor, which comprises firing at a temperature lower than the melting point of Ag or the solidus temperature of Ag alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63275814A JP2676620B2 (en) | 1988-10-31 | 1988-10-31 | Multilayer ceramic capacitor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63275814A JP2676620B2 (en) | 1988-10-31 | 1988-10-31 | Multilayer ceramic capacitor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02122511A JPH02122511A (en) | 1990-05-10 |
JP2676620B2 true JP2676620B2 (en) | 1997-11-17 |
Family
ID=17560792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63275814A Expired - Fee Related JP2676620B2 (en) | 1988-10-31 | 1988-10-31 | Multilayer ceramic capacitor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2676620B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7431785B2 (en) | 2002-07-25 | 2008-10-07 | Murata Manufacturing Co., Ltd. | Manufacturing method for monolithic piezoelectric part, and monolithic piezoelectric part |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5561828A (en) * | 1993-09-14 | 1996-10-01 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing a ceramic electronic part |
JP4560765B2 (en) * | 2003-12-05 | 2010-10-13 | 株式会社村田製作所 | Manufacturing method of multilayer electronic component |
JP6019551B2 (en) * | 2011-08-18 | 2016-11-02 | 株式会社村田製作所 | Manufacturing method of common mode choke coil |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58135620A (en) * | 1982-02-08 | 1983-08-12 | 富士通株式会社 | Conductive paste |
JPH0646620B2 (en) * | 1986-03-04 | 1994-06-15 | 松下電器産業株式会社 | Method for manufacturing multilayer capacitor element |
-
1988
- 1988-10-31 JP JP63275814A patent/JP2676620B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7431785B2 (en) | 2002-07-25 | 2008-10-07 | Murata Manufacturing Co., Ltd. | Manufacturing method for monolithic piezoelectric part, and monolithic piezoelectric part |
Also Published As
Publication number | Publication date |
---|---|
JPH02122511A (en) | 1990-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7018864B2 (en) | Conductive paste for terminal electrodes of monolithic ceramic electronic component, method for making monolithic ceramic electronic component, and monolithic ceramic electronic component | |
JP2003100144A (en) | Conductive paste, manufacturing method of laminated ceramic electronic component and laminated ceramic electronic component | |
JP3514117B2 (en) | Multilayer ceramic electronic component, method of manufacturing multilayer ceramic electronic component, and conductive paste for forming internal electrode | |
US7413699B2 (en) | Method of making ceramic electronic element | |
JP2676620B2 (en) | Multilayer ceramic capacitor and manufacturing method thereof | |
JPH0620014B2 (en) | Multilayer chip inductor and manufacturing method thereof | |
JPH05335177A (en) | Manufacture of laminated electronic component | |
JP2779896B2 (en) | Manufacturing method of laminated electronic components | |
JPH11214240A (en) | Laminated ceramic electronic component and their manufacture | |
JP3498200B2 (en) | Multilayer ceramic composite parts | |
JPH0878267A (en) | Inner electrode paste and multilayer ceramic capacitor employing it | |
JP4076393B2 (en) | Conductive paste and electronic components | |
JP2555638B2 (en) | Method for manufacturing multilayer ceramic substrate | |
JP3142013B2 (en) | Multilayer electronic components | |
JP3273125B2 (en) | Multilayer ceramic capacitors | |
JPH07201637A (en) | Multilayer ceramic electronic device | |
JP3085596B2 (en) | Multilayer ceramic capacitors | |
JP3134430B2 (en) | Non-reducing dielectric ceramic composition | |
JP2007180322A (en) | Laminated ceramic electronic component | |
JPH0752696B2 (en) | Multilayer ceramic capacitor and manufacturing method thereof | |
JP3873928B2 (en) | Manufacturing method of multilayer ceramic electronic component | |
JPH07106187A (en) | Manufacture of laminated ceramic electronic component | |
JP2952061B2 (en) | Non-reducing dielectric porcelain composition | |
JP2000150293A (en) | Layered ceramic capacitor | |
JP3078375B2 (en) | Multilayer ceramic capacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |