JPH0752696B2 - Multilayer ceramic capacitor and manufacturing method thereof - Google Patents

Multilayer ceramic capacitor and manufacturing method thereof

Info

Publication number
JPH0752696B2
JPH0752696B2 JP62076246A JP7624687A JPH0752696B2 JP H0752696 B2 JPH0752696 B2 JP H0752696B2 JP 62076246 A JP62076246 A JP 62076246A JP 7624687 A JP7624687 A JP 7624687A JP H0752696 B2 JPH0752696 B2 JP H0752696B2
Authority
JP
Japan
Prior art keywords
capacitor
conductive
ceramic
multilayer ceramic
element body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62076246A
Other languages
Japanese (ja)
Other versions
JPS63244729A (en
Inventor
隆 外丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP62076246A priority Critical patent/JPH0752696B2/en
Publication of JPS63244729A publication Critical patent/JPS63244729A/en
Publication of JPH0752696B2 publication Critical patent/JPH0752696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ニッケルで内部電極が形成された積層形セラ
ミックコンデンサに関する。
TECHNICAL FIELD The present invention relates to a multilayer ceramic capacitor having internal electrodes made of nickel.

(従来の技術) 積層形セラミックコンデンサの製造には、以前はコンデ
ンサ素体を焼結した後、導電ペーストを塗布し、還元性
雰囲気中で再び燒成して外部電極を形成して製造する方
法がとられていた。
(Prior Art) For manufacturing a multilayer ceramic capacitor, a method in which a capacitor element body was previously sintered, a conductive paste was applied, and the external electrode was formed by sintering again in a reducing atmosphere was used. Was taken.

しかしながらこの様に、コンデンサ内部の絶縁体を2度
に亘って高温の還元性雰囲気の下におくと、セラミック
の絶縁抵抗が低下してコンデンサの電気的特性が劣化す
る。しかも、外部電極焼成のためにも還元性雰囲気を作
る設備を必要とし、そのため積層形セラミックコンデン
サの製造コストも上昇する等、不利益が多かった。
However, if the insulator inside the capacitor is exposed to a high temperature reducing atmosphere twice as described above, the insulation resistance of the ceramic is lowered and the electrical characteristics of the capacitor are deteriorated. Moreover, there are many disadvantages such as a facility for creating a reducing atmosphere for firing the external electrodes, which increases the manufacturing cost of the multilayer ceramic capacitor.

そこで従来技術では、かかる不利益のない、セラミック
焼結と外部電極焼成とを一度の工程で行う技術を採用し
ていた。これを詳述すると次のような手順となる。
Therefore, in the conventional technique, a technique of performing the ceramic sintering and the external electrode firing in one step without such a disadvantage has been adopted. The detailed procedure is as follows.

まず、複数枚の長尺な未焼結誘導体セラミックシートの
一主面にニッケル等の導電粒子を含む導電ペーストを印
刷して複数個の内部電極用導電層を形成し、これらのシ
ートを1つおきに長手方向にずらして重ねた後圧着し、
ずらしたシートの導電層及びずらさないシートの導電層
がそれぞれ切断面に露出する位置で切断し、多数のコン
デンサ素体を作成する。次いで、該コンデンサ素体の導
電層が露出している両端面とこれに連なる周端縁部にニ
ッケル粉末とエチルセルローズとブチルカルビトールと
から成る導電ペーストを塗布して外部電極となる導電層
を形成した後、1150〜1250℃の温度の還元雰囲気中で内
部ニッケル電極、セラミック及び外部電極を同時に焼結
・燒成する。
First, a conductive paste containing conductive particles such as nickel is printed on one main surface of a plurality of long unsintered derivative ceramic sheets to form a plurality of conductive layers for internal electrodes. Every other time, shift in the longitudinal direction and stack them, then crimp,
The conductive layers of the shifted sheet and the conductive layer of the non-shifted sheet are cut at positions where they are exposed on the cut surfaces, respectively, to form a large number of capacitor bodies. Then, a conductive paste made of nickel powder, ethyl cellulose and butyl carbitol is applied to both end faces where the conductive layer of the capacitor body is exposed and the peripheral edge portions continuing to the exposed end face to form a conductive layer to be an external electrode. After the formation, the internal nickel electrode, the ceramic and the external electrode are simultaneously sintered and fired in a reducing atmosphere at a temperature of 1150 to 1250 ° C.

以上の製造方法によれば、一回だけ高温の還元性雰囲気
下にセラミックをおけば積層形セラミックコンデンサを
製造することができるので、セラミックの絶縁抵抗が低
下することがない。
According to the above-described manufacturing method, the monolithic ceramic capacitor can be manufactured by placing the ceramic in the reducing atmosphere at a high temperature only once, so that the insulation resistance of the ceramic does not decrease.

(発明が解決しようとする問題点) しかしながら上記従来技術のように、未焼結セラミック
シート積層体に導電ペーストを塗布してセラミックと導
電体とを同時に焼結・焼成しようとするとする場合、焼
結の前後でセラミックシートの体積は大きく変化する。
一方、外部電極も焼成の前後で体積は変化するが、セラ
ミックシートと外部電極の間に発生する体積変化の差
は、既に焼結されたセラミックシートに導電ペーストを
塗布して外部電極を焼成したものよりも、未焼結セラミ
ックシートに導電ペーストを塗布焼成したものの方が大
きく、従って、セラミック中の内部歪も大きくなってし
まう。そのため、従来技術で製造した積層形セラミック
コンデンサの外部電極と内部ニッケル電極との接続部、
及び、コンデンサ素体の周端縁部に形成された外部電極
の周縁のセラミック部分に大きな歪が発生し、製品とな
った後も残存してしまう。
(Problems to be Solved by the Invention) However, as in the above-mentioned prior art, when an attempt is made to apply a conductive paste to the unsintered ceramic sheet laminate to sinter and fire the ceramic and the conductor at the same time, firing The volume of the ceramic sheet changes greatly before and after binding.
On the other hand, the volume of the external electrode also changes before and after firing, but the difference in volume change that occurs between the ceramic sheet and the external electrode is because the conductive paste was applied to the already sintered ceramic sheet to fire the external electrode. The one obtained by applying and firing the conductive paste on the unsintered ceramic sheet is larger than the one, and therefore the internal strain in the ceramic also becomes large. Therefore, the connection portion between the external electrode and the internal nickel electrode of the multilayer ceramic capacitor manufactured by the conventional technique,
In addition, a large distortion is generated in the ceramic portion at the peripheral edge of the external electrode formed at the peripheral edge portion of the capacitor body, and remains after the product is manufactured.

この様な大きな歪を有する積層形セラミックコンデンサ
に熱衝撃が加えられるとセラミックの歪み部分にクラッ
クが生じやすく、例えば、熱衝撃試験のため、プリント
基板等に半田付けをして該基板と一緒に熱衝撃をかけた
場合には、絶縁抵抗が103MΩ以下の不良品が発生する、
という問題があった。
When a thermal shock is applied to a monolithic ceramic capacitor having such a large strain, cracks are likely to occur in the strained part of the ceramic. When thermal shock is applied, defective products with insulation resistance of 10 3 MΩ or less occur.
There was a problem.

また、このようなものは、同時に内部ニッケル電極と外
部電極の接続部分でクラックや電極間の剥離等を生じる
ため電気的接続に支障を来たし、そのため誘電正接が大
きくなって電気的特性が劣化して不良品となるものが発
生したり、誘電正接の値がばらつくものが總数の5〜8
%程度生ずるという問題があった。
In addition, such a material causes a crack in the connection portion between the internal nickel electrode and the external electrode and peeling between the electrodes at the same time, which hinders the electrical connection, resulting in a large dielectric loss tangent and deterioration in the electrical characteristics. 5 to 8 of the total number are those that result in defective products and the value of the dielectric loss tangent varies.
There was a problem that about%.

本発明は、上述のような問題を解消する積層形セラミッ
クコンデンサ及びその製造方法を提供することを目的と
するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a multilayer ceramic capacitor and a method for manufacturing the same that solves the above problems.

(問題点を解決するための手段) 上述の目的を達成するために、本願の第1発明は、ニッ
ケルを主成分とする内部電極用導電層とセラミック層と
が交互に積層されて焼結されたコンデンサ素体と、前記
コンデンサ素体の両端面及びこれに連なる周端縁部に、
導電粉末とバインダとから成る導電ペーストを塗布焼成
して形成した外部電極用導電層を備えた積層形セラミッ
クコンデンサにおいて、前記導電粉末は、1〜50重量%
の銀と50〜99重量%の亜鉛を含むことを特徴とし、第2
発明は、ニッケルを主成分とする内部電極用導電層が形
成された未焼結セラミックシートを複数枚積層し、圧着
して成る未焼結コンデンサ素体を焼結した後、該素体の
両端面及びそれに連なる周端縁部に導電粉末とバインダ
とから成る導電ペーストを塗布し、次いで焼成する積層
形セラミックコンデンサの製造方法において、前記導電
粉末は1〜50重量%の銀と50〜99%の亜鉛を含むもので
あり、前記焼成は大気中で行うことを特徴とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the first invention of the present application is such that conductive layers for internal electrodes containing nickel as a main component and ceramic layers are alternately laminated and sintered. The capacitor element body, and both end faces of the capacitor element body and the peripheral edge portion continuous with this,
In a multilayer ceramic capacitor having a conductive layer for external electrodes, which is formed by coating and firing a conductive paste composed of conductive powder and a binder, the conductive powder is 1 to 50% by weight.
Of silver and 50-99% by weight of zinc, the second
The invention is to laminate a plurality of unsintered ceramic sheets on which a conductive layer for internal electrodes having nickel as a main component is laminated and press-bonded to sinter the unsintered capacitor element body. In a method for producing a multilayer ceramic capacitor, in which a conductive paste composed of a conductive powder and a binder is applied to the surface and the peripheral edge portion continuous with the surface and then fired, the conductive powder is 1 to 50% by weight of silver and 50 to 99%. Of zinc, and the firing is performed in the atmosphere.

(作 用) 外部電極を形成するための導電ペーストの導電粉末が、
銀及び亜鉛をそれぞれ1〜50重量%及び50〜99重量%の
範囲で含んでいるので、還元性雰囲気で外部電極の焼成
を行う必要がなく、大気中で外部電極の焼成を行うこと
ができる。
(Working) The conductive powder of the conductive paste for forming the external electrodes is
Since silver and zinc are contained in the ranges of 1 to 50% by weight and 50 to 99% by weight, respectively, it is not necessary to fire the external electrode in a reducing atmosphere, and the external electrode can be fired in the atmosphere. .

即ち、銀は加熱すると酸素を吸収し、冷却すると酸素を
放出するから、銀と亜鉛を共存させて大気中で加熱した
場合、銀は外部電極焼成中は酸素を吸収して亜鉛への酸
素の供給を遮断し、亜鉛が絶縁体の酸化亜鉛となること
を防止すると共に、冷却されると酸素を放出して外部電
極と内部ニッケル電極の間の電気伝導度を向上させる。
That is, since silver absorbs oxygen when heated and releases oxygen when cooled, when silver and zinc are made to coexist and heated in the atmosphere, silver absorbs oxygen during firing of the external electrode and oxygen It shuts off the supply, prevents zinc from becoming zinc oxide in the insulator, and releases oxygen when cooled to improve the electrical conductivity between the external electrode and the internal nickel electrode.

従って、セラミックの焼結の際には導電ペーストを塗布
しておかずに、セラミック焼結後に導電ペーストを塗布
して外部電極の焼成を行う場合であっても、大気中で焼
成が行えるため特別な設備を必要としない。
Therefore, even if the conductive paste is not applied during the sintering of the ceramic and the external electrode is baked by applying the conductive paste after the ceramic is sintered, it is possible to perform the baking in the atmosphere, which is a special case. No equipment needed.

又、セラミックの体積変化が小さいので、外部電極とセ
ラミックとの体積変化の差も小さく、そのため両者の間
に残存する歪が少なくなり、熱衝撃が加わっても外部電
極と内部ニッケル電極の間の接続が破断されなくなる。
又、従来の方法によるコンデンサのように外部電極の周
縁におけるセラミックに歪が発生することがなく、本発
明の方法によるコンデンサをプリント基板に半田付けし
た後、該基板に熱衝撃を加えても、セラミックにクラッ
クが生じないから、絶縁抵抗が103MΩ以下になることが
ない。
Further, since the volume change of the ceramic is small, the difference in volume change between the external electrode and the ceramic is also small, so that the strain remaining between the two is small, and even if a thermal shock is applied, the difference between the external electrode and the internal nickel electrode is small. The connection will not break.
Further, unlike the conventional capacitor, distortion does not occur in the ceramic at the peripheral edge of the external electrode, and after the capacitor according to the present invention is soldered to the printed board, thermal shock is applied to the board. Since the ceramic does not crack, the insulation resistance does not fall below 10 3 MΩ.

更に、内部電極のニッケルと外部電極の亜鉛が確実に固
溶し、また亜鉛と銀が確実に固溶してそれぞれニッケル
−亜鉛固溶体及び銀−亜鉛固溶体を形成するので、内部
電極と外部電極とが固溶体によって確実に接続される。
Further, since nickel of the internal electrode and zinc of the external electrode surely form a solid solution, and zinc and silver surely form a solid solution to form a nickel-zinc solid solution and a silver-zinc solid solution, respectively. Are securely connected by the solid solution.

なお、導電ペーストの導電粉末中の銀の量が1重量%未
満の範囲(亜鉛が99重量%を超える量)のものを除外し
たのは、銀の量がその値以下であると、焼成中の銀の酸
素吸着が不十分となって内部電極と外部電極の接続に支
障を来たし、熱衝撃後の絶縁抵抗が劣化するものが発生
するからである。
It should be noted that the case where the amount of silver in the conductive powder of the conductive paste is less than 1% by weight (the amount of zinc exceeds 99% by weight) is excluded because the amount of silver is below that value during firing. This is because the adsorption of oxygen by silver becomes insufficient, which hinders the connection between the internal electrode and the external electrode, and the insulation resistance after thermal shock deteriorates.

又、銀の量が50重量%を超える範囲(亜鉛の量が50重量
%未満)のものを除いたのは、亜鉛の量が少ないとニッ
ケル−亜鉛固容体の形成が不十分となり、コンデンサ中
の一部の内部電極が外部電極と電気的に接続されなくな
り、その結果積層形セラミックコンデンサの静電容量が
減少し、誘電正接が大きくなるからである。
In addition, the silver content exceeding 50% by weight (zinc content less than 50% by weight) was excluded except that when the amount of zinc was small, the nickel-zinc solid solution was not sufficiently formed and This is because some of the internal electrodes are not electrically connected to the external electrodes, and as a result, the capacitance of the multilayer ceramic capacitor decreases and the dielectric loss tangent increases.

(実施例) 以下本発明の実施例を図面につき説明する。(Embodiment) An embodiment of the present invention will be described below with reference to the drawings.

実施例1 亜鉛粉末(純度99.9%、平均粒径2.5μm)75gと、銀粉
末(純度99.9%、平均粒径1.5μm)25gと、エチルセル
ローズ20gと、ブチルカルビトール150gと、PbO−B2O3
SiO系ガラス粉末2gとを擂潰機で24時間混合した後、該
混合物を3本ロールミルにて3時間混練して外部電極ペ
ーストを作製した。
Example 1 75 g of zinc powder (purity 99.9%, average particle size 2.5 μm), 25 g of silver powder (purity 99.9%, average particle size 1.5 μm), 20 g of ethyl cellulose, 150 g of butyl carbitol, and PbO-B 2 O 3
After mixing 2 g of SiO-based glass powder with a crusher for 24 hours, the mixture was kneaded with a three-roll mill for 3 hours to prepare an external electrode paste.

これとは別に、17μmの厚さのセラミック層50層から成
り、該セラミック層間にニッケル導体から成る内部電極
が介在する縦3.1mm、横1.5mm、高さ0.9mmの外部電極が
形成されていないコンデンサ素体を用意した。該コンデ
ンサ素体は上記した従来のものと同じ条件及び方法によ
り作製した。
Separately from this, there are formed 50 μm ceramic layers with a thickness of 17 μm, and external electrodes having a length of 3.1 mm, a width of 1.5 mm, and a height of 0.9 mm in which internal electrodes made of nickel conductors are interposed between the ceramic layers are not formed. A capacitor body was prepared. The capacitor body was manufactured under the same conditions and methods as those of the conventional one described above.

該コンデンサ素体の両端面及びこれに連なる周端縁部に
上記外部電極ペーストを塗布し、125℃で10分間乾燥
し、引き続き空気中で700℃、10分間燒成して積層形セ
ラミックコンデンサを得た。
The external electrode paste is applied to both end surfaces of the capacitor element body and the peripheral edge portions continuous with the same, dried at 125 ° C. for 10 minutes, and subsequently sintered in air at 700 ° C. for 10 minutes to form a laminated ceramic capacitor. Obtained.

尚、外部電極上には、ニッケルメッキを施した。The external electrodes were plated with nickel.

該コンデンサの複数個をガラスエポキシ配線基板上の銅
電極に半田付けした後、市販のLCRメータ(YHP 4274A)
で該コンデンサの静電容量と誘電正接(tanδ)とを100
個について測定した。
After soldering a plurality of the capacitors to copper electrodes on a glass epoxy wiring board, a commercially available LCR meter (YHP 4274A)
And the capacitance and dielectric loss tangent (tan δ) of the capacitor are 100
It measured about the piece.

次いで、該コンデンサの絶縁抵抗値(50Vにおける)を
絶縁抵抗測定器(東亜電波SW−9E)で100個について測
定した。測定された絶縁抵抗値はすべて103MΩ以上であ
った。その後、コンデンサを搭載した配線基板を、−55
℃の温度に保たれた恒温槽内に放置し、30分間経過後、
125℃の温度に保たれた恒温槽内に速やかに移動し、30
分間放置することを1サイクルとしてこれを100サイク
ル熱衝撃テストを行なった後、再び上記測定器によって
静電容量及び誘電正接と絶縁抵抗を測定した。そのいず
れも全く変動がなかった。その測定結果を表1に示す。
実施例2〜6 実施例2は、亜鉛粉末65g、銀粉末35gとし、実施例3
は、亜鉛粉末85g、銀粉末15gとし、実施例4は亜鉛粉末
50g、銀粉末50gとし、実施例5は亜鉛92g、銀8gとし、
実施例6は亜鉛粉末99g、銀粉末1gとし、それ以外はい
ずれの実施例とも、実施例1と同じ方法及び条件で行な
った。測定結果は表1に示す。
Then, the insulation resistance value (at 50 V) of the capacitor was measured for 100 pieces with an insulation resistance measuring device (Toa Denpa SW-9E). The measured insulation resistance values were all 10 3 MΩ or more. After that, place the wiring board with the capacitor on -55
Leave in a constant temperature bath maintained at a temperature of ℃, after 30 minutes,
Immediately move to a constant temperature bath maintained at a temperature of 125 ° C, and
After leaving for 1 minute as one cycle, this was subjected to a 100-cycle thermal shock test, and then the capacitance, the dielectric loss tangent, and the insulation resistance were measured again by the above measuring instrument. None of them changed at all. The measurement results are shown in Table 1.
Examples 2-6 In Example 2, 65 g of zinc powder and 35 g of silver powder were used.
Is 85 g of zinc powder and 15 g of silver powder.
50 g, silver powder 50 g, Example 5 was zinc 92 g, silver 8 g,
In Example 6, 99 g of zinc powder and 1 g of silver powder were used. In all other examples, the same method and conditions as in Example 1 were used. The measurement results are shown in Table 1.

比較例1及び2 比較例1は、亜鉛粉末100g、銀粉末は零とし、比較例2
は亜鉛40g、銀60gとしたこと以外は実施例1と同じ方法
及び条件で行なった。測定結果を表1に示す。
Comparative Examples 1 and 2 In Comparative Example 1, 100 g of zinc powder and zero silver powder were used, and Comparative Example 2
Was carried out in the same manner as in Example 1 except that 40 g of zinc and 60 g of silver were used. The measurement results are shown in Table 1.

尚、絶縁抵抗値が103MΩ以下のものを不良品とした。A product having an insulation resistance value of 10 3 MΩ or less was regarded as a defective product.

比較例3 比較例3は、上記した従来の方法により実施例1のコン
デンサ素体と同じ条件で作製した。測定結果を表1に示
す。
Comparative Example 3 Comparative Example 3 was manufactured by the above-described conventional method under the same conditions as the capacitor element body of Example 1. The measurement results are shown in Table 1.

(発明の効果) 以上説明したように、本発明によれば、大気中で焼成が
行えるので、還元性雰囲気を作成するための特別な設備
を必要とせず、安価な積層形セラミックコンデンサを得
ることができる。
(Effects of the Invention) As described above, according to the present invention, since firing can be performed in the atmosphere, an inexpensive multilayer ceramic capacitor can be obtained without requiring special equipment for creating a reducing atmosphere. You can

又、セラミックの焼結の際には導電ペーストを塗布して
おかずに、セラミック焼結後に導電ペーストを塗布して
外部電極の焼成を行うので、従来技術による積層形セラ
ミックコンデンサのように、外部電極の周縁におけるセ
ラミックの歪は発生せず、本発明の方法により製造した
積層形セラミックコンデンサをプリント基板に半田付け
した後に該基板に熱衝撃加えても、セラミックにクラッ
クが生じない。更に、外部電極と内部ニッケル電極との
電気的接続不良も発生しない。
In addition, when the ceramic is sintered, the conductive paste is not applied, but the conductive paste is applied after the ceramic is sintered to fire the external electrodes. No distortion of the ceramic occurs at the peripheral edge of the ceramic, and even if the multilayer ceramic capacitor manufactured by the method of the present invention is soldered to a printed circuit board and then subjected to thermal shock, the ceramic does not crack. In addition, the electrical connection between the external electrode and the internal nickel electrode does not occur.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ニッケルを主成分とする内部電極用導電層
とセラミック層とが交互に積層されて焼結されたコンデ
ンサ素体と、前記コンデンサ素体の両端面及びこれに連
なる周端縁部に、導電粉末とバインダとから成る導電ペ
ーストを塗布焼成して形成した外部電極用導電層を備え
た積層形セラミックコンデンサにおいて、前記導電粉末
は、1〜50重量%の銀と50〜99重量%の亜鉛を含むこと
を特徴とする積層形セラミックコンデンサ。
1. A capacitor element body in which conductive layers for internal electrodes containing nickel as a main component and ceramic layers are alternately laminated and sintered, and both end faces of the capacitor element body and peripheral edge portions continuous with the both end surfaces. In a multilayer ceramic capacitor provided with a conductive layer for external electrodes, which is formed by applying and firing a conductive paste composed of a conductive powder and a binder, the conductive powder is 1 to 50% by weight of silver and 50 to 99% by weight. A multilayer ceramic capacitor characterized by containing zinc.
【請求項2】ニッケルを主成分とする内部電極用導電層
が形成された未焼結セラミックシートを複数枚積層し、
圧着して成る未焼結コンデンサ素体を焼結した後、該素
体の両端面及びそれに連なる周端縁部に導電粉末とバイ
ンダとから成る導電ペーストを塗布し、次いで焼成する
積層形セラミックコンデンサの製造方法において、前記
導電粉末は1〜50重量%の銀と50〜99%の亜鉛を含むも
のであり、前記焼成は大気中で行うことを特徴とする積
層形セラミックコンデンサの製造方法。
2. A plurality of unsintered ceramic sheets having a conductive layer for internal electrodes, which is mainly composed of nickel, is laminated,
A multilayer ceramic capacitor in which a non-sintered capacitor element body obtained by pressure bonding is sintered, and then a conductive paste made of a conductive powder and a binder is applied to both end faces of the element body and peripheral edge portions continuous with the element body and then fired. 2. The method for producing a multilayer ceramic capacitor according to claim 1, wherein the conductive powder contains 1 to 50% by weight of silver and 50 to 99% of zinc, and the firing is performed in the atmosphere.
JP62076246A 1987-03-31 1987-03-31 Multilayer ceramic capacitor and manufacturing method thereof Expired - Lifetime JPH0752696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076246A JPH0752696B2 (en) 1987-03-31 1987-03-31 Multilayer ceramic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076246A JPH0752696B2 (en) 1987-03-31 1987-03-31 Multilayer ceramic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63244729A JPS63244729A (en) 1988-10-12
JPH0752696B2 true JPH0752696B2 (en) 1995-06-05

Family

ID=13599825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076246A Expired - Lifetime JPH0752696B2 (en) 1987-03-31 1987-03-31 Multilayer ceramic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0752696B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150007A (en) * 1988-11-30 1990-06-08 Taiyo Yuden Co Ltd Laminated porcelain capacitor
JP2009206430A (en) * 2008-02-29 2009-09-10 Tdk Corp Multilayer electronic component and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240115A (en) * 1984-05-14 1985-11-29 京セラ株式会社 Laminated porcelain capacitor
JPS61158122A (en) * 1984-12-29 1986-07-17 太陽誘電株式会社 Conductive paste

Also Published As

Publication number Publication date
JPS63244729A (en) 1988-10-12

Similar Documents

Publication Publication Date Title
JP4513981B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
CN107180699A (en) Electronic unit and its manufacture method
JP2943380B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP3514117B2 (en) Multilayer ceramic electronic component, method of manufacturing multilayer ceramic electronic component, and conductive paste for forming internal electrode
JP2000216046A (en) Laminated ceramic electronic component
JPS6323646B2 (en)
JPH0752696B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2676620B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2593137B2 (en) Conductive paste
JP2006332236A (en) Conductive paste, laminated ceramic electronic component, and manufacturing method thereof
JP5998785B2 (en) Laminated electronic components
JPH04260314A (en) Ceramic laminate
JPH07263272A (en) Manufacture of laminated electronic component
JP4076393B2 (en) Conductive paste and electronic components
JP2555638B2 (en) Method for manufacturing multilayer ceramic substrate
JPH09186044A (en) Inner electrode material paste for stacked electronic component, and stacked electronic part, and its manufacture
JP2990819B2 (en) Grain boundary insulated semiconductor ceramic multilayer capacitor
JPS6134203B2 (en)
JPS59114703A (en) Seized conductive paste
JP3085596B2 (en) Multilayer ceramic capacitors
JP2002198249A (en) Laminated electronic component
JP2007180322A (en) Laminated ceramic electronic component
JPH07106187A (en) Manufacture of laminated ceramic electronic component
JPH0464450B2 (en)
JPH0377647B2 (en)