JPS61158122A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JPS61158122A
JPS61158122A JP27866184A JP27866184A JPS61158122A JP S61158122 A JPS61158122 A JP S61158122A JP 27866184 A JP27866184 A JP 27866184A JP 27866184 A JP27866184 A JP 27866184A JP S61158122 A JPS61158122 A JP S61158122A
Authority
JP
Japan
Prior art keywords
powder
conductive paste
multilayer ceramic
conductive
dielectric loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27866184A
Other languages
Japanese (ja)
Other versions
JPH0317205B2 (en
Inventor
外丸 隆
豊田 憲一
塚田 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP27866184A priority Critical patent/JPS61158122A/en
Publication of JPS61158122A publication Critical patent/JPS61158122A/en
Publication of JPH0317205B2 publication Critical patent/JPH0317205B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)
  • Ceramic Capacitors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 こめ発明は、Niを主成分とし、非酸化雰囲気中で焼成
される導電ペーストに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a conductive paste containing Ni as a main component and fired in a non-oxidizing atmosphere.

〔従来の技術〕[Conventional technology]

非酸化雰囲気中で焼成して製造される積層セラミックコ
ンデンサは、その内部電極と外部電極が何れも同じ導電
ペーストを用いて作られていた。そしてこの導電ペース
ト中の導電粉末は。
In multilayer ceramic capacitors manufactured by firing in a non-oxidizing atmosphere, both internal and external electrodes are made using the same conductive paste. And the conductive powder in this conductive paste.

Ni粉末のみからなっていた。It consisted only of Ni powder.

この種の積層セラミックジンデンサの製造方法を説明す
る。まずセラミック材料を用いて未焼結磁器シートを作
り・、これに導電ペーストで内部電極パターンを印刷す
る。次ぎにこのシートを数枚積層して切断する。次ぎに
これを非酸化雰囲気中で1100〜1300℃の温度で
焼成する。
A method for manufacturing this type of laminated ceramic densifier will be explained. First, an unsintered porcelain sheet is made using a ceramic material, and an internal electrode pattern is printed on it using conductive paste. Next, several of these sheets are stacked and cut. Next, this is fired at a temperature of 1100 to 1300°C in a non-oxidizing atmosphere.

こうして得られた積層体の側面には内部電極の一部が露
出している。この面の外部電極パターンに従って導電ペ
ーストを塗布し、これを非酸化雰囲気中で1100〜1
150℃の温度で焼成することにより、積層セラミック
コンデンサとなる。
Part of the internal electrode is exposed on the side surface of the laminate thus obtained. Apply a conductive paste according to the external electrode pattern on this surface, and apply it in a non-oxidizing atmosphere to
A multilayer ceramic capacitor is obtained by firing at a temperature of 150°C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

こうして作られた積層セラミックコンデンサは、側面に
露出している内部電極の端部と、これに接触させる外部
電極との電気的接続状態の悪い部分が存在する。この結
果、前記積層セラミックコンデンサは、誘電体損失ta
nδの平均値が全体的に高(、一般には所定の規格値す
れすれで1分布の末端には、所定の規格値を越えるもの
もあった。
The multilayer ceramic capacitor manufactured in this manner has a portion in which the electrical connection between the end portion of the internal electrode exposed on the side surface and the external electrode that is brought into contact with the end portion is poor. As a result, the multilayer ceramic capacitor has dielectric loss ta
The average value of nδ was generally high (generally just around the predetermined standard value, but there were some cases at the end of the distribution that exceeded the predetermined standard value).

この発明の目的は、従来めNi導電ペーストに於ける前
記の問題を解決することにある。即ち、内部電極の端部
すべてが外部電極止完全に接続され、これによって積層
セラミックコンデンサチップの誘電体損失tanδの平
均値が所定の規格値より低いレベルとなり、この結果す
べての積層セラミックコンデンサが所定の規格値以下に
なるようにすることを目的とする。
An object of the present invention is to solve the above-mentioned problems in conventional Ni conductive pastes. That is, all the ends of the internal electrodes are completely connected to the external electrodes, and as a result, the average value of the dielectric loss tan δ of the multilayer ceramic capacitor chip is lower than the predetermined standard value, and as a result, all the multilayer ceramic capacitors meet the predetermined standard value. The purpose is to ensure that the temperature is below the standard value.

〔問題を解決するための手段〕[Means to solve the problem]

この発明の導電ペーストは、導電粉末とバインダとから
なるものに於いて導電粉末が、Ni粉末を80〜97重
量%と、Co粉末3〜20重量%とからなるものである
。なお、バインダは従来公知のもの2例えばエチルセル
ローズとブチルカルピトール等からなる。
The conductive paste of the present invention is composed of a conductive powder and a binder, and the conductive powder is composed of 80 to 97% by weight of Ni powder and 3 to 20% by weight of Co powder. The binder is made of conventionally known binders such as ethyl cellulose and butyl calpitol.

〔作 用〕[For production]

この導電ペーストは、積層セラミックコンデンサの内部
電極または外部電極の何れか一方の電極を作るのに使用
し、他方の電極には従来のNiペーストを用いる。例え
ば、この発明の導電ペーストを積層セラミックコンデン
サの内部電極用として使用した場合は、外部電極にNi
ペーストを使用する。逆にこの発明の導電ペーストを外
部電極用として使用した場合は、内部’t4PisにN
iペーストを使用する。
This conductive paste is used to make either an internal electrode or an external electrode of a multilayer ceramic capacitor, and a conventional Ni paste is used for the other electrode. For example, when the conductive paste of the present invention is used for the internal electrodes of a multilayer ceramic capacitor, the external electrodes may contain Ni.
Use paste. Conversely, when the conductive paste of this invention is used for external electrodes, N
Use iPaste.

このようにして内外部電極用の導電ペーストが用いられ
た場合、外部電極を焼き付ける際に。
If a conductive paste for internal and external electrodes is used in this way, when baking the external electrodes.

この発明の導電ペーストによって作られた電極側から、
Coを含まない他方の電極側へとCOが拡散し2両電極
間に連続的な完全固溶状態のN1−Co金合金できる。
From the electrode side made with the conductive paste of this invention,
CO diffuses to the other electrode side which does not contain Co, and an N1-Co gold alloy is formed in a continuous complete solid solution state between the two electrodes.

この結果1両電極間の電気的接続状態が良好となり、積
層セラミックコンデンサの誘電体損失tanδを低減さ
せることができるようになる。
As a result, the electrical connection between the two electrodes becomes good, and the dielectric loss tan δ of the multilayer ceramic capacitor can be reduced.

′  この発明による導電ペーストの導電粉末中の組成
比を前記のように限定した理由は9次の通りである。導
電ペーストの導電粉末中のCo粉末の割合が少なくとき
は、内外部電極間のC。
' The reason for limiting the composition ratio in the conductive powder of the conductive paste according to the present invention as described above is as follows. When the proportion of Co powder in the conductive powder of the conductive paste is small, C between the inner and outer electrodes.

の濃度差が低くなることから、外部電極の焼付時に、一
方の電極から他方の電極へのCoの拡散が起こりにくく
なる。このため、前記のような両電極間の電気的接続の
悪い状態が形成され。
Since the difference in the concentration of Co is reduced, diffusion of Co from one electrode to the other electrode becomes less likely to occur when the external electrodes are baked. For this reason, a poor electrical connection between the two electrodes as described above is formed.

この結果、積層セラミックコンデンサの誘電体損失ta
nδが総体的に高(なり、すべての積層セラミックコン
デンサが誘電体損失tanδについて所定の規格値を満
足できい。一方、導電粉末中のCo粉末の割合が多いと
きは、Niペーストを使用した電極に比べて、電極の抵
抗値が高(なる。このため、積層セラミックコンデンサ
の等価直列抵抗ESI?が高くなる。従って、これらの
点から前記導電粉末中のCo粉末の濃度を3〜20重量
%の範囲とする必要がある。
As a result, the dielectric loss ta of the multilayer ceramic capacitor
nδ is generally high, and all multilayer ceramic capacitors cannot satisfy the specified standard value for dielectric loss tanδ.On the other hand, when the proportion of Co powder in the conductive powder is high, electrodes using Ni paste Therefore, the equivalent series resistance ESI of the multilayer ceramic capacitor becomes high. Therefore, from these points, the concentration of Co powder in the conductive powder is set to 3 to 20% by weight. It needs to be within the range of

〔実施例1〕 次ぎにこの発明の実施例について述べる。[Example 1] Next, embodiments of this invention will be described.

導電粉末として純度99.9%のNi粉末とC。Ni powder with a purity of 99.9% and C as conductive powder.

粉末を、またバインダーとしてエチルセルローズとブチ
ルカルピトールをそれぞれ表1の割合で配合した。これ
らを播潰機で3時間混合し。
The powder was blended with ethyl cellulose and butyl calpitol as binders in the proportions shown in Table 1. These were mixed with a crusher for 3 hours.

その後ロールミルで1時間混練し、A、B、C33種類
導電ペーストを作った。
Thereafter, the mixture was kneaded in a roll mill for 1 hour to prepare 3 types of conductive pastes A, B, and C.

これら3種類の導電ペーストを次ぎの方法で使用し、そ
れぞれ500個ずつの積層セラミック表   1 コンデツサを作製した。
These three types of conductive pastes were used in the following manner to produce 500 laminated ceramic capacitors each.

BaTiO3系のグリーンシート上に前記3種類の導電
ペーストをそれぞれ使用して内部電極パターンを印刷し
、積層して未焼成の積層チップを作製した。これらを2
%のH2ガスを含むN2ガス雰囲気中に於いて1200
℃の温度で焼成した。次いでNi粉末100gとCab
、Bad。
An internal electrode pattern was printed on a BaTiO3-based green sheet using each of the three types of conductive pastes, and the sheets were laminated to produce an unfired laminated chip. These 2
1200% in a N2 gas atmosphere containing H2 gas.
Calcined at a temperature of °C. Next, 100g of Ni powder and Cab
, Bad.

5i02系ガラスフリット3gと、前記バインダー10
0gとを混合して作られた従来のNiペーストを、積層
チップの側面に露出した内部電極に接して約50Ij#
Iの厚味に塗布した。さらにこれらを2%のH2ガスを
含むN2ガス雰囲気中で1100℃の温度を1時間保持
して焼き付けて3種類の積層セラミックコンデンサを作
った。
5i02 glass frit 3g and the binder 10
A conventional Ni paste made by mixing 0 g of
I applied it to the thickness of I. Furthermore, these were baked in an N2 gas atmosphere containing 2% H2 gas while maintaining a temperature of 1100° C. for 1 hour to produce three types of multilayer ceramic capacitors.

こうして作られた積層セラミックコンデンサを1日常温
に放置した後、市販のLCRメーター (YHP427
4A)によってIKHzに於ける静電容量C(μF)と
誘電体損失tanδ(%)を測定し。
After leaving the multilayer ceramic capacitor made in this way at room temperature for one day, it was measured using a commercially available LCR meter (YHP427).
4A), the capacitance C (μF) and dielectric loss tan δ (%) at IKHz were measured.

誘電体損失tanδについて平均値と最大、最小値を表
2に示した。
Table 2 shows the average value, maximum value, and minimum value of the dielectric loss tan δ.

同表から明らかな通り1合計1500個の積層セラミッ
クコンデンサの誘電体損失tanδの最大値は、2.2
%であり、すべてのコンデンサの誘電体損失tanδが
これらについて定められた規格値3.0%以下てあった
。なお、静電容量Cは何れも1.25〜1.28μFの
範囲にあり、1.0μF士絽%の規格内にあった。
As is clear from the table, the maximum value of dielectric loss tan δ of a total of 1,500 multilayer ceramic capacitors is 2.2
%, and the dielectric loss tan δ of all capacitors was below the standard value of 3.0%. Incidentally, the capacitance C was in the range of 1.25 to 1.28 μF in all cases, and was within the standard of 1.0 μF.

〔実施例2〕 導電粉末としてNi粉末90gとCO粉末10gを、ま
たバインダとしてCab、Bad、5t02系ガラス粉
末3g、エチルセルローズ7g及びブチルカルピトール
93gを混練し、前記実施例1と同じ方法で外部電極用
導電ペーストを作り、これを積層セラミックコンデンサ
の外部電極に使用した。また、内部電極用導電ペースト
には、Ni粉末100g、エチルセルローズ16g。
[Example 2] 90 g of Ni powder and 10 g of CO powder as conductive powders, and 3 g of Cab, Bad, 5t02 glass powder, 7 g of ethyl cellulose and 93 g of butyl calpitol as binders were kneaded and mixed in the same manner as in Example 1. A conductive paste for external electrodes was made and used for the external electrodes of multilayer ceramic capacitors. In addition, the conductive paste for internal electrodes contained 100 g of Ni powder and 16 g of ethyl cellulose.

ブチルカルピトール94gを混練した従来のNiペース
トを使用した。
A conventional Ni paste mixed with 94 g of butyl calpitol was used.

そして前記実施例1と同じ方法と条件で同じ規格の積層
セラミックコンデンサを500個作った。さらにこれら
積層セラミックコンデンサについて、実施例1と同じ方
法と条件で誘電体損失tanδと静電容量Cを測定した
。この実施例でも、前記実施例1と概ね同様の結果が得
られた。これを表2に示す。
Then, 500 multilayer ceramic capacitors of the same specifications were manufactured using the same method and conditions as in Example 1. Furthermore, the dielectric loss tan δ and capacitance C of these multilayer ceramic capacitors were measured using the same method and conditions as in Example 1. In this example as well, almost the same results as in Example 1 were obtained. This is shown in Table 2.

〔比較例〕[Comparative example]

導電粉末としてNi粉末100g、またバインダとして
エチルセルローズ16g、ブチルカルピトール94gを
混練して作られた内部電極用導電ペーストを使用し、実
施例1と同じ方法と条件で同じ規格の積層セラミックコ
ンデンサを500個作った・ さらにこれらについて、同様の方法で誘電体損失tan
δと静電容量Cを測定した。この比較例においては、誘
電体損失tanδが前記実施例に比べて全体的に高く、
その平均値が3.1%と。
Using a conductive paste for internal electrodes made by kneading 100 g of Ni powder as a conductive powder and 16 g of ethyl cellulose and 94 g of butyl calpitol as a binder, a multilayer ceramic capacitor of the same standard was manufactured using the same method and conditions as in Example 1. 500 pieces were made. Furthermore, the dielectric loss tan was calculated using the same method for these pieces.
δ and capacitance C were measured. In this comparative example, the dielectric loss tan δ is higher overall than in the above example.
The average value is 3.1%.

前記規格値3.0%を越えていた。この結果を表2に示
す。
It exceeded the standard value of 3.0%. The results are shown in Table 2.

表   2 〔発明の効果〕 以上説明した通り、この発明による導電ペーストを一方
の電極用の導電ペーストとして使用し、積層セラミック
コンデンサを作ると、外部電極と内部電極の接続状態が
良くなる。この結果、これらコンデンサの誘電体損失t
anδを低くすることができ、すべてのものが所定の規
格範囲を満足するこ止ができた。
Table 2 [Effects of the Invention] As explained above, when a multilayer ceramic capacitor is manufactured using the conductive paste according to the present invention as a conductive paste for one electrode, the state of connection between the external electrode and the internal electrode is improved. As a result, the dielectric loss t of these capacitors
It was possible to lower an δ and ensure that everything satisfied the predetermined standard range.

Claims (1)

【特許請求の範囲】[Claims] 導電粉末とバインダとからなる導電ペーストに於いて、
導電粉末が、Ni粉末80〜97重量%と、Co粉末3
〜20重量%とからなることを特徴とする導電ペースト
In conductive paste consisting of conductive powder and binder,
The conductive powder contains 80 to 97% by weight of Ni powder and 3% by weight of Co powder.
A conductive paste characterized by comprising: ~20% by weight.
JP27866184A 1984-12-29 1984-12-29 Conductive paste Granted JPS61158122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27866184A JPS61158122A (en) 1984-12-29 1984-12-29 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27866184A JPS61158122A (en) 1984-12-29 1984-12-29 Conductive paste

Publications (2)

Publication Number Publication Date
JPS61158122A true JPS61158122A (en) 1986-07-17
JPH0317205B2 JPH0317205B2 (en) 1991-03-07

Family

ID=17600390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27866184A Granted JPS61158122A (en) 1984-12-29 1984-12-29 Conductive paste

Country Status (1)

Country Link
JP (1) JPS61158122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244729A (en) * 1987-03-31 1988-10-12 太陽誘電株式会社 Laminated ceramic capacitor and manufacture of the same
JP2014038820A (en) * 2012-08-20 2014-02-27 Samsung Electro-Mechanics Co Ltd Conductive paste composition for internal electrode and multilayered ceramic electronic component containing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244729A (en) * 1987-03-31 1988-10-12 太陽誘電株式会社 Laminated ceramic capacitor and manufacture of the same
JP2014038820A (en) * 2012-08-20 2014-02-27 Samsung Electro-Mechanics Co Ltd Conductive paste composition for internal electrode and multilayered ceramic electronic component containing the same

Also Published As

Publication number Publication date
JPH0317205B2 (en) 1991-03-07

Similar Documents

Publication Publication Date Title
JP4786604B2 (en) Dielectric porcelain and multilayer ceramic capacitor using the same
US7018864B2 (en) Conductive paste for terminal electrodes of monolithic ceramic electronic component, method for making monolithic ceramic electronic component, and monolithic ceramic electronic component
JPH03276510A (en) Porcelain dielectric for temperature compensation
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP3638414B2 (en) Dielectric porcelain composition
JPS61158122A (en) Conductive paste
JP2003277136A (en) Dielectric ceramic composition and multilayer ceramic electronic parts
JP2593137B2 (en) Conductive paste
JP2006202857A (en) Laminated ceramic electronic component and its manufacturing method
JP3605260B2 (en) Non-reducing dielectric ceramic composition
JP2676620B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2614228B2 (en) Ceramic forming composition, semiconductor porcelain base and dielectric porcelain base using the same, and capacitor
JPH0798679B2 (en) Low temperature sintered porcelain composition
JP2004079686A (en) Dielectric ceramic and stacked ceramic capacitor using the same
JPS6120084B2 (en)
JPH0878267A (en) Inner electrode paste and multilayer ceramic capacitor employing it
JP3797057B2 (en) Method for producing dielectric ceramic composition
JPS61121205A (en) Conductive paste
JPS6134203B2 (en)
JPH05174626A (en) Reduction-resistant dielectric porcelain composition
JPH0351929Y2 (en)
JPS58163102A (en) Conductive paste
JP2000150293A (en) Layered ceramic capacitor
JPH06279104A (en) Ceramic composition for multilayered circuit board
JPH04237902A (en) Dielectric porcelain compound