JPS6134203B2 - - Google Patents

Info

Publication number
JPS6134203B2
JPS6134203B2 JP57073181A JP7318182A JPS6134203B2 JP S6134203 B2 JPS6134203 B2 JP S6134203B2 JP 57073181 A JP57073181 A JP 57073181A JP 7318182 A JP7318182 A JP 7318182A JP S6134203 B2 JPS6134203 B2 JP S6134203B2
Authority
JP
Japan
Prior art keywords
weight
powder
mno
glass frit
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57073181A
Other languages
Japanese (ja)
Other versions
JPS58188002A (en
Inventor
Shoichi Tosaka
Shuichi Tsunoda
Kyoshi Murase
Nobutate Yamaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP7318182A priority Critical patent/JPS58188002A/en
Publication of JPS58188002A publication Critical patent/JPS58188002A/en
Publication of JPS6134203B2 publication Critical patent/JPS6134203B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ニツケルを主成分とする焼付型導電
性ペーストに関し、更に詳細には、多層セラミツ
ク回路装置の外部又は内部における配線、端子、
電極などの導体をセラミツクグリーンシートと同
時焼成して形成するのに好適な焼付型導電性ペー
ストに関する。 多層セラミツク回路装置の集積度を増すため
に、多層セラミツク体の露出表面に厚膜コンデン
サ若しくは厚膜抵抗等が形成されるようになつ
た。従来、このような多層セラミツク回路装置の
導体は銀(70%)−パラジウム(30%)を主成分
とする焼付型導電ペーストによつて形成された。 しかしながら、銀パラジウムペーストは、比抵
抗の高いパラジウムを3割も含むため、焼結させ
て導体とした時、シート抵抗が62.5μΩcmと高い
ものとなつてしまつた。また、銀パラジウムペー
ストは高価であつた。このため、ニツケル等の卑
金属のペーストで電極を形成することが試みられ
ている。しかし、単にニツケル粉末のペーストを
作つても、所望の特性を有する導体を形成するこ
とは不可能であつた。即ち、多層セラミツク回路
装置の内部及び外部の導体を形成するための導電
性ペーストは次の条件を満足することが望まし
い。 (1) セラミツク体と同時焼成(1100〜1400℃)す
るため、約1100〜1400℃の温度で焼結できるこ
と。 (2) (1)の処理で導体とした後、その上面に更に厚
膜コンデンサや厚膜抵抗を形成するため、大気
雰囲気(酸化雰囲気)中で1000℃の熱処理を施
こしても抵抗率が上がらないこと。 (3) (2)と同一の焼成及び熱処理がなされても、導
体の引張り強度が1Kg/mm2以上であること。 しかし、上記の条件を満足するニツケルを主成
分とする導電性ペーストはまだ存在しない。 そこで、本発明の目的は上記の条件を満足する
還元又は中性雰囲気焼付型導電性ペーストを提供
することにある。 上記目的を達成するための本願の第1番目の発
明は、70〜98重量%のニツケル粉末と、マンガン
量がMnOに換算して0.05〜29.9重量%となるマン
ガン又はマンガン化合物の粉末と、0.1〜20重量
%のガラスフリツトと、を前記ニツケル粉末と前
記MnOと前記ガラスフリツトの合計で100重量%
となるように含み、且つ適当量のビヒクルを含む
ことを特徴とする焼付型導電性ペーストに係わる
ものである。 上記発明によれば、マンガン又はこの化合物の
働きで、抵抗率が25μΩcm以下、引張強度が1
Kg/mm2以上の導体を得ることが可能な導電ペース
トを提供することが出来る。 本願の第2番目の発明は、第1番目の発明のペ
ーストに更に、珪化ニツケル又は硼化ジルコニウ
ムを添加することにより、大気雰囲気で1050℃の
熱処理が施されても抵抗率が増大しないようにし
たものである。 次に本発明の実施例について述べる。 実施例 1 平均粒径10μのNi粉末、平均粒径5μのMnO
粉末、平均粒径3μのSrO−SiO2−PbO系ガラス
フリツト(融点1000℃)を第1表に示す割合に秤
量して配合し、この配合物100重量部に対してエ
チルセルロース6重量部およびα−ターピネオー
ル33重量部をビヒクルとして加え、3段式ロール
ミルで混練して導電性ペーストの試料をそれぞれ
作成した。 次にAl2O3粉末50重量部、SiO2粉末20重量部、
SrO粉末25重量部、Li2O粉末1重量部及びMgO
粉末4重量部、アクリル酸エステルポリマーの水
溶性からなるバインダ、グリセリン、縮合リン酸
塩及び水をそれぞれ添加し、ボールミルにて混合
してスリツプを作成し、脱泡処理した後にドクタ
ーブレード法により厚さ50μのグリーンシートを
作製した。そして乾燥した後にプレスにて長方形
状に打ち抜いた。 このグリーンシートに、第1図に示すパターン
に前述の導電性ペーストを280メツシユのスクリ
ーンにて印加し、125℃で10分乾燥し、4枚を積
層して熱圧着させた後に、空気雰囲気中での900
℃の熱処理でバインダをとばし、N2(98.5%)+
H2(1.5%)の雰囲気中で1200℃2時間焼成し、
次いで空気雰囲気中で1000℃、30分の加熱処理を
5回繰返して、第1図及び第2図に示す磁器1と
導体2とから成る試料を作製した。次に各層の導
体2の2a〜2b間(幅0.2mm、厚さ15μ、長さ
20mm)の抵抗値を抵抗ブリツジで測定し、計算に
より平均抵抗率(ρ)を求めたところ、第1表の
結果が得られた。尚内部の層の抵抗は予め設けた
スルーホール(図示せず)を使用して測定した。 また上記と同一のグリーンシートを四角形に打
ち抜き、その中央に上記の導電性ペーストを同様
にして印刷し、上記と同様に焼成し、第3図及び
第4図に示す如く磁器3と導体4とから成る試料
を作り、焼結後寸法が2mm角の導体4に第4図に
示すように0.6mmの銅線5のリング状端部を30mm
gの半田6で固着させ、銅線5にバネ計りを結合
させて引張強度(T)を測定したところ、第1表
の結果が得られた。尚第1〜6表に於いて、抵抗
率ρの測定試料と引張強度Tの測定試料とは別の
試料であるが、磁器及び導体が同一であるので、
同一試料番号が付され同一欄に示されている。
The present invention relates to a baking-type conductive paste containing nickel as a main component, and more particularly to wiring, terminals, etc. inside or outside of a multilayer ceramic circuit device.
The present invention relates to a baking-type conductive paste suitable for forming conductors such as electrodes by co-firing with ceramic green sheets. To increase the degree of integration of multilayer ceramic circuit devices, thick film capacitors, thick film resistors, etc. have been formed on the exposed surfaces of multilayer ceramic bodies. Conventionally, the conductors of such multilayer ceramic circuit devices have been formed using a baking-type conductive paste mainly composed of silver (70%) and palladium (30%). However, since silver-palladium paste contains 30% palladium, which has a high specific resistance, when it is sintered into a conductor, its sheet resistance is as high as 62.5 μΩcm. Furthermore, silver palladium paste was expensive. For this reason, attempts have been made to form electrodes using pastes of base metals such as nickel. However, it has been impossible to form a conductor with desired characteristics simply by making a paste of nickel powder. That is, it is desirable that the conductive paste for forming the internal and external conductors of the multilayer ceramic circuit device satisfies the following conditions. (1) It must be able to be sintered at a temperature of approximately 1100 to 1400°C because it is fired simultaneously with the ceramic body (1100 to 1400°C). (2) After forming a conductor through the treatment in (1), a thick film capacitor or a thick film resistor is further formed on the top surface, so even if heat treatment is performed at 1000°C in an atmospheric atmosphere (oxidizing atmosphere), the resistivity remains low. Don't go up. (3) Even after the same firing and heat treatment as in (2), the tensile strength of the conductor is 1Kg/mm 2 or more. However, a conductive paste based on nickel that satisfies the above conditions does not yet exist. Therefore, an object of the present invention is to provide a reducing or neutral atmosphere baking type conductive paste that satisfies the above conditions. The first invention of the present application to achieve the above-mentioned object is a powder of 70 to 98% by weight of nickel, a powder of manganese or a manganese compound having a manganese content of 0.05 to 29.9% by weight in terms of MnO, and 0.1% by weight of manganese or a manganese compound. ~20% by weight of the glass frit, and the total of the nickel powder, the MnO, and the glass frit is 100% by weight.
The present invention relates to a sinterable conductive paste characterized by containing a suitable amount of vehicle. According to the above invention, due to the action of manganese or this compound, the resistivity is 25 μΩcm or less and the tensile strength is 1.
It is possible to provide a conductive paste that can obtain a conductor of Kg/mm 2 or more. The second invention of the present application further adds nickel silicide or zirconium boride to the paste of the first invention, so that the resistivity does not increase even when heat treatment is performed at 1050°C in an air atmosphere. This is what I did. Next, examples of the present invention will be described. Example 1 Ni powder with an average particle size of 10μ, MnO with an average particle size of 5μ
Powder, SrO-SiO 2 -PbO glass frit with an average particle size of 3 μm (melting point 1000°C) was weighed and blended in the proportions shown in Table 1, and 6 parts by weight of ethyl cellulose and α- 33 parts by weight of terpineol was added as a vehicle and kneaded in a three-roll mill to prepare conductive paste samples. Next, 50 parts by weight of Al 2 O 3 powder, 20 parts by weight of SiO 2 powder,
25 parts by weight of SrO powder, 1 part by weight of Li 2 O powder and MgO
4 parts by weight of powder, a water-soluble binder made of acrylic acid ester polymer, glycerin, condensed phosphate, and water were added, mixed in a ball mill to create a slip, and after defoaming, the slip was thickened by a doctor blade method. A green sheet with a thickness of 50μ was prepared. After drying, it was punched out into a rectangular shape using a press. The conductive paste described above was applied to this green sheet in the pattern shown in Figure 1 using a 280-mesh screen, dried at 125°C for 10 minutes, four sheets were stacked and bonded by thermocompression, and then placed in an air atmosphere. 900 at
The binder is blown off by heat treatment at ℃, and N 2 (98.5%) +
Baked at 1200℃ for 2 hours in an atmosphere of H 2 (1.5%),
Next, heat treatment at 1000° C. for 30 minutes in an air atmosphere was repeated five times to produce a sample consisting of the porcelain 1 and the conductor 2 shown in FIGS. 1 and 2. Next, between 2a and 2b of conductor 2 of each layer (width 0.2mm, thickness 15μ, length
When the resistance value of 20 mm) was measured using a resistance bridge and the average resistivity (ρ) was calculated, the results shown in Table 1 were obtained. Note that the resistance of the inner layer was measured using a previously provided through hole (not shown). In addition, the same green sheet as above was punched out into a rectangular shape, the above-mentioned conductive paste was similarly printed in the center of the green sheet, and the above-mentioned conductive paste was printed in the same manner as above, and the porcelain 3 and conductor 4 were formed as shown in Figs. 3 and 4. After sintering, a ring-shaped end of a 0.6 mm copper wire 5 was attached to a 2 mm square conductor 4 by 30 mm as shown in Figure 4.
When the tensile strength (T) was measured by attaching a spring meter to the copper wire 5, the results shown in Table 1 were obtained. In Tables 1 to 6, the sample for measuring resistivity ρ and the sample for measuring tensile strength T are different samples, but since the porcelain and conductor are the same,
The same sample number is assigned and shown in the same column.

【表】【table】

【表】 第1表から明らかなように、MnOを0.05〜29.9
重量%の範囲で添加することにより、ρが25μΩ
cm以下、Tが1Kg/mm2以上の電極即ち導体を磁器
に形成することが可能になる。即ち従来の銀パラ
ジウム電極の抵抗率(62.5μΩcm)より大幅に抵
抗率ρの小さい導体を得ることができる。 尚、MnOが0.05重量%未満ではNi粒子の酸化
が防止できず、引張強度Tが1Kg/mm2未満とな
る。またMnOが29.9重量%を越えると、抵抗率
が25μΩcmを越える。従つて、MnOを0.05〜29.9
重量%の範囲にすることが望ましい。 また、ガラスフリツトが0.1重量%未満である
と、添加効果がなく、Tが1Kg/mm2未満となり、
20重量%を越えるとρが25μΩcmを越える。従つ
て、ガラスフリツトを0.1〜20重量%の範囲にす
ることが望ましい。 このため試料番号1、10、14は本発明の範囲外
のものである。 実施例 2 実施例1のMnO粉末をMn粉末に変更した他は
実施例1と全く同一として第2表に示す組成のペ
ーストを作り、実施例1と同一の測定をしたとこ
ろ、第2表の結果が得られた。
[Table] As is clear from Table 1, MnO is 0.05 to 29.9
By adding within the weight% range, ρ can be reduced to 25 μΩ.
It becomes possible to form electrodes or conductors with a T of 1 Kg/mm 2 or more on porcelain. In other words, it is possible to obtain a conductor with a resistivity ρ significantly lower than that of a conventional silver-palladium electrode (62.5 μΩcm). Note that if MnO is less than 0.05% by weight, oxidation of the Ni particles cannot be prevented, and the tensile strength T becomes less than 1 Kg/mm 2 . Furthermore, when MnO exceeds 29.9% by weight, the resistivity exceeds 25 μΩcm. Therefore, MnO is 0.05~29.9
It is desirable to keep it in the range of % by weight. Furthermore, if the glass frit content is less than 0.1% by weight, there will be no addition effect and T will be less than 1Kg/ mm2 ,
When it exceeds 20% by weight, ρ exceeds 25μΩcm. Therefore, it is desirable that the amount of glass frit be in the range of 0.1 to 20% by weight. Therefore, sample numbers 1, 10, and 14 are outside the scope of the present invention. Example 2 A paste with the composition shown in Table 2 was prepared in the same manner as in Example 1 except that the MnO powder in Example 1 was changed to Mn powder, and the same measurements as in Example 1 were carried out. The results were obtained.

【表】【table】

【表】 第2表から明らかなように、Mn粉末を使用し
てもMnO粉末と同様な作用効果が得られる。尚
Mnの好ましい範囲は0.04〜24.83重量%であり、
これをMnOに換算すれば、0.05〜29.9重量%の範
囲に入る。 第2表に於いて試料番号15、24、26は本発明の
範囲外のものである。 実施例 3 実施例1に於ける10μのNi粉末の代りに平均
粒径1μのNi粉末を使用し、ガラスフリツトと
してPbO−BaO−SiO2系ガラス粉末(融点800
℃)を使用した他は、実施例1と全く同一として
第3表に示す組成のペーストを作り、同様な測定
を行つたところ、第3表の結果が得られた。
[Table] As is clear from Table 2, the same effects as MnO powder can be obtained using Mn powder. still
The preferred range of Mn is 0.04-24.83% by weight;
If this is converted to MnO, it falls within the range of 0.05 to 29.9% by weight. In Table 2, sample numbers 15, 24, and 26 are outside the scope of the present invention. Example 3 Ni powder with an average particle size of 1 μm was used instead of the 10 μm Ni powder in Example 1, and PbO-BaO-SiO 2 glass powder (melting point 800) was used as the glass frit.
A paste having the composition shown in Table 3 was prepared in exactly the same manner as in Example 1, except that 100.degree. C.) was used, and the same measurements were carried out, and the results shown in Table 3 were obtained.

【表】【table】

【表】 第3表から明らかなように、Ni粉末の粒径を
変更しても、またガラスフリツトの種類を変えて
も実施例1と同様な作用効果を得ることができ
る。尚第3表で試料番号29、37、39は本発明の範
囲外のものである。 実施例 4 実施例3のMnO粉末の代りにMnO2粉末を使用
した他は、実施例3と同一にして、ペーストを作
り、ρ、Tを測定したところ第4表の結果が得ら
れた。
[Table] As is clear from Table 3, the same effects as in Example 1 can be obtained even if the particle size of the Ni powder is changed or the type of glass frit is changed. In Table 3, sample numbers 29, 37, and 39 are outside the scope of the present invention. Example 4 A paste was made in the same manner as in Example 3 except that MnO 2 powder was used instead of the MnO powder in Example 3, and ρ and T were measured, and the results shown in Table 4 were obtained.

【表】 この第4表から明らかなように、MnO2を使用
しても実施例1〜3と同様な作用効果を得ること
ができる。尚MnO2の好ましい範囲はこのMn量を
MnOに換算して0.05〜29.9重量%である。また第
4表で試料番号41、48は本発明の範囲外のもので
ある。 実施例 5 実施例1に於けるNiとMnOとガラスフリツト
とを主成分とし、この主成分100重量部に対して
平均粒径10μのNiSi2(珪化ニツケル)を第5表
に示すように添加して実施例1と同様にペースト
を作り、同様にρ、Tを測定したところ、第5表
の結果が得られた。但し、空気雰囲気中での熱処
理を実施例1の1000℃よりも50℃高い1050℃で30
分間行うことを5回繰返した。
[Table] As is clear from Table 4, the same effects as in Examples 1 to 3 can be obtained even when MnO 2 is used. The preferred range of MnO 2 is this amount of Mn.
It is 0.05 to 29.9% by weight in terms of MnO. Moreover, sample numbers 41 and 48 in Table 4 are outside the scope of the present invention. Example 5 The main ingredients were Ni, MnO, and glass frit in Example 1, and NiSi 2 (nickel silicide) with an average particle size of 10 μm was added to 100 parts by weight of the main ingredients as shown in Table 5. A paste was made in the same manner as in Example 1, and ρ and T were measured in the same manner, and the results shown in Table 5 were obtained. However, heat treatment in an air atmosphere was performed at 1050°C, which is 50°C higher than 1000°C in Example 1, for 30 minutes.
This was repeated 5 times for 5 minutes.

【表】【table】

【表】【table】

【表】 この第5表から明らかなように、NiSi2を0.05
〜25重量分の範囲で添加すれば、空気雰囲気中で
1050℃の熱処理を施しても、ρを低い値に保つこ
とができる。これは、NiSi2が酸素と反応して分
解し、Ni粒子の酸化を防止するためである。但
し、0.1重量部未満では添加効果がない。また25
重量部を越えると焼結性が悪くなり、緻密な導体
が得られない。従つて、NiSi2の好ましい範囲は
0.05〜25重量部である。このため、第5表で、試
料番号49〜54、60、66、72、78、84、85〜90、96
は本発明の範囲外である。また焼結性の悪いもの
はρ、Tの測定が不可能であつた。 実施例 6 実施例5のNiSi2の代りにZrB2(硼化ジルコニ
ウム)を第6表に示すように添加して実施例5と
同様にペーストを作り、ρ、Tを同様に測定した
ところ第6表の結果が得られた。
[Table] As is clear from this Table 5, NiSi 2 is 0.05
If added in an amount of ~25% by weight, it will be effective in an air atmosphere.
Even after heat treatment at 1050°C, ρ can be kept at a low value. This is because NiSi 2 reacts with oxygen and decomposes to prevent oxidation of the Ni particles. However, if it is less than 0.1 part by weight, it has no effect. 25 again
If the amount exceeds the weight part, sinterability deteriorates and a dense conductor cannot be obtained. Therefore, the preferred range of NiSi2 is
It is 0.05 to 25 parts by weight. Therefore, in Table 5, sample numbers 49-54, 60, 66, 72, 78, 84, 85-90, 96
is outside the scope of this invention. Furthermore, it was impossible to measure ρ and T for those with poor sinterability. Example 6 A paste was prepared in the same manner as in Example 5 by adding ZrB 2 (zirconium boride) as shown in Table 6 instead of NiSi 2 in Example 5, and ρ and T were measured in the same manner. The results shown in 6 tables were obtained.

【表】【table】

【表】 この第6表から明らかなように、ZrB2を0.05〜
25重量部添加しても実施例5と同様な効果が得ら
れる。尚第6表で試料番号97、101、102、106、
107、111は本発明の範囲外である。また焼結性の
悪いものはρ、Tの測定が不可能であつた。 実施例 7 CaTiO3粉末にクレイを1重量%添加した材料
で、実施例1と同様方法でセラミツクグリーンシ
ートを作製し、本発明に係わる導電性ペースト
(Ni粉末85重量%、Mn粉末7.5重量%、PbO−
BaO−SiOガラスフリツト7.5重量%及びバイン
ダ)を用意し、第5図及び第6図に示す様にグリ
ーンシート7の上にペースト8をスクリーン印刷
し、それぞれが互い違いになるように4層に積層
し、更にこの上にグリーンシートのみを積層し、
熱圧着をして1280℃、4時間N2(98.5%)+H2
(1.5%)の還元雰囲気で一体焼成した。その後
1000℃1時間空気雰囲気中で熱処理し、誘導体が
還元された部分を補償した後In−Ga電極を焼結
体の側面に形成した。そして容量及びtanδを横
河製作所モデルYHP4270−Aで測定し、この測
定容量かから比誘電率(εs)を求めた。また、
絶縁抵抗(IR)をDC100V、60秒印加後に測定し
た。これにより、第7表の結果が得られた。 なお、比較するため、本実施例の導電性ペース
トを銀パラジウムの導電ペーストに変更し、焼成
は1280℃、4時間を空気雰囲気中で行なつて比較
試料を作り、この比較試料を本実施例と全く同様
の方法で比誘電率(εs)、tanδ、絶縁抵抗
(IR)を測定したところ、次の第7表の結果が得
られた。
[Table] As is clear from this Table 6, ZrB 2 is
Even if 25 parts by weight is added, the same effect as in Example 5 can be obtained. In Table 6, sample numbers 97, 101, 102, 106,
107, 111 are outside the scope of this invention. Furthermore, it was impossible to measure ρ and T for those with poor sinterability. Example 7 A ceramic green sheet was prepared in the same manner as in Example 1 using a material in which 1% by weight of clay was added to CaTiO 3 powder, and a conductive paste according to the present invention (85% by weight of Ni powder, 7.5% by weight of Mn powder) , PbO−
7.5% by weight of BaO-SiO glass frit and binder) were prepared, and the paste 8 was screen printed on the green sheet 7 as shown in Figures 5 and 6, and the sheets were stacked in four layers, alternating each other. , further layer only the green sheet on top of this,
Thermocompression bonded at 1280℃ for 4 hours with N 2 (98.5%) + H 2
(1.5%) in a reducing atmosphere. after that
After heat treatment at 1000°C for 1 hour in an air atmosphere to compensate for the reduced portion of the dielectric, an In-Ga electrode was formed on the side surface of the sintered body. Then, the capacitance and tan δ were measured using Yokogawa Manufacturing Model YHP4270-A, and the dielectric constant (ε s ) was determined from the measured capacitance. Also,
Insulation resistance (IR) was measured after applying DC100V for 60 seconds. As a result, the results shown in Table 7 were obtained. For comparison, a comparative sample was prepared by changing the conductive paste of this example to a silver-palladium conductive paste and firing at 1280°C for 4 hours in an air atmosphere. When the relative dielectric constant (ε s ), tan δ, and insulation resistance (IR) were measured in exactly the same manner as above, the results shown in Table 7 below were obtained.

【表】 この結果から、本発明の導電性ペーストは、銀
パラジウムペーストとほぼ同一の作用効果を有
し、積層コンデンサの内部電極としても使用でき
ることが確認された。
[Table] From the results, it was confirmed that the conductive paste of the present invention has almost the same effect as the silver-palladium paste, and can also be used as an internal electrode of a multilayer capacitor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1に係わる磁器及び電
極を示す平面図、第2図は第1図の正面図、第3
図は実施例1でTを測定するための試料の平面
図、第4図はTの測定状態を示す断面図、第5図
は実施例7のグリーンシートとペーストとを示す
平面図、第6図は第5図の正面図である。 尚図面に用いられている符号において、1は磁
器、2は導体である。
FIG. 1 is a plan view showing the porcelain and electrodes according to Example 1 of the present invention, FIG. 2 is a front view of FIG. 1, and FIG.
The figure is a plan view of the sample for measuring T in Example 1, FIG. 4 is a cross-sectional view showing the measurement state of T, FIG. The figure is a front view of FIG. 5. In the symbols used in the drawings, 1 is porcelain and 2 is a conductor.

Claims (1)

【特許請求の範囲】 1 70〜98重量%のニツケル粉末と、 マンガン量がMnOに換算して0.05〜29.9重量%
となるマンガン又はマンガン化合物の粉末と、 0.1〜20重量%のガラスフリツトと、 を前記ニツケル粉末と前記MnOと前記ガラスフ
リツトとの合計で100重量%となるように含み、
且つ適当量のビヒクルを含むことを特徴とする焼
付型導電性ペースト。 2 70〜98重量%のニツケル粉末と、 マンガン量がMnOに換算して0.05〜29.9重量%
となるマンガン又はマンガン化合物の粉末と、 0.1〜20重量%のガラスフリツトと、 を前記ニツケル粉末と前記MnOと前記ガラスフ
リツトの合計で100重量%となるように含み、且
つ前記ニツケル粉末と前記MnOと前記ガラスフ
リツトとの合計100重量部に対して0.05〜25重量
部の珪化ニツケル又は硼化ジルコニウムを含み、
且つ適当量のビヒクルを含むことを特徴とする焼
付型導電性ペースト。
[Claims] 1. Nickel powder of 70 to 98% by weight, and manganese amount of 0.05 to 29.9% by weight converted to MnO.
a powder of manganese or a manganese compound, and 0.1 to 20% by weight of glass frit, so that the total of the nickel powder, the MnO, and the glass frit is 100% by weight,
A baking-type conductive paste characterized by containing an appropriate amount of vehicle. 2 Nickel powder of 70-98% by weight and manganese amount of 0.05-29.9% by weight converted to MnO
a powder of manganese or a manganese compound, and 0.1 to 20% by weight of glass frit, so that the total of the nickel powder, the MnO, and the glass frit is 100% by weight, and the nickel powder, the MnO, and the glass frit are Contains 0.05 to 25 parts by weight of nickel silicide or zirconium boride based on 100 parts by weight in total with glass frit,
A baking-type conductive paste characterized by containing an appropriate amount of vehicle.
JP7318182A 1982-04-28 1982-04-28 Printing type electroconductive paste Granted JPS58188002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7318182A JPS58188002A (en) 1982-04-28 1982-04-28 Printing type electroconductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7318182A JPS58188002A (en) 1982-04-28 1982-04-28 Printing type electroconductive paste

Publications (2)

Publication Number Publication Date
JPS58188002A JPS58188002A (en) 1983-11-02
JPS6134203B2 true JPS6134203B2 (en) 1986-08-06

Family

ID=13510708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7318182A Granted JPS58188002A (en) 1982-04-28 1982-04-28 Printing type electroconductive paste

Country Status (1)

Country Link
JP (1) JPS58188002A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593909A (en) * 1982-06-29 1984-01-10 ニチコン株式会社 Electrode paste for ceramic condenser
JPS6167213A (en) * 1984-09-10 1986-04-07 日本電気株式会社 Method of producing lamimated ceramic condenser
JP2593137B2 (en) * 1987-09-19 1997-03-26 太陽誘電 株式会社 Conductive paste
JP2635053B2 (en) * 1987-09-19 1997-07-30 太陽誘電 株式会社 Conductive paste

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105318A (en) * 1978-11-16 1980-08-12 Union Carbide Corp Ceramic capacitor having terminal calcined

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105318A (en) * 1978-11-16 1980-08-12 Union Carbide Corp Ceramic capacitor having terminal calcined

Also Published As

Publication number Publication date
JPS58188002A (en) 1983-11-02

Similar Documents

Publication Publication Date Title
KR900004379B1 (en) Multilayer ceramic substrate and method of making the same
KR20030025836A (en) Conductive paste, method for manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
KR100366928B1 (en) Conductive paste and ceramic electronic component
JP2012033291A (en) Paste for electrode formation, terminal electrode and ceramic electronic part
JP2800176B2 (en) Glass ceramic composition
JP3230394B2 (en) Porcelain capacitors
JPS6134203B2 (en)
JP3127797B2 (en) Glass ceramic substrate with built-in capacitor
JPS59114703A (en) Seized conductive paste
JP2990819B2 (en) Grain boundary insulated semiconductor ceramic multilayer capacitor
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JPH0686327B2 (en) Ceramic substrate composition
JPH04354101A (en) Glass frit, resistor paste and wiring board
JPH0644670B2 (en) Ceramic circuit board manufacturing method
JPH0752696B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPH01236515A (en) Dielectric porcelain material
KR20230004486A (en) Thick Film Resistor Pastes, Thick Film Resistors, and Electronic Components
JP2002279828A (en) Copper paste composition for use in outer electrode, and laminated ceramic capacitor using the same
JPS61158122A (en) Conductive paste
JPH051963B2 (en)
JPH08148372A (en) Ceramic capacitor and manufacture thereof
JPH051962B2 (en)
JP2006261250A (en) Resistor paste, resistor and electronic component
JP2000252156A (en) Multilayer ceramic capacitor
JPH04342101A (en) Composition of thick-film resistor; formation method of thick-film resistor