JP2990819B2 - Grain boundary insulated semiconductor ceramic multilayer capacitor - Google Patents

Grain boundary insulated semiconductor ceramic multilayer capacitor

Info

Publication number
JP2990819B2
JP2990819B2 JP3044400A JP4440091A JP2990819B2 JP 2990819 B2 JP2990819 B2 JP 2990819B2 JP 3044400 A JP3044400 A JP 3044400A JP 4440091 A JP4440091 A JP 4440091A JP 2990819 B2 JP2990819 B2 JP 2990819B2
Authority
JP
Japan
Prior art keywords
grain boundary
internal electrode
semiconductor
multilayer capacitor
semiconductor ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3044400A
Other languages
Japanese (ja)
Other versions
JPH05217791A (en
Inventor
田 信 之 和
野 芳 明 河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3044400A priority Critical patent/JP2990819B2/en
Publication of JPH05217791A publication Critical patent/JPH05217791A/en
Application granted granted Critical
Publication of JP2990819B2 publication Critical patent/JP2990819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は粒界絶縁型半導体磁器
積層コンデンサに関し、特に、半導体磁器材料と内部電
極材料とを同時に焼成し、その後の熱処理によって半導
体磁器の粒界層を絶縁化した粒界絶縁型半導体磁器積層
コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain boundary insulated semiconductor ceramic multilayer capacitor, and more particularly to a grain capacitor in which a semiconductor ceramic material and an internal electrode material are simultaneously fired, and the grain boundary layer of the semiconductor ceramic is insulated by a subsequent heat treatment. The present invention relates to a field-insulated semiconductor ceramic multilayer capacitor.

【0002】[0002]

【従来の技術】従来、積層セラミックコンデンサは、誘
電体磁器材料と内部電極材料とを積層し、これを焼成し
た後に、誘電体磁器の端面に内部電極と導通する外部電
極を焼き付けることによって製造される。近年、電子部
品の小型化が志向され、積層コンデンサも小型,大容量
化の傾向にある。積層セラミックコンデンサにおいて、
小型,大容量化する手段として誘電体磁器材料の層を薄
くして大容量化する方法が一般的であるが、誘電体磁器
のグレインサイズが数μmであり、その層を薄くするこ
とに限界がある。これに対して、材料的に誘電体磁器の
グレインサイズを小さくするような検討が進められてい
るが、グレインサイズを小さくすると、誘電率も小さく
なり大容量化が困難である。誘電体の誘電率を高くする
方法として半導体磁器の粒界のみを絶縁化し、誘電体の
実効的な厚みを薄くし大容量化させた粒界絶縁型半導体
磁器があり、これは単板コンデンサでは広く利用されて
いる。これら半導体磁器の粒界を絶縁化させるために
は、磁器の表面から酸素を拡散させる必要がある。
2. Description of the Related Art Conventionally, a multilayer ceramic capacitor is manufactured by laminating a dielectric ceramic material and an internal electrode material, firing the material, and then baking an external electrode that is electrically connected to the internal electrode on the end face of the dielectric ceramic. You. In recent years, miniaturization of electronic components has been pursued, and multilayer capacitors have also tended to be smaller and have larger capacities. In multilayer ceramic capacitors,
As a means for reducing the size and increasing the capacity, a method of increasing the capacity by thinning the layer of the dielectric porcelain material is generally used. However, the grain size of the dielectric porcelain is several μm, and there is a limit to thinning the layer. There is. On the other hand, studies have been made to reduce the grain size of the dielectric porcelain in terms of material. However, when the grain size is reduced, the dielectric constant also decreases, and it is difficult to increase the capacity. As a method of increasing the dielectric constant of the dielectric, there is a grain boundary insulated semiconductor porcelain in which only the grain boundaries of the semiconductor porcelain are insulated, and the effective thickness of the dielectric is reduced to increase the capacity. Widely used. To insulate the grain boundaries of these semiconductor porcelains, it is necessary to diffuse oxygen from the surface of the porcelain.

【0003】[0003]

【発明が解決しようとする課題】ところが、半導体磁器
と内部電極とからなる積層体では、その内部に内部電極
があるためにその内部にまで酸素を十分拡散できず、そ
のため、粒界絶縁型半導体磁器を積層コンデンサに利用
することは困難であった。そこで、粒界絶縁型半導体磁
器を用いて積層コンデンサを作るために、内部電極のか
わりに層状の空間を形成した後、熱処理によって粒界絶
縁型半導体磁器を作り、後で内部電極として溶融した鉛
などの金属をその空間に圧入して積層コンデンサを作る
ことなどが検討されているが、圧入された金属が半導体
磁器の層間の絶縁性を低下するため、ショートによる不
良の発生率が高いという問題があった。
However, in a laminate composed of a semiconductor porcelain and an internal electrode, oxygen cannot be sufficiently diffused into the internal electrode due to the internal electrode, so that the grain boundary insulating semiconductor It has been difficult to use porcelain for multilayer capacitors. Therefore, in order to make a multilayer capacitor using grain boundary insulated semiconductor porcelain, after forming a layered space instead of the internal electrode, a grain boundary insulated semiconductor porcelain was made by heat treatment, and the lead melted later as an internal electrode. It has been studied to make a multilayer capacitor by press-fitting such metals into the space, but the press-fitted metal reduces the insulation between the layers of the semiconductor porcelain, resulting in a high incidence of defects due to short circuits. was there.

【0004】それゆえに、この発明の主たる目的は、信
頼性の高い粒界絶縁型半導体磁器積層コンデンサを提供
することである。本願発明者らは、見掛け誘電率が高い
粒界絶縁型半導体磁器を用い、信頼性の高い積層コンデ
ンサを作るべく検討した結果、半導体磁器の粒界を絶縁
化する絶縁化剤として知られる酸化銅(CuO)に着目
した。すなわち、銅を含むニッケルを内部電極として半
導体磁器とで積層体を作り、熱処理によって銅を酸化銅
に酸化させ、これを半導体磁器の粒界に拡散させること
によって、積層体の内部の半導体磁器の粒界を酸化させ
得ることを発見した。これによって、粒界絶縁型半導体
磁器積層コンデンサを作ることが可能となり、この発明
に至った。
[0004] Therefore, a main object of the present invention is to provide a highly reliable grain boundary insulated semiconductor ceramic multilayer capacitor. The present inventors studied using a grain boundary insulated semiconductor porcelain having a high apparent dielectric constant to make a highly reliable multilayer capacitor, and found that copper oxide, which is known as an insulating agent for insulating the grain boundaries of the semiconductor porcelain, was used. (CuO). That is, a laminated body is formed with semiconductor porcelain using nickel containing copper as an internal electrode, and copper is oxidized to copper oxide by heat treatment, and this is diffused into the grain boundaries of the semiconductor porcelain. It has been found that grain boundaries can be oxidized. As a result, a grain boundary insulated semiconductor ceramic multilayer capacitor can be manufactured, which has led to the present invention.

【0005】[0005]

【課題を解決するための手段】この発明は、半導体磁器
材料と内部電極材料とを積層し焼成してなる積層体の半
導体磁器の粒界を熱処理によって絶縁化した粒界絶縁型
半導体磁器積層コンデンサにおいて、内部電極材料とし
て、銅を0.1wt%〜20wt%含有したニッケル金
属組成を用いた、粒界絶縁型半導体磁器積層コンデンサ
である。この発明にかかる粒界絶縁型半導体磁器積層コ
ンデンサでは、半導体磁器材料と内部電極材料とを焼成
した後、酸素雰囲気中で熱処理することによって、内部
電極材料中の銅が酸化され、半導体磁器の粒界が絶縁化
されている。
SUMMARY OF THE INVENTION The present invention relates to a grain boundary insulated semiconductor ceramic multilayer capacitor in which the grain boundaries of a semiconductor ceramic of a laminate obtained by laminating and firing a semiconductor ceramic material and an internal electrode material are insulated by heat treatment. , A grain boundary insulated semiconductor ceramic multilayer capacitor using a nickel metal composition containing 0.1 wt% to 20 wt% of copper as an internal electrode material. A grain boundary insulating semiconductor ceramic laminate core according to the present invention
At the capacitor, the semiconductor ceramic material and the internal electrode material are fired.
After heat treatment in an oxygen atmosphere,
Copper in the electrode material is oxidized, and the grain boundaries of the semiconductor porcelain are insulated
Have been.

【0006】[0006]

【作用】半導体磁器材料と内部電極材料とを一緒に焼成
して焼結させるため半導体磁器のグレイン間などに電極
材料が入ることはない。半導体磁器材料の焼成は一般に
還元雰囲気で行われるが、半導体磁器の粒界の絶縁化の
処理は酸化雰囲気で行われる。酸素分圧を制御した酸化
雰囲気で粒界の絶縁化を行う時、内部電極材料として銅
を含有したニッケル金属組成を用いると、雰囲気の酸素
分圧を適当に選べば、銅が選択的に酸化するためか、半
導体磁器の粒界が選択的に酸化され、半導体磁器が粒界
絶縁型半導体磁器となる。また、銅が選択的に酸化する
ためか、内部電極材料のニッケルが酸化するまでには至
らない。なお、内部電極材料には、具体的には、銅を
0.1〜20重量%含有したニッケル金属組成を用いる
ことが好ましい。このとき、内部電極材料として銅が
0.1wt%未満のニッケル金属組成を用いると、半導
体磁器の粒界を十分に酸化できず、焼成物の絶縁抵抗が
低い。また、内部電極材料として銅が20wt%を超え
るニッケル金属組成を用いると、銅の酸化膨張によって
内部電極と半導体磁器との間で割れが生じて好ましくな
いと同時に、内部電極材料成分の融点低下によって半導
体磁器の焼成温度域が低下するという問題を生じる。な
お、粒界を絶縁化する際に一般的に用いられる鉛、ビス
マス、ほう素などの酸化物あるいはこれにガラスなどを
混合した絶縁化剤を、焼成した積層体と混合し、攪拌し
ながらの熱処理を共用することも可能である。
Since the semiconductor ceramic material and the internal electrode material are fired and sintered together, the electrode material does not enter between the grains of the semiconductor ceramic. The firing of the semiconductor porcelain material is generally performed in a reducing atmosphere, but the process of insulating the grain boundaries of the semiconductor porcelain is performed in an oxidizing atmosphere. When insulating grain boundaries in an oxidizing atmosphere with controlled oxygen partial pressure, if a nickel metal composition containing copper is used as an internal electrode material, copper can be selectively oxidized by appropriately selecting the oxygen partial pressure of the atmosphere. For this reason, the grain boundaries of the semiconductor porcelain are selectively oxidized, and the semiconductor porcelain becomes a grain boundary insulating semiconductor porcelain. In addition, it is not possible to selectively oxidize copper or to oxidize nickel of the internal electrode material. Specifically, copper is used as the internal electrode material.
Use nickel metal composition containing 0.1-20% by weight
Is preferred. At this time, if a nickel metal composition containing less than 0.1% by weight of copper is used as the internal electrode material, the grain boundaries of the semiconductor porcelain cannot be sufficiently oxidized, and the insulation resistance of the fired product is low. If a nickel metal composition containing more than 20% by weight of copper is used as the internal electrode material, cracks occur between the internal electrode and the semiconductor porcelain due to oxidative expansion of copper. There is a problem that the firing temperature range of the semiconductor porcelain decreases. In addition, an oxide such as lead, bismuth, or boron, which is generally used when insulating grain boundaries, or an insulating agent obtained by mixing glass with the oxide, is mixed with the fired laminate, and stirred. It is also possible to share heat treatment.

【0007】[0007]

【発明の効果】この発明によれば、信頼性の高い粒界絶
縁型半導体磁器積層コンデンサが得られる。この発明の
上述の目的,その他の目的,特徴および利点は、以下の
実施例の詳細な説明から一層明らかとなろう。
According to the present invention, a highly reliable grain boundary insulated semiconductor ceramic multilayer capacitor can be obtained. The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments.

【0008】[0008]

【実施例】まず、表1に示す半導体磁器組成物Aおよび
Bに有機バインダ,分散剤および消泡剤からなる混合水
溶液を15重量%添加し、50重量%の水とともに、ボ
ールミルで混合,粉砕しスラリーを調整した。このスラ
リーをドクターブレードに流して、厚さ20μmのセラ
ミックグリーンシートを作製した。
EXAMPLE First, 15% by weight of a mixed aqueous solution comprising an organic binder, a dispersant and an antifoaming agent was added to the semiconductor ceramic compositions A and B shown in Table 1, and mixed with a 50% by weight water and mixed and pulverized by a ball mill. The slurry was adjusted. This slurry was flowed through a doctor blade to produce a ceramic green sheet having a thickness of 20 μm.

【0009】このセラミックグリーンシートの上に、表
2に示すように内部電極組成としてニッケル(Ni)粉
末,銅(Cu)粉末を用いた内部電極ペーストを、通常
の積層セラミックコンデンサを製造する方法によってス
クリーン印刷した。そして、内部電極ペーストが10層
になるように、セラミックグリーンシートを積層し、熱
プレスを用いてそれらを一体化した積層体を得た。その
後、この積層体を所定の寸法に切断して、生チップを作
製した。この寸法は、焼成後、長さ1.6mm,幅0.
8mmになるように調整した。
On this ceramic green sheet, as shown in Table 2, an internal electrode paste using nickel (Ni) powder or copper (Cu) powder as the internal electrode composition was applied by a method for manufacturing a conventional multilayer ceramic capacitor. Screen printed. Then, ceramic green sheets were laminated so that the internal electrode paste became 10 layers, and a laminated body obtained by integrating them by using a hot press was obtained. Thereafter, the laminate was cut into a predetermined size to produce a raw chip. After firing, these dimensions are 1.6 mm long and 0.3 mm wide.
It was adjusted to be 8 mm.

【0010】次に、作製ないし準備した生チップを、空
気中または酸素分圧をコントロールした雰囲気におい
て、350℃の温度で2時間保持して、脱バインダ処理
を施した。そして、脱バインダ処理を施した生チップ
を、酸素分圧を10-7〜10-20atmにコントロール
した還元雰囲気中において、1250〜1300℃の温
度で焼成して、半導体磁器と内部電極とからなる焼結体
を得た。
Next, the prepared or prepared raw chip was subjected to a binder removal treatment by keeping it at a temperature of 350 ° C. for 2 hours in the air or in an atmosphere in which the oxygen partial pressure was controlled. Then, the raw chip subjected to the binder removal treatment is fired at a temperature of 1250 to 1300 ° C. in a reducing atmosphere in which the oxygen partial pressure is controlled at 10 −7 to 10 −20 atm, and the semiconductor chip and the internal electrodes are fired. Was obtained.

【0011】次に、この焼結体を、酸素分圧を10-2
10-5atmにコントロールした酸化雰囲気中で熱処理
し、半導体磁器の粒界を絶縁化した。この場合、一部の
焼結体については、鉛,ビスマス,ほう素などの酸化物
が混合された絶縁体化剤を混合しながら熱処理をして、
磁器の粒界を絶縁化した。このようにして半導体磁器の
粒界が絶縁化された焼結体の端面に、外部電極材料を塗
布してから酸素分圧をコントロールした雰囲気で焼き付
け、粒界絶縁型半導体磁器積層コンデンサを得た。
Next, the sintered body is subjected to an oxygen partial pressure of 10 -2 to
Heat treatment was performed in an oxidizing atmosphere controlled at 10 −5 atm to insulate the grain boundaries of the semiconductor porcelain. In this case, for some sintered bodies, heat treatment is performed while mixing an insulating agent in which oxides such as lead, bismuth, and boron are mixed.
The porcelain grain boundaries were insulated. An external electrode material is applied to the end face of the sintered body in which the grain boundaries of the semiconductor porcelain are insulated in this way, and then baked in an atmosphere in which the oxygen partial pressure is controlled, to obtain a grain boundary insulated semiconductor porcelain multilayer capacitor. .

【0012】得られた粒界絶縁型半導体磁器積層コンデ
ンサについて、静電容量および誘電損失を1kHz,1
Vrmsの条件で測定した。また、見掛け誘電率は、電
極面積および電極間距離を測定して、その面積および距
離と静電容量とから算出した。さらに、絶縁抵抗IR
は、50Vの直流電圧を印加して測定した。それらの測
定結果を表2に示す。表2中*印を付けたものは、この
発明の範囲外のものである。
With respect to the obtained grain boundary insulated semiconductor ceramic multilayer capacitor, the capacitance and the dielectric loss were 1 kHz and 1 kHz.
It was measured under the condition of Vrms. The apparent permittivity was calculated from the electrode area and the distance between the electrodes by measuring the area and the distance and the capacitance. Furthermore, insulation resistance IR
Was measured by applying a DC voltage of 50 V. Table 2 shows the measurement results. Those marked with * in Table 2 are out of the scope of the present invention.

【0013】試料番号1および2では、内部電極材料中
の銅の含有量が少ないため、半導体磁器の粒界の絶縁化
が十分でなく、絶縁抵抗が低く好ましくない。一方、試
料番号6では、Cuの含有量が多いため、焼成後の熱処
理において内部電極と磁器の間で割れが生じ、絶縁抵抗
が低くなり好ましくない。それに対して、試料番号3,
4,5および7は、いずれも、この発明の範囲内の銅の
含有量を持つ内部電極材料を用いた粒界絶縁型半導体磁
器積層コンデンサであり、見掛け誘電率が20000以
上と高く、絶縁抵抗も高いことがわかる。
In Sample Nos. 1 and 2, since the content of copper in the internal electrode material is small, the insulation of the grain boundaries of the semiconductor porcelain is not sufficient, and the insulation resistance is undesirably low. On the other hand, in sample No. 6, since the content of Cu is large, cracks occur between the internal electrode and the porcelain in the heat treatment after firing, and the insulation resistance is undesirably low. On the other hand, sample number 3,
Reference numerals 4, 5, and 7 each denote a grain boundary insulated semiconductor ceramic multilayer capacitor using an internal electrode material having a copper content within the range of the present invention. Is also high.

【0014】なお、上述の実施例では、積層体の焼成と
粒界の絶縁化(酸化)とを別工程としたが、同一焼成プ
ロファイルのなかで両者を一度に行うことも可能であ
る。
In the above-described embodiment, the firing of the laminate and the insulation (oxidation) of the grain boundaries are performed in separate steps, but both may be performed at the same time in the same firing profile.

【0015】以上のように、この発明では、内部電極材
料に銅を含有させ、これの酸化拡散を応用することによ
って、積層コンデンサの内部の粒界にまで酸素の拡散を
可能にした粒界絶縁型半導体磁器積層コンデンサを得る
ことができる。この結果、大容量化が容易となり、積層
コンデンサの小型化,大容量化が可能となる。
As described above, according to the present invention, copper is contained in the internal electrode material, and by applying the oxidative diffusion of the internal electrode material, the grain boundary insulation that enables oxygen to diffuse to the internal grain boundaries of the multilayer capacitor is provided. Type semiconductor ceramic multilayer capacitor can be obtained. As a result, the capacity can be easily increased, and the size and the capacity of the multilayer capacitor can be reduced.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体磁器材料と内部電極材料とを積層
し焼成してなる積層体の前記半導体磁器の粒界を熱処理
によって絶縁化した粒界絶縁型半導体磁器積層コンデン
サにおいて、 前記内部電極材料として、銅を0.1wt%〜20wt
%含有したニッケル金属組成を用いたことを特徴とす
る、粒界絶縁型半導体磁器積層コンデンサ。
1. A grain boundary insulated semiconductor ceramic multilayer capacitor in which a semiconductor ceramic material and an internal electrode material are laminated and fired to thereby insulate a grain boundary of the semiconductor ceramic by heat treatment, wherein the internal electrode material is 0.1% to 20% of copper
A grain boundary insulated semiconductor ceramic multilayer capacitor characterized by using a nickel metal composition containing 0.1% nickel metal.
【請求項2】(2) 前記半導体磁器材料と前記内部電極材料The semiconductor porcelain material and the internal electrode material
とを焼成した後、酸素雰囲気中で熱処理することによっAfter baking, heat treatment is performed in an oxygen atmosphere.
て、前記内部電極材料中の銅が酸化され、前記半導体磁Thus, the copper in the internal electrode material is oxidized,
器の粒界が絶縁化された、請求項1に記載の粒界絶縁型The grain boundary insulation type according to claim 1, wherein the grain boundaries of the vessel are insulated.
半導体磁器積層コンデンサ。Semiconductor porcelain multilayer capacitor.
JP3044400A 1991-02-16 1991-02-16 Grain boundary insulated semiconductor ceramic multilayer capacitor Expired - Fee Related JP2990819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3044400A JP2990819B2 (en) 1991-02-16 1991-02-16 Grain boundary insulated semiconductor ceramic multilayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3044400A JP2990819B2 (en) 1991-02-16 1991-02-16 Grain boundary insulated semiconductor ceramic multilayer capacitor

Publications (2)

Publication Number Publication Date
JPH05217791A JPH05217791A (en) 1993-08-27
JP2990819B2 true JP2990819B2 (en) 1999-12-13

Family

ID=12690463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3044400A Expired - Fee Related JP2990819B2 (en) 1991-02-16 1991-02-16 Grain boundary insulated semiconductor ceramic multilayer capacitor

Country Status (1)

Country Link
JP (1) JP2990819B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670684B2 (en) * 2006-03-03 2011-04-13 Tdk株式会社 Method for forming oxide dielectric film
JP4936825B2 (en) * 2006-08-02 2012-05-23 太陽誘電株式会社 Multilayer ceramic capacitor
KR101060824B1 (en) * 2009-12-22 2011-08-30 삼성전기주식회사 Multilayer Ceramic Capacitors and Manufacturing Method Thereof

Also Published As

Publication number Publication date
JPH05217791A (en) 1993-08-27

Similar Documents

Publication Publication Date Title
KR100428961B1 (en) Multilayer Ceramic Capacitor and Production Method Thereof
JP4345071B2 (en) Multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor
JP2005129802A (en) Laminated ceramic capacitor
JP2003168619A (en) Conductive paste for terminal electrode of laminated ceramic electronic part, method for manufacturing the laminated ceramic electronic part, and the laminated ceramic electronic part
JP2001230146A (en) Laminated ceramic capacitor and method of manufacturing it
CN112992538A (en) Dielectric composition and electronic component
JP2021082686A (en) Ceramic electronic component and manufacturing method thereof
JP3924286B2 (en) Manufacturing method of multilayer ceramic electronic component
KR100651019B1 (en) dielectric ceramic compositions and electronic devices
JP4717302B2 (en) Dielectric porcelain composition and electronic component
JPH0222806A (en) Laminated ceramic capacitor
JP4552260B2 (en) Nickel powder, electrode paste, and electronic component manufacturing method
JP2990819B2 (en) Grain boundary insulated semiconductor ceramic multilayer capacitor
JP5151039B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP2003277136A (en) Dielectric ceramic composition and multilayer ceramic electronic parts
JP2004203669A (en) Dielectric porcelain composition, electronic components, and manufacturing processes thereof
JP3875832B2 (en) Electronic component and manufacturing method thereof
JP4506090B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JPH07122456A (en) Manufacture of multilayered ceramic capacitor
JP2002201064A (en) Dielectric ceramic composition, multilayer ceramic capacitor and its production method
JP4376508B2 (en) Dielectric porcelain composition and electronic component
JP3134430B2 (en) Non-reducing dielectric ceramic composition
JP3233020B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2605743B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2671422B2 (en) Non-reducing dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees