JP2000150293A - Layered ceramic capacitor - Google Patents

Layered ceramic capacitor

Info

Publication number
JP2000150293A
JP2000150293A JP10314259A JP31425998A JP2000150293A JP 2000150293 A JP2000150293 A JP 2000150293A JP 10314259 A JP10314259 A JP 10314259A JP 31425998 A JP31425998 A JP 31425998A JP 2000150293 A JP2000150293 A JP 2000150293A
Authority
JP
Japan
Prior art keywords
nickel
internal electrodes
ceramic capacitor
base metal
multilayer ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10314259A
Other languages
Japanese (ja)
Inventor
Kazuki Ito
一樹 伊藤
Mitsuhiro Yamazaki
三浩 山▲崎▼
Koji Hirate
晃司 平手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10314259A priority Critical patent/JP2000150293A/en
Publication of JP2000150293A publication Critical patent/JP2000150293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a layered ceramic capacitor, in which electrode paste of base metal such as nickel, is used for internal electrodes. SOLUTION: In this layered ceramic capacitor including a sintered compact of a plurality of lamination layers of ceramic dielectric layers 2 and internal electrodes 1, made of nickel as its main component and alternately stacked therewith and also including external electrodes 3, provided so as to be electrically connected with the internal electrodes 1 at ends of the sintered laminated body, the internal electrodes 1 are formed with the use of paste for the internal electrodes 1, which is a mixture of 0.001-0.01 wt.% of amorphous carbon powder having a mean particle diameter of 0.001-0.01 μm added to a mean metal component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケル等の卑金属
を内部電極に用いた積層セラミックコンデンサに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer ceramic capacitor using a base metal such as nickel for internal electrodes.

【0002】[0002]

【従来の技術】従来の積層セラミックコンデンサは、公
知の積層セラミックコンデンサの製造方法を用いBaT
iO3等の高誘電率材料を主成分とするセラミック誘電
体層と、ニッケル等の卑金属を主成分とする内部電極と
を交互に複数層積層した積層体グリーンチップを、還元
雰囲気中の1200〜1500℃の温度で焼成を行った
後、積層焼結体の内部電極が露出した端面部に、内部電
極と電気的に接続するように電極ペーストを塗布し、焼
付けて外部電極を設けて積層セラミックコンデンサを完
成させる方法が一般的に行われている。
2. Description of the Related Art Conventional multilayer ceramic capacitors are manufactured by using a known method of manufacturing a multilayer ceramic capacitor.
A stacked green chip obtained by alternately stacking a plurality of ceramic dielectric layers mainly composed of a high dielectric constant material such as iO 3 and internal electrodes mainly composed of a base metal such as nickel in a reducing atmosphere in a reduction atmosphere of 1200 to 1200 After sintering at a temperature of 1500 ° C., an electrode paste is applied to the exposed end face of the laminated sintered body so as to be electrically connected to the internal electrode, and baked to provide an external electrode to provide a laminated ceramic. A method for completing a capacitor is generally used.

【0003】[0003]

【発明が解決しようとする課題】従来の技術では、ニッ
ケル等の卑金属を主成分とする電極ペーストを用い内部
電極を形成するには、ニッケル等の酸化を防止するため
還元性雰囲気中で焼成する。このため積層体グリーンチ
ップのセラミック誘電体層材料は還元性雰囲気中で焼成
可能な耐還元性誘電体材料を用いる。しかしながら積層
体グリーンチップの焼成温度が1300℃を超えると内
部電極のニッケルは焼成収縮が激しく、積層焼結体の内
部で内部電極切れが発生すると共に、電極材料のニッケ
ル等がセラミック誘電体層に拡散し、積層焼結体の内部
電極間の絶縁性を低下させるという問題点を有してい
た。
In the prior art, in order to form an internal electrode using an electrode paste containing a base metal such as nickel as a main component, firing is carried out in a reducing atmosphere to prevent oxidation of nickel and the like. . For this reason, the ceramic dielectric layer material of the laminated green chip uses a reduction-resistant dielectric material that can be fired in a reducing atmosphere. However, when the firing temperature of the laminated green chip exceeds 1300 ° C., the firing of the nickel of the internal electrode is severe, and the internal electrode is cut inside the laminated sintered body, and the nickel or the like of the electrode material is deposited on the ceramic dielectric layer. There is a problem that the aluminum alloy diffuses and lowers insulation between the internal electrodes of the laminated sintered body.

【0004】本発明は上記課題を解決し、ニッケル等の
卑金属を用いた電極ペーストの場合においても、大気中
の1300℃以上の温度でも焼成が可能な安定した性能
の積層セラミックコンデンサを提供することを目的とす
るものである。
The present invention has been made to solve the above problems, and to provide a multilayer ceramic capacitor having stable performance which can be fired even at a temperature of 1300 ° C. or more in the atmosphere even in the case of an electrode paste using a base metal such as nickel. It is intended for.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明は、ニッケル等の卑金属電極ペーストに、平均
粒径が0.001〜0.01μmの非晶質カーボン粉末
を卑金属成分に対し0.001〜0.01wt%添加し
た電極ペーストを用いることにより安定した性能の積層
セラミックコンデンサを得ることができるものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a method for preparing a base metal electrode paste such as nickel by adding an amorphous carbon powder having an average particle size of 0.001 to 0.01 μm to a base metal component. By using the electrode paste added with 0.001 to 0.01 wt%, a multilayer ceramic capacitor having stable performance can be obtained.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、セラミック誘電体層とニッケル等の卑金属を主成分
とする内部電極を交互に複数層積層した積層焼結体と、
前記積層焼結体の端部に前記内部電極と電気的に接続す
るように形成した外部電極を設けた積層セラミックコン
デンサにおいて、前記内部電極に平均粒径が0.001
〜0.01μmの非晶質カーボン粉末を卑金属成分に対
し0.001〜0.01wt%添加した電極ペーストを
用いて内部電極を形成した積層セラミックコンデンサで
あり、大気雰囲気中の1300℃以上の温度での焼成
で、ニッケル等の卑金属内部電極が焼成収縮し電極切れ
を発生したり、ニッケル等の卑金属がセラミック誘電体
層へ拡散し絶縁抵抗を低下させるのは、内部電極の主成
分であるニッケル等の卑金属が焼結過程で雰囲気中の酸
素またはセラミック誘電体層材料中の酸素と反応して酸
化物となるために発生するがこれを防止するためにニッ
ケル等の卑金属電極ペースト中に平均粒径0.001〜
0.01μmの非晶質カーボン粉末を添加することによ
り、積層体グリーンチップの焼結過程で添加した非晶質
カーボンが卑金属の酸化されるより早く雰囲気中の酸素
と反応して、卑金属の酸化を抑制するという作用を有す
るものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a laminated sintered body in which a ceramic dielectric layer and a plurality of internal electrodes mainly composed of a base metal such as nickel are alternately laminated;
In a multilayer ceramic capacitor having an external electrode formed at the end of the multilayer sintered body so as to be electrically connected to the internal electrode, the internal electrode has an average particle diameter of 0.001.
A multilayer ceramic capacitor in which internal electrodes are formed using an electrode paste obtained by adding 0.001 to 0.01 wt% of an amorphous carbon powder of 0.001 to 0.01 μm to a base metal component. When the base metal internal electrode such as nickel is fired and contracted by firing, the electrode is cut off, and the base metal such as nickel diffuses into the ceramic dielectric layer to lower the insulation resistance. The base metal such as nickel reacts with oxygen in the atmosphere or oxygen in the ceramic dielectric layer material to form an oxide during the sintering process. Diameter 0.001
By adding 0.01 μm of amorphous carbon powder, the amorphous carbon added in the sintering process of the laminated green chip reacts with oxygen in the atmosphere earlier than the base metal is oxidized, thereby oxidizing the base metal. Has the effect of suppressing

【0007】以下、本発明の一実施の形態をニッケル内
部電極ペーストを用いた積層セラミックコンデンサにつ
いて説明する。
Hereinafter, an embodiment of the present invention will be described for a multilayer ceramic capacitor using a nickel internal electrode paste.

【0008】予め、ニッケル内部電極ペーストとして、
平均粒径0.1μmのニッケル金属粉末50wt%と、
エチルセルロース、ターピネオール、ミネラルスピリッ
トを主成分とする有機ビヒクル50wt%からなる成分
に、更にニッケル金属粉末に対し(表1)に示す量の非
晶質カーボン粉末を添加し、これらを均質に混練して電
極ペーストを作製した。
In advance, as a nickel internal electrode paste,
50% by weight of nickel metal powder having an average particle size of 0.1 μm;
To a component consisting of 50 wt% of an organic vehicle containing ethyl cellulose, terpineol, and mineral spirit as main components, an amorphous carbon powder in an amount shown in (Table 1) is further added to the nickel metal powder, and these are homogeneously kneaded. An electrode paste was prepared.

【0009】[0009]

【表1】 [Table 1]

【0010】先ず、チタン酸バリウムを主成分とするセ
ラミック誘電体粉末を用い、公知の積層セラミックコン
デンサの製造方法に従って、厚さ10μmの誘電体グリ
ーンシートを作製する。次に、誘電体グリーンシートを
10枚積層し上下無効層を作製する。次いで、誘電体グ
リーンシート面に、前記内部電極ペーストをスクリーン
印刷方法を用い内部電極の印刷を行う。
First, using a ceramic dielectric powder containing barium titanate as a main component, a dielectric green sheet having a thickness of 10 μm is manufactured according to a known method for manufacturing a multilayer ceramic capacitor. Next, ten dielectric green sheets are laminated to form upper and lower invalid layers. Next, the internal electrode paste is printed on the dielectric green sheet surface using a screen printing method.

【0011】続いて内部電極を印刷したグリーンシート
を、印刷した内部電極の長手方向一層おきに交互に所定
量ずらし50枚積層した後、最後に上下面に無効層を重
ね加圧積層を行いグリーン積層体(図示せず)を作製す
る。
Subsequently, 50 green sheets on which the internal electrodes are printed are alternately shifted by a predetermined amount alternately every other layer in the longitudinal direction of the printed internal electrodes, and finally, an invalid layer is overlaid on the upper and lower surfaces to perform pressure lamination. A laminate (not shown) is prepared.

【0012】その後、グリーン積層体を所定形状(製品
形状3216タイプ)の積層体グリーンチップに切断し
た後、大気雰囲気中の1200℃と1300℃の温度で
焼成を行った。
Thereafter, the green laminate was cut into laminate green chips of a predetermined shape (product shape 3216 type), and fired at 1200 ° C. and 1300 ° C. in the air atmosphere.

【0013】得られた積層焼結体は図1に示すように内
部電極1がセラミック誘電体層2を挟んで一層おきに対
向する異なる端面に交互に露出した状態となっている。
As shown in FIG. 1, the obtained laminated sintered body has a state in which the internal electrodes 1 are alternately exposed to different end faces facing each other with the ceramic dielectric layer 2 interposed therebetween.

【0014】次に、内部電極1が露出した積層焼結体の
端面部を覆うように銅を主成分とする外部電極ペースト
を塗布した後、還元性雰囲気中(グリーンガス中)の9
00℃温度で焼付を行い外部電極3を形成した。
Next, an external electrode paste containing copper as a main component is applied so as to cover the end face of the laminated sintered body with the internal electrode 1 exposed, and then the paste is applied in a reducing atmosphere (in green gas).
The external electrodes 3 were formed by baking at a temperature of 00 ° C.

【0015】次いで、形成した外部電極3の半田付け性
を確保するために、外部電極3の表面に電解メッキ法を
用い、ニッケル膜、更にその表面に半田膜を形成し、定
格静電容量1μFのF特性の積層セラミックコンデンサ
を完成させた。
Next, in order to secure the solderability of the formed external electrode 3, a nickel film and a solder film are further formed on the surface of the external electrode 3 by using an electrolytic plating method. A multilayer ceramic capacitor having F characteristics described above was completed.

【0016】得られた(表1)に示した各内部電極ペー
ストを用い内部電極を形成した積層セラミックコンデン
サそれぞれ千個について、静電容量、誘電損失、絶縁抵
抗の測定を行い、その結果を(表1)に併せて示した。
The capacitance, dielectric loss, and insulation resistance were measured for each of the 1,000 laminated ceramic capacitors having the internal electrodes formed using the respective internal electrode pastes shown in (Table 1). It is also shown in Table 1).

【0017】(表1)に示すように、非晶質カーボン粉
末の粒径が0.001から0.01μmのものを、ニッ
ケル金属粉末に対し0.001から0.01wt%添加
した本発明の内部電極ペーストを用いた1300℃焼成
の積層セラミックコンデンサは、絶縁抵抗が1011以上
と高く、静電容量、誘電体損失のバラツキが小さいのに
対し、1200℃で焼成を行ったものと、非晶質カーボ
ンの添加量が0.001wt%より少ないものは、絶縁
抵抗が109以下と低く、誘電損失のバラツキも極めて
大きなものとなり、非晶質カーボンの添加量が0.01
wt%を超えると絶縁抵抗が極めて低くなり特性の測定
が困難となることが分かる。
As shown in Table 1, an amorphous carbon powder having a particle diameter of 0.001 to 0.01 μm was added to a nickel metal powder in an amount of 0.001 to 0.01 wt%. A multilayer ceramic capacitor fired at 1300 ° C. using an internal electrode paste has a high insulation resistance of 10 11 or more and small variations in capacitance and dielectric loss. When the amount of the amorphous carbon added is less than 0.001 wt%, the insulation resistance is as low as 10 9 or less, the variation in the dielectric loss is extremely large, and the amount of the amorphous carbon added is 0.01%.
It is understood that if the content exceeds wt%, the insulation resistance becomes extremely low, and it becomes difficult to measure characteristics.

【0018】本発明の内部電極ペーストを用い1200
℃で焼成した積層セラミックコンデンサが絶縁抵抗が低
いのは積層体の焼結が不十分であることに原因している
ものと思われ、一方非晶質カーボンの添加量が少ない場
合は、電極成分のニッケルの酸化を抑制する効果が少な
いため、内部電極切れや電極成分のニッケルがセラミッ
ク誘電体層に拡散し絶縁抵抗の低下と、容量バラツキを
大きくしたものと思われる。
Using the internal electrode paste of the present invention, 1200
It is considered that the low insulation resistance of the multilayer ceramic capacitor fired at ℃ is due to insufficient sintering of the multilayer body. It is considered that the effect of suppressing the oxidation of nickel is small, so that the internal electrode breakage or the nickel of the electrode component diffused into the ceramic dielectric layer, thereby lowering the insulation resistance and increasing the capacitance variation.

【0019】また、非晶質カーボンの粒径が0.001
μmより小さいと内部電極ペーストと混練する際の分散
性が悪くなり、0.01μmより大きいと内部電極ペー
ストの印刷性が悪くなり好ましくない。また更に、非晶
質カーボンに替えて結晶質カーボンを用いると、結晶質
カーボンは非晶質カーボンに比べ高温での安定性が高
く、ニッケルの酸化を抑制する効果が小さくなり特性の
低下を防止することができないものと思われる。
The amorphous carbon has a particle diameter of 0.001.
If it is smaller than μm, the dispersibility when kneading with the internal electrode paste is deteriorated, and if it is larger than 0.01 μm, the printability of the internal electrode paste is deteriorated, which is not preferable. Furthermore, when crystalline carbon is used instead of amorphous carbon, crystalline carbon has higher stability at high temperatures than amorphous carbon, and the effect of suppressing nickel oxidation is reduced, preventing deterioration of characteristics. It seems that you cannot do that.

【0020】以上、非晶質カーボンの平均粒径と添加量
を規定した本発明のニッケル内部電極ペーストを用いる
ことにより、大気中の1300℃の焼成においても、得
られた積層セラミックコンデンサは、静電容量、誘電損
失、絶縁抵抗値が安定した優れた積層セラミックコンデ
ンサが得られることが明らかである。
As described above, by using the nickel internal electrode paste of the present invention in which the average particle size and the amount of amorphous carbon are specified, the obtained multilayer ceramic capacitor can be statically fired even at 1300 ° C. in the atmosphere. It is apparent that an excellent multilayer ceramic capacitor having stable capacitance, dielectric loss, and insulation resistance can be obtained.

【0021】[0021]

【発明の効果】以上本発明によれば、積層セラミックコ
ンデンサのニッケル内部電極ペーストに0.001〜
0.01μmの非晶質カーボン粉末をニッケル金属粉末
に対し0.001〜0.01wt%添加することによ
り、大気中の高温焼成においても静電容量、誘電損失の
バラツキの小さい、絶縁抵抗が高い安定した積層セラミ
ックコンデンサを提供できることになる。
As mentioned above, according to the present invention, the nickel internal electrode paste of the multilayer ceramic capacitor is 0.001 to 0.001.
By adding 0.01 to 0.01 wt% of amorphous carbon powder of 0.01 μm to nickel metal powder, even in high temperature firing in the air, there is little variation in capacitance and dielectric loss and high insulation resistance. Thus, a stable multilayer ceramic capacitor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層セラミックコンデンサの一実施の
形態を示す断面図
FIG. 1 is a sectional view showing an embodiment of a multilayer ceramic capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

1 内部電極 2 セラミック誘電体層 3 外部電極 1 internal electrode 2 ceramic dielectric layer 3 external electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平手 晃司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5E001 AB03 AC09 AE02 AE03 AF00 AH01 AH05 AH06 AH08 AH09 AJ01 5E082 AA01 AB03 BC35 BC38 EE04 EE23 EE28 EE35 FG06 FG26 FG27 FG54 GG10 GG11 GG26 GG28 HH43 JJ03 JJ12 JJ21 JJ23 LL02 MM22 MM24 PP03 PP09  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Koji Hirate 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. 5E001 AB03 AC09 AE02 AE03 AF00 AH01 AH05 AH06 AH08 AH09 AJ01 5E082 AA01 AB03 BC35 BC38 BC38 EE04 EE23 EE28 EE35 FG06 FG26 FG27 FG54 GG10 GG11 GG26 GG28 HH43 JJ03 JJ12 JJ21 JJ23 LL02 MM22 MM24 PP03 PP09

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミック誘電体層とニッケル等の卑金
属を主成分とする内部電極を交互に複数層積層した積層
焼結体と、前記積層焼結体の端部に前記内部電極と電気
的に接続するように形成した外部電極を設けた積層セラ
ミックコンデンサにおいて、前記内部電極に平均粒径が
0.001〜0.01μmの非晶質カーボン粉末を卑金
属成分に対し0.001〜0.01wt%添加した電極
ペーストを用いて内部電極を形成した積層セラミックコ
ンデンサ。
1. A laminated sintered body in which a plurality of ceramic dielectric layers and internal electrodes containing a base metal such as nickel as a main component are alternately laminated, and the internal electrode is electrically connected to an end of the laminated sintered body. In a multilayer ceramic capacitor provided with external electrodes formed so as to be connected to each other, an amorphous carbon powder having an average particle size of 0.001 to 0.01 μm is added to the internal electrodes in an amount of 0.001 to 0.01 wt% based on a base metal component. A multilayer ceramic capacitor with internal electrodes formed using the added electrode paste.
JP10314259A 1998-11-05 1998-11-05 Layered ceramic capacitor Pending JP2000150293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10314259A JP2000150293A (en) 1998-11-05 1998-11-05 Layered ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10314259A JP2000150293A (en) 1998-11-05 1998-11-05 Layered ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2000150293A true JP2000150293A (en) 2000-05-30

Family

ID=18051206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10314259A Pending JP2000150293A (en) 1998-11-05 1998-11-05 Layered ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2000150293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191046A (en) * 2003-12-24 2005-07-14 Kyocera Corp Laminated piezoelectric element, manufacturing method thereof, and ejector
US20120327558A1 (en) * 2011-06-23 2012-12-27 Samsung Electro-Mechanics Co., Ltd. Conductive paste composition for internal electrode and multilayer ceramic capacitor including the same
JP2023079976A (en) * 2021-11-29 2023-06-08 サムソン エレクトロ-メカニックス カンパニーリミテッド. Ceramic electronic component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191046A (en) * 2003-12-24 2005-07-14 Kyocera Corp Laminated piezoelectric element, manufacturing method thereof, and ejector
US20120327558A1 (en) * 2011-06-23 2012-12-27 Samsung Electro-Mechanics Co., Ltd. Conductive paste composition for internal electrode and multilayer ceramic capacitor including the same
JP2023079976A (en) * 2021-11-29 2023-06-08 サムソン エレクトロ-メカニックス カンパニーリミテッド. Ceramic electronic component
US11984269B2 (en) 2021-11-29 2024-05-14 Samsung Electro-Mechanics Co., Ltd. Ceramic electronic component

Similar Documents

Publication Publication Date Title
JP7231340B2 (en) Ceramic electronic component and manufacturing method thereof
US7018864B2 (en) Conductive paste for terminal electrodes of monolithic ceramic electronic component, method for making monolithic ceramic electronic component, and monolithic ceramic electronic component
JP3636123B2 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
JP3514117B2 (en) Multilayer ceramic electronic component, method of manufacturing multilayer ceramic electronic component, and conductive paste for forming internal electrode
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JP2000021679A (en) Layered ceramic capacitor
JP4029204B2 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP3142014B2 (en) Manufacturing method of multilayer ceramic capacitor
JP4048808B2 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP3241054B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JP5195857B2 (en) Multilayer electronic components
JP2001052952A (en) Layered ceramic capacitor and its manufacture
JP2000150293A (en) Layered ceramic capacitor
JP2018182107A (en) Multilayer ceramic capacitor and manufacturing method thereof
JPH11214240A (en) Laminated ceramic electronic component and their manufacture
JP4114434B2 (en) Dielectric ceramic and multilayer ceramic capacitor using the same
JPH0817139B2 (en) Laminated porcelain capacitors
JP4506090B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JPH07263272A (en) Manufacture of laminated electronic component
JPH1092226A (en) Conductive composition
JP2676620B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4076393B2 (en) Conductive paste and electronic components
KR20190019117A (en) Conductive paste composition for internal electrode and multilayer ceramic electronic component
JP2974833B2 (en) Manufacturing method of multilayer ceramic capacitor
JP7506467B2 (en) Manufacturing method for ceramic electronic components