JPH0317205B2 - - Google Patents

Info

Publication number
JPH0317205B2
JPH0317205B2 JP27866184A JP27866184A JPH0317205B2 JP H0317205 B2 JPH0317205 B2 JP H0317205B2 JP 27866184 A JP27866184 A JP 27866184A JP 27866184 A JP27866184 A JP 27866184A JP H0317205 B2 JPH0317205 B2 JP H0317205B2
Authority
JP
Japan
Prior art keywords
powder
conductive
multilayer ceramic
conductive paste
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27866184A
Other languages
Japanese (ja)
Other versions
JPS61158122A (en
Inventor
Takashi Tomaru
Kenichi Toyoda
Akira Tsukada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP27866184A priority Critical patent/JPS61158122A/en
Publication of JPS61158122A publication Critical patent/JPS61158122A/en
Publication of JPH0317205B2 publication Critical patent/JPH0317205B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、Niを主成分とし、非酸化雰囲気
中で焼成される導電ペーストに関する。 〔従来技術〕 非酸化雰囲気中で焼成して製造される積層セラ
ミツクコンデンサは、その内部電極と外部電極と
が何れも同じ導電ペーストを用いて作られてい
た。そしてこの導電ペーストの中の導電粉末は、
Ni粉末のみからなつていた。 この種の積層セラミツクコンデンサの製造方法
を説明する。まずセラミツク材料を用いて未焼結
磁器シートを作り、これに導電ペーストで内部電
極パターンを印刷する。次ぎにこのシートを数枚
積層して切断する。次ぎにこれを非酸化雰囲気中
で1100〜1300℃の温度で焼成する。こうして得ら
れた積層体の側面には内部電極の一部が露出して
いる。この面の外部電極パターンに従つて導電ペ
ーストを塗布し、これを非酸化雰囲気中で1100〜
1150℃の温度で焼成することにより、積層セラミ
ツクコンデンサとなる。 〔発明が解決しようとする問題点〕 こうして作られた積層セラミツクコンデンサ
は、側面に露出している内部電極の端部と、これ
に接触される外部電極との電気的接続状態の悪い
部分が存在する。この結果、前記積層セラミツク
コンデンサは、誘電体損失tanδの平均値が全体的
に高く、一般には所定の規格値すれすれで、分布
の末端には、所定の規格値を越えるものもあつ
た。 この発明の目的は、従来のNi導電ペーストに
於ける前記の問題を解決することにある。即ち、
内部電極の端部すべてが外部電極と完全に接続さ
れ、これによつて積層セラミツクコンデンサチツ
プの誘電体損失tanδの平均値が所定の規格値より
低いレベルとなり、この結果すべての積層セラミ
ツクコンデンサが所定の規格値以下になるように
することを目的とする。 〔問題を解決するための手段〕 この発明の導電ペーストは、導電粉末とバイン
ダとからなるものに於いて導電粉末が、Ni粉末
を80〜97重量%と、Co粉末3〜20重量%とから
なるものである。なお、バインダは従来公知のも
の、例えばエチルセルローズとブチルカルビトー
ル等からなる。 〔作用〕 この導電ペーストは、積層セラミツクコンデン
サの内部電極または外部電極の何れか一方の電極
を作るのに使用し、他方の電極には従来のNiペ
ーストを用いる。例えば、この発明の導電ペース
トを積層セラミツクコンデンサの内部電極用とし
て使用した場合は、外部電極にNiペーストを使
用する。逆にこの発明の導電ペーストを外部電極
用として使用した場合には、内部電極にNiペー
ストを使用する。 このようにして内外部電極用の導電ペーストが
用いられた場合、外部電極を焼き付ける際に、こ
の発明の導電ペーストによつて作られた電極側か
ら、Coを含まない他方の電極側へとCoが拡散し、
両電極間に連続的な完全固溶状態のNi−Co合金
ができる。この結果、両電極間の電気的接続状態
が良好となり、積層セラミツクコンデンサの誘電
体損失tanδを低減させることができるようにな
る。 この発明による導電ペーストの導電粉末中の組
成比を前記のように限定した理由は、次の通りで
ある。導電ペーストの導電粉末中のCo粉末の割
合が少なくときは、内外部電極間のCoの濃度差
が低くなることから、外部電極の焼付時に、一方
の電極から他方の電極へのCoの拡散が起こりに
くくなる。このため、前記のような両電極間の電
気的接続の悪い状態が形成され、この結果、積層
セラミツクコンデンサの誘電体損失tanδが総体的
に高くなり、すべての積層セラミツクコンデンサ
が誘電体損失tanδについて所定の規格値を満足で
きい。一方、導電粉末中のCo粉末の割合が多い
ときは、Niペーストを使用した電極に比べて、
電極の抵抗値が高くなる。このため、積層セラミ
ツクコンデンサの等価直列抵抗ESRが高くなる。
従つて、これらの点から前記導電粉末中のCo粉
末の濃度を3〜20重量%の範囲とする必要があ
る。 実施例 1 次ぎにこの発明の実施例について述べる。 導電粉末として純度99.9%のNi粉末とCo粉末
を、またバインダーとしてエチルセルローズとブ
チルカルビトールをそれぞれ表1の割合で配合し
た。これらを擂潰機で3時間混合し、その後ロー
ルミルで1時間混練し、A、B、C3種類の導電
ペーストを作つた。 これら3種類の導電ペーストを次ぎの方法で使
用し、それぞれ500個ずつの積層セラミツク
[Industrial Application Field] The present invention relates to a conductive paste containing Ni as a main component and fired in a non-oxidizing atmosphere. [Prior Art] Multilayer ceramic capacitors manufactured by firing in a non-oxidizing atmosphere have both internal and external electrodes made using the same conductive paste. The conductive powder in this conductive paste is
It consisted only of Ni powder. A method of manufacturing this type of multilayer ceramic capacitor will be explained. First, an unsintered porcelain sheet is made using ceramic material, and internal electrode patterns are printed on it using conductive paste. Next, several of these sheets are stacked and cut. This is then calcined at a temperature of 1100-1300°C in a non-oxidizing atmosphere. Part of the internal electrode is exposed on the side surface of the laminate thus obtained. Apply conductive paste according to the external electrode pattern on this side, and apply it in a non-oxidizing atmosphere to
By firing at a temperature of 1150°C, it becomes a multilayer ceramic capacitor. [Problems to be solved by the invention] The multilayer ceramic capacitor thus manufactured has a portion where the electrical connection between the end of the internal electrode exposed on the side surface and the external electrode that comes into contact with this is poor. do. As a result, the average value of the dielectric loss tan δ of the multilayer ceramic capacitor was generally high, and was generally close to the predetermined standard value, although there were some cases at the end of the distribution that exceeded the predetermined standard value. The purpose of this invention is to solve the above-mentioned problems in conventional Ni conductive pastes. That is,
All the ends of the internal electrodes are completely connected to the external electrodes, which causes the average value of the dielectric loss tan δ of the multilayer ceramic capacitor chip to be at a level lower than the specified standard value, and as a result, all multilayer ceramic capacitors meet the specified standard value. The purpose is to ensure that the temperature is below the standard value. [Means for solving the problem] The conductive paste of the present invention is composed of a conductive powder and a binder, and the conductive powder is composed of 80 to 97% by weight of Ni powder and 3 to 20% by weight of Co powder. It is what it is. The binder is conventionally known, such as ethyl cellulose and butyl carbitol. [Function] This conductive paste is used to make either the internal electrode or the external electrode of the multilayer ceramic capacitor, and a conventional Ni paste is used for the other electrode. For example, when the conductive paste of the present invention is used for internal electrodes of a multilayer ceramic capacitor, Ni paste is used for the external electrodes. Conversely, when the conductive paste of the present invention is used for external electrodes, Ni paste is used for internal electrodes. When the conductive paste for internal and external electrodes is used in this way, when baking the external electrode, Co is transferred from the electrode side made with the conductive paste of the present invention to the other electrode side that does not contain Co. spread,
A continuous Ni-Co alloy in a completely solid solution state is formed between both electrodes. As a result, the electrical connection between both electrodes becomes good, and the dielectric loss tan δ of the multilayer ceramic capacitor can be reduced. The reason why the composition ratio in the conductive powder of the conductive paste according to the present invention is limited as described above is as follows. When the proportion of Co powder in the conductive powder of the conductive paste is low, the difference in Co concentration between the inner and outer electrodes is low, so when the outer electrode is baked, the diffusion of Co from one electrode to the other is reduced. less likely to occur. For this reason, a poor electrical connection between the two electrodes is formed as described above, and as a result, the dielectric loss tan δ of the multilayer ceramic capacitor becomes high overall, and all multilayer ceramic capacitors have a high dielectric loss tan δ. Unable to meet specified standard values. On the other hand, when the proportion of Co powder in the conductive powder is high, compared to electrodes using Ni paste,
The resistance value of the electrode increases. Therefore, the equivalent series resistance ESR of the multilayer ceramic capacitor becomes high.
Therefore, from these points, the concentration of Co powder in the conductive powder needs to be in the range of 3 to 20% by weight. Example 1 Next, an example of the present invention will be described. Ni powder and Co powder with a purity of 99.9% were used as conductive powders, and ethyl cellulose and butyl carbitol were mixed as binders in the proportions shown in Table 1. These were mixed in a crusher for 3 hours, and then kneaded in a roll mill for 1 hour to make three types of conductive pastes: A, B, and C. These three types of conductive pastes were used in the following manner to create 500 pieces of each laminated ceramic.

〔比較例〕[Comparative example]

導電粉末としてNi粉末100g、またバインダと
してエチルセルローズ16g、ブチルカルビトール
94gを混練して作られた内部電極用導電ペースト
を使用し、実施例1と同じ方法と条件で同じ規格
の積層セラミツクコンデンサを500個作つた。 さらにこれらについて、同様の方法で誘電体損
失tanδと静電容量Cを測定した。この比較例にお
いては、誘電体損失tanδが前記実施例に比べて全
体的に高く、その平均値が3.1%と、前記規格値
3.0%を越えていた。この結果を表2に示す。
100g of Ni powder as conductive powder, 16g of ethyl cellulose and butyl carbitol as binder
Using the conductive paste for internal electrodes made by kneading 94 g, 500 multilayer ceramic capacitors of the same specifications were made using the same method and conditions as in Example 1. Furthermore, the dielectric loss tan δ and capacitance C of these samples were measured in the same manner. In this comparative example, the dielectric loss tan δ is higher overall than in the above example, and its average value is 3.1%, which is the standard value.
It was over 3.0%. The results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、この発明による導電ペース
トを一方の電極用の導電ペーストとして使用し、
積層セラミツクコンデンサを作ると、外部電極と
内部電極の接続状態が良くなる。この結果、これ
らコンデンサの誘電体損失tanδを低くすることが
でき、すべてのものが所定の規格範囲を満足する
ことができた。
As explained above, the conductive paste according to the present invention is used as a conductive paste for one electrode,
Making a multilayer ceramic capacitor improves the connection between the external and internal electrodes. As a result, the dielectric loss tan δ of these capacitors could be lowered, and all of them could satisfy the predetermined standard range.

Claims (1)

【特許請求の範囲】[Claims] 1 導電粉末とバインダとからなる導電ペースト
に於いて、導電粉末が、Ni粉末80〜97重量%と、
Co粉末3〜20重量%とからなることを特徴とす
る導電ペースト。
1. In a conductive paste consisting of a conductive powder and a binder, the conductive powder contains 80 to 97% by weight of Ni powder,
A conductive paste comprising 3 to 20% by weight of Co powder.
JP27866184A 1984-12-29 1984-12-29 Conductive paste Granted JPS61158122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27866184A JPS61158122A (en) 1984-12-29 1984-12-29 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27866184A JPS61158122A (en) 1984-12-29 1984-12-29 Conductive paste

Publications (2)

Publication Number Publication Date
JPS61158122A JPS61158122A (en) 1986-07-17
JPH0317205B2 true JPH0317205B2 (en) 1991-03-07

Family

ID=17600390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27866184A Granted JPS61158122A (en) 1984-12-29 1984-12-29 Conductive paste

Country Status (1)

Country Link
JP (1) JPS61158122A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752696B2 (en) * 1987-03-31 1995-06-05 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
KR20140024584A (en) * 2012-08-20 2014-03-03 삼성전기주식회사 Conductive paste composition for internal electrode and multilayer ceramic electronic component containing the same

Also Published As

Publication number Publication date
JPS61158122A (en) 1986-07-17

Similar Documents

Publication Publication Date Title
US7018864B2 (en) Conductive paste for terminal electrodes of monolithic ceramic electronic component, method for making monolithic ceramic electronic component, and monolithic ceramic electronic component
KR920018788A (en) Magnetic Capacitor and Manufacturing Method Thereof
JPH03276510A (en) Porcelain dielectric for temperature compensation
KR20030025836A (en) Conductive paste, method for manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
JP3064659B2 (en) Manufacturing method of multilayer ceramic element
JPS6323646B2 (en)
JPH0552602B2 (en)
CN100464382C (en) Zinc-magnesium titanate system ceramic dielectric material and prepared ceramic capacitor
JPH0317205B2 (en)
JPH10229004A (en) Chip-type varistor
JP2593137B2 (en) Conductive paste
EP0154456A2 (en) Ceramic capacitors and dielectric compositions
JPH0798679B2 (en) Low temperature sintered porcelain composition
JP2676620B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPS6120084B2 (en)
JP3269903B2 (en) Porcelain capacitor and method of manufacturing the same
KR100237293B1 (en) Electrode paste
JP7322793B2 (en) Chip varistor manufacturing method and chip varistor
JPS6134203B2 (en)
JP2546311B2 (en) Conductive paste for ceramic electronic parts
JPH05174626A (en) Reduction-resistant dielectric porcelain composition
JPS61121205A (en) Conductive paste
JPH07106187A (en) Manufacture of laminated ceramic electronic component
JPS61121206A (en) Conductive paste
DE3926505C2 (en) Non-reductive agent for dielectric ceramic material