JP4471453B2 - Multilayer electronic components - Google Patents

Multilayer electronic components Download PDF

Info

Publication number
JP4471453B2
JP4471453B2 JP2000160580A JP2000160580A JP4471453B2 JP 4471453 B2 JP4471453 B2 JP 4471453B2 JP 2000160580 A JP2000160580 A JP 2000160580A JP 2000160580 A JP2000160580 A JP 2000160580A JP 4471453 B2 JP4471453 B2 JP 4471453B2
Authority
JP
Japan
Prior art keywords
electronic component
multilayer electronic
dielectric layer
dielectric
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000160580A
Other languages
Japanese (ja)
Other versions
JP2001338828A (en
Inventor
泰史 山口
大輔 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000160580A priority Critical patent/JP4471453B2/en
Publication of JP2001338828A publication Critical patent/JP2001338828A/en
Application granted granted Critical
Publication of JP4471453B2 publication Critical patent/JP4471453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、積層型電子部品に関し、特に、携帯電話など小型、高機能の電子機器に使用され、極めて薄い誘電体層と内部電極層を交互に積層して構成される小形大容量の積層型電子部品に関するものである。
【0002】
【従来技術】
近年、電子機器の小型化、高密度化に伴い、積層型電子部品、例えば、積層セラミックコンデンサは小型大容量化が求められており、このため誘電体層の積層数の増加と誘電体層自体の薄層化が図られている。
【0003】
このような積層セラミックコンデンサとしては、例えば、特開平11−317322号公報に開示されるようなものが知られている。この公報に開示された積層セラミックコンデンサでは、平均粒径が3.5μm以上のBaTiO3系セラミックス粒子からなる厚さ5μmの誘電体層において、前記誘電体層一層中に一のセラミック粒子で形成されている一層一粒子の割合が20%になるように形成された誘電体層と、Ni粉末を主成分とする内部電極を交互に積層して積層セラミックコンデンサが構成されている。
【0004】
このような構成によれば、厚さ5μmの誘電体層を積層して構成された積層セラミックコンデンサにおいても、コンデンサの特性の一つであるCR積(静電容量C×絶縁抵抗R)を高めることができる。
【0005】
【発明が解決しようとする課題】
一般的に積層セラミックコンデンサのCR積は誘電体層の厚みや層数には依存しない値であり、上記のコンデンサもCR積の低下を防止できるものの、最近のように、積層セラミックコンデンサの大容量化のために誘電体層の薄層化がさらに進み、誘電体層の厚みが2.5μm以下と極めて薄くなると、誘電体の絶縁抵抗がオームの法則に従わなくなるため、CR積の低下がさらに大きくなるという問題があった。
【0006】
また、上記公報に開示された積層セラミックコンデンサは、厚さ5μmの誘電体層を有しており、この場合において、高いCR積を有しているものの、誘電体層の厚みが薄くなればなるほど、絶縁抵抗が小さくなり、絶縁抵抗の電界強度が低くなるという問題があった。
【0007】
従って、本発明は、CR積および絶縁抵抗の電界強度依存性を改善できる積層型電子部品を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の積層型電子部品は、誘電体層と内部電極層とを交互に積層してなる電子部品本体の両端部に、前記内部電極層と交互に接続する一対の外部電極を形成してなる積層型電子部品において、前記誘電体層が、粒径0.4μm以上の大径結晶粒子を10〜30体積%と、粒径0.25μm以下の小径結晶粒子を50〜70体積%の割合で含有することを特徴とする。
【0009】
このような構成によれば、個別には、誘電体層中に含まれる粒径0.4μm以上の大径結晶粒子により誘電体の比誘電率が高まり、積層型電子部品の静電容量を向上でき、一方、粒径0.25μm以下の小径結晶粒子により、それに含まれる多数の粒界相による絶縁性のために、誘電体の絶縁抵抗を高めることができる。そして、これらの両結晶粒子を、混在させた微構造組織を有する誘電体を形成すれば、大径結晶粒子、小径結晶粒子単独の場合よりもCR積を向上できる。また、誘電体層厚みが薄くなればなるほど絶縁抵抗が低下し、絶縁抵抗の電界強度依存性は大きいが、本発明の積層型電子部品では、大径結晶粒子の回りに小径結晶粒子が存在することにより、絶縁抵抗Rの電界強度依存性を小さくすることができる。
【0010】
上記積層型電子部品では、前記大径結晶粒子の中で、粒径が0.4〜0.6μmの前記大径結晶粒子を90体積%以上、前記小径結晶粒子の中で、粒径が0.1〜0.25μmの前記小径結晶粒子を90体積%以上含むことが望ましい。この構成によれば誘電体層が、大径結晶粒子と小径結晶粒子とがほぼ明確に分離された粒径分布を有することにより、CR積をさらに向上でき、絶縁抵抗の電界強度依存性をさらに小さくでき、誘電体層が両結晶粒子の誘電性、絶縁性の両方の特徴を兼ね備えることができる。
【0011】
上記積層型電子部品では、前記誘電体層の厚みが2.5μm以下である場合に好適に用いることができる。この場合、誘電体層を薄層化でき、このように厚みが2.5μm以下になっても、大容量、高絶縁性の積層型電子部品を提供することができる。
【0012】
上記積層型電子部品では、前記誘電体層がBaTiO3、Mnおよび希土類元素を含有することが好ましい。これらの誘電体素材料のうち、BaTiO3により薄層化した誘電体層の高誘電率化を図ることができるとともに、Mnおよび希土類元素により還元性雰囲気中で焼成される誘電体層の結晶粒子の結晶成長を抑制しつつ、粒界相を生成させ、また、誘電体の還元反応を抑えることにより、高絶縁性の誘電体層を得ることができる。
【0013】
上記積層型電子部品では、前記内部電極層および前記外部電極層が卑金属元素から選ばれる少なくとも1種であることが望ましい。例えば、内部電極層として、NiやCuを用いることで、従来用いられていたPtやPdなどの貴金属に比較して、製造コストを低減することができる。また、外部電極用に、NiやCuを単体で使用することに加えて、例えば、NiとCuの合金を用いることで、外部電極の耐酸化性を高め、はんだのみならず有機樹脂を含有する導電性ペーストとの接着接合性を高めることができる。
【0014】
【発明の実施の形態】
(構造)
本発明の積層型電子部品Aである積層セラミックコンデンサについて、図1の概略断面図をもとに詳細に説明する。本発明の積層型電子部品Aは、電子部品本体1の両端部に外部電極3を形成して構成されている。この外部電極3は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成されている。電子部品本体1は、内部電極層5と誘電体層7を交互に積層してなる容量部9の積層方向の両面に、誘電体層7と同一材料からなる絶縁層11を形成して構成されている。また外部電極3の表面には、例えば、順にNiメッキ層13、Snメッキ層もしくはSn−Pb合金メッキ層15が形成されている。これらは外部電極3のはんだ食われ防止やはんだ濡れ性を補うものである。
【0015】
一方、内部電極層5は導電性ペーストの膜を焼結させた金属膜からなり、導電性ペーストとしては、例えば、Ni、Co、Cu等の卑金属が使用されている。また、内部電極層5は、卑金属を主成分とし、概略矩形状の導体膜であり、上から第1層目、第3層目、第5層目・・・の奇数層の内部電極層5は、その一端がコンデンサ本体1の一方端面に露出しており、上から第2層目、第4層目、第6層目・・・の内部電極層5は、その一端がコンデンサ本体1の他方端面に露出している。尚、外部電極3と内部電極層5は必ずしも同一材料から構成される必要はない。
【0016】
そして、本発明の積層型電子部品Aの主要部となる誘電体層7には、図2に詳細に示しているように、粒径が0.4μm以上の大径結晶粒子17と、粒径が0.25μm以下の小径結晶粒子19が粒界相21を介して密に混在し、適切に結晶成長が制御された微構造組織となっている。即ち、大径結晶粒子17の回りを取り巻くように小径結晶粒子19が配設されている。
【0017】
また、これらの大径結晶粒子17と小径結晶粒子19の誘電体層中での割合は、粒径が0.4μm以上の大径結晶粒子17が10〜30体積%、粒径が0.25μm以下の小径結晶粒子19が50〜70体積%存在する。
【0018】
積層型電子部品の、例えば、積層セラミックコンデンサに用いられる誘電体層として、高い誘電率を発現するためには大径結晶粒子17の粒径は0.4μm以上が望ましく、また、誘電体の絶縁抵抗を高めるには小径結晶粒子19の粒径は0.25μm以下が好適である。そして、これらの結晶粒子のうち、粒径0.4μm以上の大径結晶粒子17を10〜30体積%と、粒径が0.25μm以下の小径結晶粒子19を50〜70体積%の割合で混在することにより、積層型電子部品のCR積を高め、さらに、絶縁抵抗の電界強度依存性を抑制できる。
【0019】
特に、大径結晶粒子17のうち、粒径が0.4〜0.6μmである割合を90体積%以上と、小径結晶粒子19のうち、粒径が0.1〜0.25μmである割合を90体積%以上とすることが、CR積を高くし、かつ、絶縁抵抗の電界強度依存性をさらに抑制し、安定化するという点から望ましい。
これらの結晶粒子から構成されるシート状の誘電体層1層の厚みは2.5μm以下で形成されている。積層電子部品Aの、例えば、積層セラミックコンデンサの大容量化に対して、誘電体層を薄層化することは効果的な手段であり、近年の小型、高容量の積層セラミックコンデンサを構成するためには、その誘電体層厚みは2.0〜2.5μmが好適である。
【0020】
また、誘電体層7はシート状のセラミック焼結体からなり、その材質としては、ぺロブスカイト型結晶構造を持ついわゆる強誘電性を有するセラミック材料であればよく、特に、BaTiO3、Mnおよび希土類元素を含有する誘電体磁器組成物からなり、BaTiO3、Y23等の希土類元素、MgO、MnCO3と、ガラス等の低温焼結助剤などからなることが望ましい。これらの誘電体素材料を調整して含有することにより、誘電体磁器の焼結性や耐還元性を高めることができる。
【0021】
(製法)
本発明の積層型電子部品Aは、先ず、誘電体となるグリーンシートを作製する。このグリーンシートは、例えば、比表面積の大きな2種以上のBaTiO3原料粉末を用いて形成することができ、主原料のBaTiO3粉の合成法は、固相法、液相法(シュウ酸塩を経過する方法等)、水熱合成法等があるが、そのうち粒度分布が狭く、結晶性が高いという理由から水熱合成法が望ましい。そして、BaTiO3粉の比表面積は1.7〜6.6(m2/g)が好ましい。
【0022】
次に、そのグリーンシートに導電性ペーストからなる内部電極層5の電極パターンを印刷し、これを乾燥させる。次に、このグリーンシートを複数枚積層し、熱圧着させる。その後、この積層物を格子状に切断して、電子部品本体1の成形体を得る。この電子部品本体1の両端面には、内部電極層5の電極パターンの端部が交互に露出している。
【0023】
次に、この積層型電子部品本体1を大気中で200〜450℃にて脱バインダー処理を行い、その後1200℃〜1290℃の温度で2時間焼成し、続いて大気雰囲気中950〜1050℃で再酸化処理を行う。
【0024】
外部電極3は、焼成したコンデンサ本体の両端面に、外部電極用ペーストを塗布して窒素中で焼き付けることによって形成する。
【0025】
さらに外部電極3の表面を脱脂、酸洗浄、純水を用いた水洗を行った後、バレル方式により、Niメッキ、SnメッキもしくはSn−Pb合金メッキを行う。
【0026】
(作用)
以上のように構成された積層型電子部品Aでは、厚みが2.5μm以下の誘電体層7を形成している粒径が、0.4μm以上の大径結晶粒子17を10〜30体積%と、粒径が0.25μm以下の小径結晶粒子19を50〜70体積%、の割合で含有することにより、積層型電子部品のCR積の向上と、絶縁抵抗の電界強度依存性の抑制の点において、前記積層型電子部品の性能を飛躍的に向上することができる。
【0027】
更に、このように、積層型電子部品の、例えば、積層セラミックコンデンサの誘電体素材量に、比表面積の大きなBaTiO3粉末を用いることにより、焼成温度を低下させ、製造コストを低減することができる。
【0028】
【実施例】
積層型電子部品の一つである積層セラミックコンデンサを以下のようにして作製した。まず、誘電体素材料として、比表面積が1.7、3.2、6.6(m2/g)となる3種類のBaTiO3粉末と、このBaTiO3100重量部に対してY23 を1重量部、MgOを0.2重量部、MnCO3を0.1重量部、Li2 OとSiO2 とからなるガラス成分(LiとSiのモル比が1:1)を0.5重量部とする原料粉末を、直径5mmφのZrO2 ボールを用いたボールミルにて湿式粉砕することにより、調製した。
【0029】
次に、これらの3種類の粉末を表1の配合例に示すような割合に配合した後、有機バインダを混合してスラリーを調製し、ドクターブレードによりグリーンシートを作製した。
【0030】
次にこのグリーンシート上に、Ni粉末と、エチルセルロース、テルピネオールとからなる内部電極ペーストをスクリーン印刷した。この内部電極層の有効面積は2.1mm2 であった。
【0031】
次に、内部電極ペーストを印刷したグリーンシートを100枚積層し、その上下面に、内部電極ペーストを印刷していないグリーンシートをそれぞれ20枚積層し、ホットプレス機を用いて一体化し、積層体を得た。
【0032】
この後、積層体を格子状に切断して、2.3mm×1.5mm×1.5mmのコンデンサ本体1の成形体を作製した。
【0033】
次に、このコンデンサ本体の成形体を大気中で400℃にて脱バインダー処理を行い、その後1210℃〜1290℃(酸素分圧10-11 atm)で2時間焼成し、続いて大気雰囲気中1000℃で再酸化処理をして焼成されたコンデンサ本体を作製した。
【0034】
次に、焼成したコンデンサ本体1をバレル研磨した後、コンデンサ本体の両端部にCu粉末とガラスを含んだ外部電極ペーストを塗布し、850℃、窒素中で焼き付けを行い外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiおよびSnメッキを行い、積層型電子部品を作製した。
以上のようにして得られた積層型電子部品に対して以下の評価を行った。
【0035】
まず、周波数1.0kHz、入力信号レベル1.0Vrmsにて静電容量を測定した。その後、直流電圧10Vを1分間印加して、絶縁抵抗を測定し、CR積を算出した。
【0036】
次に、誘電体層の誘電特性が常誘電性を示す温度150℃において、エージング処理を行った後、印加電圧30V、1分間の測定条件で絶縁抵抗を測定した。続いて、印加電圧10Vの絶縁抵抗に対する30Vの絶縁抵抗の比を算出し、絶縁抵抗の電界強度依存性を評価した。このようにして評価した積層型電子部品では、CR積が3000ΩF以上、絶縁抵抗比が0.1以上を良品とした。
【0037】
また、誘電体層の結晶粒径の測定は、積層型電子部品の内部電極層を剥離して得られた誘電体層の界面を走査型電子顕微鏡を用いて、2000倍で撮影した写真から一定の面積におけるセラミック結晶粒子について、切片法により結晶粒子の寸法を測定した。誘電体層に含まれる結晶粒子の体積割合は、画像解析装置を用いて、粒径を測定した結晶粒子のうち、0.4μm以上の大径結晶粒子と0.25μm以下の小径結晶粒子とを選別することによって評価した。
【0038】
【表1】

Figure 0004471453
【0039】
表1の結果から明らかなように、厚みが2.5μmの誘電体層を用いた、積層セラミックコンデンサのうち、0.4μm以上の大径結晶粒子が10〜30体積%と0.25μm以下の小径結晶粒子を50〜70体積%含有し、1250℃以下の温度で焼成した試料No.2、3、4、5、6、9、10、11、12、13、では、何れもCR積が3000ΩF以上の値(試料No.2〜6、9〜13)を示し、且つ、絶縁抵抗比を0.1以上に高めることができ、薄層化した誘電体の誘電特性を大きく向上させることができた。
【0040】
特に、0.4μm以上の大径結晶粒子が20体積%と0.25μm以下の小径結晶粒子を62体積%含有し、1230℃の温度で焼成した試料No.11では、誘電体層が2.5μmの積層セラミックコンデンサにおいて、最も高いCR積が得られ、また、従来用いられていた粒径分布が1つ山の誘電体層を用いた試料(試料No.23)に比較して、2.5μmの誘電体層厚みの場合に、電圧の変化に対する絶縁抵抗の低下が抑制された。
【0041】
また、誘電体層の厚みを2.0〜5.0μmまで変えて作製した試料No.18〜22では、誘電体層厚みの増加とともに、CR積が向上しているが、中でも、本発明の誘電体層の厚みを2.0μmまで極めて薄くした場合(試料No.18)でも、特に、CR積ならびに絶縁抵抗比を高く維持することができた。これに対して、大径結晶粒子を10体積%未満または30体積%より多く含有するか、または小径結晶粒子を50体積%未満または70体積%より多く含有した試料No.1、7、8、14、15、16、17では、いずれも、CR積が3000ΩF以下であった。
【0042】
また、図3に示すように、粒径0.25μm以下の小径結晶粒子以外は、粒径0.4μm以上の大結晶粒子で構成した試料No.23、24では、いずれもCR積を高くできたが、誘電体層厚みが2.5μmの場合に、絶縁抵抗比が低くなり、絶縁抵抗の電界強度依存性が大きくなった。
【0043】
【発明の効果】
上述したとおり、本発明の積層型電子部品では、誘電体層が、粒径0.4μm以上の大径結晶粒子を10〜30体積%と、粒径0.25μm以下の小径結晶粒子を50〜70体積%の割合で含有することにより、積層型電子部品のCR積を高め、絶縁抵抗の電界強度依存性を抑制することができる。
【図面の簡単な説明】
【図1】本発明の積層型電子部品の概略断面図である。
【図2】本発明の積層型電子部品に用いられる誘電体の微構造を示す断面図である。
【図3】積層型電子部品の絶縁抵抗の電界強度依存性を示すグラフである。
【符号の説明】
A 積層型電子部品
1 電子部品本体
3 外部電極
5 内部電極層
7 誘電体層
17 大径結晶粒子
19 小径結晶粒子
21 粒界相[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer electronic component, and in particular, is used for small and high-functional electronic devices such as mobile phones, and is a small and large-capacity multilayer type constituted by alternately laminating extremely thin dielectric layers and internal electrode layers. It relates to electronic components.
[0002]
[Prior art]
In recent years, with the miniaturization and high density of electronic devices, multilayer electronic components, such as multilayer ceramic capacitors, are required to have a small size and a large capacity. For this reason, an increase in the number of dielectric layers and the dielectric layer itself. Thinning of the layer is attempted.
[0003]
As such a multilayer ceramic capacitor, for example, one disclosed in JP-A-11-317322 is known. In the multilayer ceramic capacitor disclosed in this publication, in a dielectric layer having a thickness of 5 μm made of BaTiO 3 ceramic particles having an average particle size of 3.5 μm or more, the dielectric layer is formed of one ceramic particle. A multilayer ceramic capacitor is configured by alternately laminating dielectric layers formed so that the ratio of one particle per layer is 20% and internal electrodes mainly composed of Ni powder.
[0004]
According to such a configuration, a CR product (capacitance C × insulation resistance R), which is one of the characteristics of the capacitor, is increased even in a multilayer ceramic capacitor configured by stacking dielectric layers having a thickness of 5 μm. be able to.
[0005]
[Problems to be solved by the invention]
In general, the CR product of multilayer ceramic capacitors is a value that does not depend on the thickness or number of dielectric layers. Although the above capacitors can also prevent the reduction of the CR product, If the dielectric layer is further thinned to reduce the thickness of the dielectric layer and the thickness of the dielectric layer becomes as thin as 2.5 μm or less, the insulation resistance of the dielectric does not follow Ohm's law. There was a problem of getting bigger.
[0006]
The multilayer ceramic capacitor disclosed in the above publication has a dielectric layer with a thickness of 5 μm. In this case, the multilayer ceramic capacitor has a high CR product, but the thinner the dielectric layer is, the more the dielectric ceramic layer is disclosed. There is a problem that the insulation resistance becomes small and the electric field strength of the insulation resistance becomes low.
[0007]
Therefore, an object of the present invention is to provide a multilayer electronic component that can improve the electric field strength dependence of the CR product and the insulation resistance.
[0008]
[Means for Solving the Problems]
Multilayer electronic component of the present invention, both ends of the electronic component main body formed by alternately laminating dielectric layers and internal electrode layers, forming a pair of external electrodes connected alternately with the internal electrode layer In the laminated electronic component, the dielectric layer has 10 to 30% by volume of large crystal particles having a particle size of 0.4 μm or more and 50 to 70% by volume of small crystal particles having a particle size of 0.25 μm or less. it you characterized that a proportion of.
[0009]
According to such a configuration, the dielectric constant of the dielectric layer is increased by the large-sized crystal particles having a particle diameter of 0.4 μm or more contained in the dielectric layer, and the capacitance of the multilayer electronic component On the other hand, the small crystal grains having a grain size of 0.25 μm or less can increase the insulation resistance of the dielectric layer due to the insulating properties due to the many grain boundary phases contained therein. If a dielectric having a microstructure in which both of these crystal particles are mixed is formed, the CR product can be improved as compared with the case of a large crystal particle and a small crystal particle alone. In addition, the thinner the dielectric layer, the lower the insulation resistance and the greater the electric field strength dependence of the insulation resistance. However, in the multilayer electronic component of the present invention, there are small-diameter crystal particles around the large-diameter crystal particles. By doing so, the electric field strength dependence of the insulation resistance R can be reduced.
[0010]
In the multilayer electronic component, in the large crystal grains having a particle size of the large crystal grains of 0.4-0.6 90% by volume or more, in the small-diameter crystal grains, the grain size 0 It said small crystal particles of .1~0.25μm preferably includes 90% by volume or more. According to this configuration, since the dielectric layer has a particle size distribution in which the large crystal particles and the small crystal particles are almost clearly separated, the CR product can be further improved, and the electric field strength dependence of the insulation resistance can be improved. Further, the dielectric layer can have both dielectric and insulating characteristics of both crystal grains.
[0011]
In the multilayer electronic component, the thickness of the dielectric layer can be suitably used for a case where 2.5μm or less. In this case, the dielectric layer can be thinned, and even when the thickness is 2.5 μm or less, a large-capacity, high-insulation multilayer electronic component can be provided.
[0012]
In the multilayer electronic component, it is preferable that the dielectric layer contains BaTiO 3 , Mn, and a rare earth element. Among these dielectric materials, the dielectric layer thinned with BaTiO 3 can have a high dielectric constant, and crystal grains of the dielectric layer fired in a reducing atmosphere with Mn and rare earth elements By suppressing the crystal growth, generating a grain boundary phase and suppressing the reduction reaction of the dielectric, it is possible to obtain a highly insulating dielectric layer.
[0013]
In the multilayer electronic component, it is desirable the inner electrode layer and the outer electrode layer is at least one selected from a base metal element. For example, by using Ni or Cu as the internal electrode layer, the manufacturing cost can be reduced as compared with conventionally used noble metals such as Pt and Pd. Moreover, in addition to using Ni or Cu alone for the external electrode, for example, by using an alloy of Ni and Cu, the oxidation resistance of the external electrode is improved, and not only solder but also an organic resin is contained. Adhesive bondability with the conductive paste can be improved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
(Construction)
A multilayer ceramic capacitor which is the multilayer electronic component A of the present invention will be described in detail based on the schematic cross-sectional view of FIG. The multilayer electronic component A of the present invention is configured by forming external electrodes 3 at both ends of an electronic component body 1. The external electrode 3 is formed, for example, by baking Cu or an alloy paste of Cu and Ni. The electronic component main body 1 is configured by forming insulating layers 11 made of the same material as the dielectric layer 7 on both surfaces in the stacking direction of the capacitor portion 9 formed by alternately stacking the internal electrode layers 5 and the dielectric layers 7. ing. Further, on the surface of the external electrode 3, for example, a Ni plating layer 13, a Sn plating layer or a Sn—Pb alloy plating layer 15 is formed in this order. These compensate for solder erosion prevention and solder wettability of the external electrode 3.
[0015]
On the other hand, the internal electrode layer 5 is made of a metal film obtained by sintering a conductive paste film. As the conductive paste, for example, a base metal such as Ni, Co, or Cu is used. The internal electrode layer 5 is a conductive film having a base metal as a main component and a substantially rectangular shape, and is an odd-numbered internal electrode layer 5 of the first layer, the third layer, the fifth layer,. One end of the capacitor body 1 is exposed at one end surface, and the second, fourth, sixth,... Internal electrode layers 5 from the top end of the capacitor body 1 have one end. The other end surface is exposed. The external electrode 3 and the internal electrode layer 5 do not necessarily need to be made of the same material.
[0016]
As shown in detail in FIG. 2, the dielectric layer 7 which is the main part of the multilayer electronic component A of the present invention has large crystal grains 17 having a grain size of 0.4 μm or more, The small-diameter crystal grains 19 having a diameter of 0.25 μm or less are densely mixed through the grain boundary phase 21 to form a microstructure in which crystal growth is appropriately controlled. That is, the small-diameter crystal particles 19 are arranged so as to surround the large-diameter crystal particles 17.
[0017]
The ratio of the large crystal particles 17 and the small crystal particles 19 in the dielectric layer is such that the large crystal particles 17 having a particle size of 0.4 μm or more are 10 to 30% by volume and the particle size is 0.25 μm. The following small-diameter crystal particles 19 are present in an amount of 50 to 70% by volume.
[0018]
In order to develop a high dielectric constant as a dielectric layer used in, for example, a multilayer ceramic capacitor of a multilayer electronic component, the grain diameter of the large crystal grains 17 is preferably 0.4 μm or more, and dielectric insulation is performed. In order to increase the resistance, the particle diameter of the small crystal grains 19 is preferably 0.25 μm or less. Of these crystal particles, 10-30% by volume of large-sized crystal particles 17 having a particle size of 0.4 μm or more and 50-70% by volume of small-sized crystal particles 19 having a particle size of 0.25 μm or less. By mixing, the CR product of the multilayer electronic component can be increased, and further, the electric field strength dependence of the insulation resistance can be suppressed.
[0019]
In particular, the proportion of the large-diameter crystal particles 17 having a particle size of 0.4 to 0.6 μm is 90% by volume or more, and the proportion of the small-diameter crystal particles 19 having a particle size of 0.1 to 0.25 μm. Is preferably 90% by volume or more from the viewpoint of increasing the CR product and further suppressing and stabilizing the electric field strength dependence of the insulation resistance.
The thickness of one sheet-like dielectric layer composed of these crystal particles is 2.5 μm or less. To increase the capacity of the multilayer electronic component A, for example, the capacity of the multilayer ceramic capacitor, it is an effective means to reduce the thickness of the dielectric layer, in order to construct a recent small size and high capacity multilayer ceramic capacitor. The dielectric layer thickness is preferably 2.0 to 2.5 μm.
[0020]
The dielectric layer 7 is made of a sheet-like ceramic sintered body, and the material thereof may be a so-called ferroelectric ceramic material having a perovskite crystal structure, and in particular, BaTiO 3 , Mn and rare earth. It is preferably made of a dielectric ceramic composition containing an element, and made of rare earth elements such as BaTiO 3 and Y 2 O 3 , MgO and MnCO 3, and a low-temperature sintering aid such as glass. By adjusting and containing these dielectric element materials, the sinterability and reduction resistance of the dielectric ceramic can be enhanced.
[0021]
(Manufacturing method)
In the multilayer electronic component A of the present invention, first, a green sheet serving as a dielectric is produced. This green sheet can be formed using, for example, two or more kinds of BaTiO 3 raw material powder having a large specific surface area, and the synthesis method of the main raw material BaTiO 3 powder is solid phase method, liquid phase method (oxalate salt). Etc.), hydrothermal synthesis method, etc., among which hydrothermal synthesis method is desirable because of its narrow particle size distribution and high crystallinity. The specific surface area of the BaTiO 3 powder is preferably 1.7 to 6.6 (m 2 / g).
[0022]
Next, the electrode pattern of the internal electrode layer 5 made of a conductive paste is printed on the green sheet and dried. Next, a plurality of the green sheets are laminated and thermocompression bonded. Thereafter, the laminate is cut into a lattice shape to obtain a molded body of the electronic component main body 1. End portions of the electrode pattern of the internal electrode layer 5 are alternately exposed on both end faces of the electronic component body 1.
[0023]
Next, the multilayer electronic component body 1 is subjected to a binder removal treatment at 200 to 450 ° C. in the atmosphere, and then fired at a temperature of 1200 to 1290 ° C. for 2 hours, and subsequently at 950 to 1050 ° C. in an air atmosphere. Perform re-oxidation treatment.
[0024]
The external electrode 3 is formed by applying an external electrode paste to both end faces of the fired capacitor body and baking it in nitrogen.
[0025]
Further, the surface of the external electrode 3 is degreased, washed with acid, and washed with pure water, and then Ni plating, Sn plating, or Sn—Pb alloy plating is performed by a barrel method.
[0026]
(Function)
In the multilayer electronic component A configured as described above, 10 to 30% by volume of large-sized crystal particles 17 having a particle diameter of 0.4 μm or more forming the dielectric layer 7 having a thickness of 2.5 μm or less. And the small crystal grains 19 having a particle size of 0.25 μm or less in a proportion of 50 to 70% by volume, thereby improving the CR product of the multilayer electronic component and suppressing the electric field strength dependence of the insulation resistance. In this respect, the performance of the multilayer electronic component can be dramatically improved.
[0027]
Further, by using BaTiO 3 powder having a large specific surface area for the dielectric material amount of the multilayer electronic component, for example, the multilayer ceramic capacitor, the firing temperature can be lowered and the manufacturing cost can be reduced. .
[0028]
【Example】
A multilayer ceramic capacitor, which is one of the multilayer electronic components, was produced as follows. First, as a dielectric material, three types of BaTiO 3 powders having specific surface areas of 1.7, 3.2, and 6.6 (m 2 / g), and Y 2 O with respect to 100 parts by weight of this BaTiO 3 are used. 3 parts by weight, MgO by 0.2 parts by weight, MnCO 3 by 0.1 parts by weight, and a glass component composed of Li 2 O and SiO 2 (the molar ratio of Li and Si is 1: 1) is 0.5. The raw material powder to be parts by weight was prepared by wet grinding with a ball mill using ZrO 2 balls having a diameter of 5 mmφ.
[0029]
Next, after blending these three types of powders in proportions as shown in the blending examples in Table 1, an organic binder was mixed to prepare a slurry, and a green sheet was produced using a doctor blade.
[0030]
Next, an internal electrode paste made of Ni powder, ethyl cellulose, and terpineol was screen-printed on the green sheet. The effective area of this internal electrode layer was 2.1 mm 2 .
[0031]
Next, 100 green sheets on which the internal electrode paste is printed are laminated, and 20 green sheets on which the internal electrode paste is not printed are laminated on the upper and lower surfaces, and are integrated using a hot press machine. Got.
[0032]
Thereafter, the laminate was cut into a lattice shape to produce a molded body of the capacitor body 1 having a size of 2.3 mm × 1.5 mm × 1.5 mm.
[0033]
Next, the molded body of the capacitor main body is subjected to a binder removal treatment at 400 ° C. in the air, and then fired at 1210 ° C. to 1290 ° C. (oxygen partial pressure 10 −11 atm) for 2 hours, and subsequently 1000 ° A capacitor body fired by re-oxidation at ℃ was produced.
[0034]
Next, the fired capacitor body 1 was barrel-polished, and then an external electrode paste containing Cu powder and glass was applied to both ends of the capacitor body, followed by baking in nitrogen at 850 ° C. to form external electrodes. Thereafter, using an electrolytic barrel machine, Ni and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer electronic component.
The following evaluation was performed on the multilayer electronic component obtained as described above.
[0035]
First, the capacitance was measured at a frequency of 1.0 kHz and an input signal level of 1.0 Vrms. Thereafter, a DC voltage of 10 V was applied for 1 minute, the insulation resistance was measured, and the CR product was calculated.
[0036]
Next, after performing an aging treatment at a temperature of 150 ° C. at which the dielectric characteristics of the dielectric layer show paraelectricity, the insulation resistance was measured under measurement conditions of an applied voltage of 30 V for 1 minute. Subsequently, the ratio of the insulation resistance of 30 V to the insulation resistance of the applied voltage of 10 V was calculated, and the electric field strength dependence of the insulation resistance was evaluated. In the multilayer electronic component evaluated in this way, a CR product of 3000 ΩF or higher and an insulation resistance ratio of 0.1 or higher were determined as non-defective products.
[0037]
In addition, the measurement of the crystal grain size of the dielectric layer is constant from a photograph taken at a magnification of 2000 using a scanning electron microscope at the interface of the dielectric layer obtained by peeling off the internal electrode layer of the multilayer electronic component. The size of the crystal grains was measured by the intercept method for the ceramic crystal grains in the area of. The volume ratio of the crystal particles contained in the dielectric layer is such that large crystal particles of 0.4 μm or more and small crystal particles of 0.25 μm or less among crystal particles whose particle diameters are measured using an image analyzer. It was evaluated by sorting.
[0038]
[Table 1]
Figure 0004471453
[0039]
As is clear from the results in Table 1, among the multilayer ceramic capacitors using a dielectric layer having a thickness of 2.5 μm, large crystal grains of 0.4 μm or more are 10 to 30% by volume and 0.25 μm or less. Sample No. 1 containing 50 to 70% by volume of small-diameter crystal particles and fired at a temperature of 1250 ° C. or lower. 2, 3, 4, 5, 6, 9, 10, 11, 12, and 13 all show a CR product of 3000 ΩF or more (Sample Nos. 2 to 6, 9 to 13), and insulation resistance The ratio could be increased to 0.1 or more, and the dielectric properties of the thinned dielectric could be greatly improved.
[0040]
In particular, sample No. 1 containing 20% by volume of large crystal particles of 0.4 μm or more and 62% by volume of small crystal particles of 0.25 μm or less and calcined at a temperature of 1230 ° C. 11, the highest CR product was obtained in a multilayer ceramic capacitor having a dielectric layer of 2.5 μm, and a sample (sample No. 1) using a dielectric layer having a single particle size distribution that has been conventionally used. Compared with 23), in the case of a dielectric layer thickness of 2.5 μm, a decrease in insulation resistance against a change in voltage was suppressed.
[0041]
Further, Sample Nos. Produced by changing the thickness of the dielectric layer from 2.0 to 5.0 μm. In 18 to 22, the CR product is improved with an increase in the dielectric layer thickness. Especially, even when the thickness of the dielectric layer of the present invention is extremely reduced to 2.0 μm (sample No. 18), The CR product and the insulation resistance ratio could be kept high. On the other hand, sample No. 1 containing less than 10% by volume or more than 30% by volume of large-sized crystal particles or less than 50% or more than 70% by volume of small-sized crystal particles. In each of 1, 7, 8, 14, 15, 16, and 17, the CR product was 3000 ΩF or less.
[0042]
In addition, as shown in FIG. 3, sample Nos. Made up of large crystal particles having a particle size of 0.4 μm or more other than small crystal particles having a particle size of 0.25 μm or less were used. In both Nos. 23 and 24, the CR product could be increased, but when the dielectric layer thickness was 2.5 μm, the insulation resistance ratio was lowered, and the electric field strength dependency of the insulation resistance was increased.
[0043]
【The invention's effect】
As described above, in the multilayer electronic component of the present invention, the dielectric layer has 10 to 30% by volume of large crystal particles having a particle size of 0.4 μm or more and 50 to 50% of small crystal particles having a particle size of 0.25 μm or less. By containing 70% by volume, the CR product of the multilayer electronic component can be increased, and the electric field strength dependence of the insulation resistance can be suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a multilayer electronic component of the present invention.
FIG. 2 is a cross-sectional view showing a microstructure of a dielectric used in the multilayer electronic component of the present invention.
FIG. 3 is a graph showing the electric field strength dependence of the insulation resistance of a multilayer electronic component.
[Explanation of symbols]
A Multilayer Electronic Component 1 Electronic Component Body 3 External Electrode 5 Internal Electrode Layer 7 Dielectric Layer 17 Large Diameter Crystal Particle 19 Small Diameter Crystal Particle 21 Grain Boundary Phase

Claims (5)

誘電体層と内部電極層とを交互に積層してなる電子部品本体の両端部に、前記内部電極層と交互に接続する一対の外部電極を形成してなる積層型電子部品において、前記誘電体層が、粒径0.4μm以上の大径結晶粒子を10〜30体積%の割合で含有するとともに、粒径0.25μm以下の小径結晶粒子を50〜70体積%の割合で含有することを特徴とする積層型電子部品。In the multilayer electronic component formed by forming a pair of external electrodes alternately connected to the internal electrode layers at both ends of an electronic component main body formed by alternately laminating dielectric layers and internal electrode layers, the dielectric The layer contains large-sized crystal particles having a particle size of 0.4 μm or more in a proportion of 10 to 30% by volume and small-sized crystal particles having a particle size of 0.25 μm or less in a proportion of 50 to 70% by volume. A multilayer electronic component characterized by that. 前記大径結晶粒子の中で、粒径が0.4〜0.6μmの前記大径結晶粒子を90体積%以上含有し、且つ前記小径結晶粒子の中で、粒径が0.1〜0.25μmの前記小径結晶粒子を90体積%以上含有することを特徴とする請求項1記載の積層型電子部品。Among the large crystal grains, grain size and contains the large-diameter crystal grains of 0.4~0.6μm least 90% by volume, and in the small-diameter crystal grains, particle size 0.1 to 0 2. The multilayer electronic component according to claim 1, wherein the small-sized crystal particles of 25 μm are contained in an amount of 90% by volume or more. 前記誘電体層の厚みが2.5μm以下であることを特徴とする請求項1または2記載の積層型電子部品。The multilayer electronic component according to claim 1, wherein the dielectric layer has a thickness of 2.5 μm or less. 前記誘電体層がBaTiO、Mnおよび希土類元素を含有することを特徴とする請求項1乃至3のうちいずれかに記載の積層型電子部品。 4. The multilayer electronic component according to claim 1, wherein the dielectric layer contains BaTiO 3 , Mn, and a rare earth element. 5. 前記内部電極層および前記外部電極が卑金属からなることを特徴とする請求項1乃至4のうちいずれかに記載の積層型電子部品。The multilayer electronic component according to any one of claims 1 to 4 wherein the inner electrode layer and the external electrode is characterized in that it consists of a base metal.
JP2000160580A 2000-05-30 2000-05-30 Multilayer electronic components Expired - Fee Related JP4471453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000160580A JP4471453B2 (en) 2000-05-30 2000-05-30 Multilayer electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000160580A JP4471453B2 (en) 2000-05-30 2000-05-30 Multilayer electronic components

Publications (2)

Publication Number Publication Date
JP2001338828A JP2001338828A (en) 2001-12-07
JP4471453B2 true JP4471453B2 (en) 2010-06-02

Family

ID=18664749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000160580A Expired - Fee Related JP4471453B2 (en) 2000-05-30 2000-05-30 Multilayer electronic components

Country Status (1)

Country Link
JP (1) JP4471453B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896364B2 (en) * 2003-07-09 2012-03-14 Tdk株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP4549210B2 (en) * 2005-03-18 2010-09-22 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP4782457B2 (en) * 2005-03-29 2011-09-28 京セラ株式会社 Multilayer ceramic capacitor
JP4883110B2 (en) 2009-02-25 2012-02-22 株式会社村田製作所 Multilayer ceramic capacitor
JP5224147B2 (en) 2010-09-28 2013-07-03 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitor
JP5450696B2 (en) * 2012-03-07 2014-03-26 太陽誘電株式会社 Multilayer ceramic capacitor
JP5414940B1 (en) 2012-09-27 2014-02-12 太陽誘電株式会社 Multilayer ceramic capacitor
JP5462962B1 (en) 2013-01-31 2014-04-02 太陽誘電株式会社 Multilayer ceramic capacitor
JP6312633B2 (en) * 2014-08-01 2018-04-18 太陽誘電株式会社 Multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP2001338828A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
KR102648161B1 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4782598B2 (en) Multilayer ceramic capacitor
KR100351039B1 (en) Monolithic ceramic electronic component and method for making the same
JP4587924B2 (en) Multilayer ceramic capacitor
JP7131955B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4100173B2 (en) Dielectric ceramic and multilayer ceramic capacitors
WO2013022064A1 (en) Dielectric ceramic, layered ceramic electronic part, layered ceramic capacitor, and method for producing layered ceramic capacitor
JP7338963B2 (en) Multilayer ceramic capacitors and ceramic raw material powders
JP2020132512A (en) Dielectric ceramic composition and laminated ceramic capacitor including same
JP2012169620A (en) Multilayer ceramic electronic component and method for manufacturing the same
JP2021082779A (en) Ceramic electronic component and manufacturing method thereof
JP2010010157A (en) Stacked ceramic capacitor, and method of manufacturing the same
JP4557472B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4471453B2 (en) Multilayer electronic components
JP4663141B2 (en) Dielectric porcelain and multilayer electronic components
JP5800408B2 (en) Multilayer ceramic capacitor
JP2001307940A (en) Laminated ceramic capacitor and its manufacturing method
JP2001230148A (en) Laminated ceramic capacitor and method of manufacturing it
JP3323801B2 (en) Porcelain capacitors
JP5046432B2 (en) Dielectric porcelain and multilayer electronic components
JP3874278B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JP2020202245A (en) Manufacturing method of ceramic electronic component
JP2010212503A (en) Laminated ceramic capacitor
JP2001230150A (en) Laminated ceramic capacitor and method of manufacturing it
JP4022162B2 (en) Multilayer electronic component and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4471453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees