JP2001338828A - Laminated electronic part - Google Patents

Laminated electronic part

Info

Publication number
JP2001338828A
JP2001338828A JP2000160580A JP2000160580A JP2001338828A JP 2001338828 A JP2001338828 A JP 2001338828A JP 2000160580 A JP2000160580 A JP 2000160580A JP 2000160580 A JP2000160580 A JP 2000160580A JP 2001338828 A JP2001338828 A JP 2001338828A
Authority
JP
Japan
Prior art keywords
electronic component
diameter
dielectric layer
crystal grains
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000160580A
Other languages
Japanese (ja)
Other versions
JP4471453B2 (en
Inventor
Yasushi Yamaguchi
泰史 山口
Daisuke Fukuda
大輔 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000160580A priority Critical patent/JP4471453B2/en
Publication of JP2001338828A publication Critical patent/JP2001338828A/en
Application granted granted Critical
Publication of JP4471453B2 publication Critical patent/JP4471453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated electronic part having an improved product of CR and insulation resistance reduced in properties depending on electric field intensity. SOLUTION: Dielectric layers and inner electrode layers are alternately laminated into an electronic part main body, a pair of outer electrodes which are alternately connected to the inner electrode layers is provided to the edge faces of the electronic part main body for the formation of a laminated electronic part. The above dielectric layers contain 10 to 30 vol.% crystal grains of 0.4 μm diameter or above and 50 to 70 vol.% crystal grains of 0.25 μm diameter or below, by which a product of CR can be improved, and insulation resistance can be reduced in properties depending on electric field intensity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層型電子部品に
関し、特に、携帯電話など小型、高機能の電子機器に使
用され、極めて薄い誘電体層と内部電極層を交互に積層
して構成される小形大容量の積層型電子部品に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated electronic component, and more particularly to a laminated electronic component used for small and high-performance electronic equipment such as a cellular phone, which is formed by alternately laminating extremely thin dielectric layers and internal electrode layers. The present invention relates to a small and large-capacity laminated electronic component.

【0002】[0002]

【従来技術】近年、電子機器の小型化、高密度化に伴
い、積層型電子部品、例えば、積層セラミックコンデン
サは小型大容量化が求められており、このため誘電体層
の積層数の増加と誘電体層自体の薄層化が図られてい
る。
2. Description of the Related Art In recent years, as electronic devices have become smaller and higher in density, multilayer electronic components, for example, multilayer ceramic capacitors, have been required to have smaller sizes and larger capacities. The thickness of the dielectric layer itself has been reduced.

【0003】このような積層セラミックコンデンサとし
ては、例えば、特開平11−317322号公報に開示
されるようなものが知られている。この公報に開示され
た積層セラミックコンデンサでは、平均粒径が3.5μ
m以上のBaTiO3系セラミックス粒子からなる厚さ
5μmの誘電体層において、前記誘電体層一層中に一の
セラミック粒子で形成されている一層一粒子の割合が2
0%になるように形成された誘電体層と、Ni粉末を主
成分とする内部電極を交互に積層して積層セラミックコ
ンデンサが構成されている。
As such a multilayer ceramic capacitor, for example, one disclosed in Japanese Patent Application Laid-Open No. 11-317322 has been known. The multilayer ceramic capacitor disclosed in this publication has an average particle size of 3.5 μm.
m of BaTiO 3 -based ceramic particles having a thickness of 5 μm or more, the ratio of one ceramic particle in one dielectric layer is 2%.
A multilayer ceramic capacitor is formed by alternately laminating a dielectric layer formed to be 0% and internal electrodes mainly composed of Ni powder.

【0004】このような構成によれば、厚さ5μmの誘
電体層を積層して構成された積層セラミックコンデンサ
においても、コンデンサの特性の一つであるCR積(静
電容量C×絶縁抵抗R)を高めることができる。
According to such a configuration, even in a laminated ceramic capacitor formed by laminating dielectric layers each having a thickness of 5 μm, CR product (capacitance C × insulation resistance R), which is one of the characteristics of the capacitor. ) Can be increased.

【0005】[0005]

【発明が解決しようとする課題】一般的に積層セラミッ
クコンデンサのCR積は誘電体層の厚みや層数には依存
しない値であり、上記のコンデンサもCR積の低下を防
止できるものの、最近のように、積層セラミックコンデ
ンサの大容量化のために誘電体層の薄層化がさらに進
み、誘電体層の厚みが2.5μm以下と極めて薄くなる
と、誘電体の絶縁抵抗がオームの法則に従わなくなるた
め、CR積の低下がさらに大きくなるという問題があっ
た。
In general, the CR product of a multilayer ceramic capacitor is a value that does not depend on the thickness or the number of dielectric layers. As described above, when the thickness of the dielectric layer is further reduced in order to increase the capacity of the multilayer ceramic capacitor, and the thickness of the dielectric layer becomes extremely thin as 2.5 μm or less, the insulation resistance of the dielectric obeys Ohm's law. Therefore, there is a problem that the CR product is further reduced.

【0006】また、上記公報に開示された積層セラミッ
クコンデンサは、厚さ5μmの誘電体層を有しており、
この場合において、高いCR積を有しているものの、誘
電体層の厚みが薄くなればなるほど、絶縁抵抗が小さく
なり、絶縁抵抗の電界強度が低くなるという問題があっ
た。
Further, the multilayer ceramic capacitor disclosed in the above publication has a dielectric layer having a thickness of 5 μm,
In this case, although having a high CR product, there is a problem that as the thickness of the dielectric layer becomes thinner, the insulation resistance becomes smaller, and the electric field strength of the insulation resistance becomes lower.

【0007】従って、本発明は、CR積および絶縁抵抗
の電界強度依存性を改善できる積層型電子部品を提供す
ることを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a multilayer electronic component that can improve the dependence of the CR product and the insulation resistance on the electric field strength.

【0008】[0008]

【課題を解決するための手段】本発明の積層型電子部品
では、誘電体層と内部電極層とを交互に積層してなる電
子部品本体の両端部に、一対の外部電極を形成してなる
積層型電子部品において、前記誘電体層が、粒径0.4
μm以上の大径結晶粒子を10〜30体積%と、粒径
0.25μm以下の小径結晶粒子を50〜70体積%の
割合で含有したものである。
According to the laminated electronic component of the present invention, a pair of external electrodes are formed at both ends of an electronic component main body in which dielectric layers and internal electrode layers are alternately laminated. In the multilayer electronic component, the dielectric layer has a particle size of 0.4
It contains 10 to 30% by volume of large-diameter crystal particles having a diameter of not less than μm and 50 to 70% by volume of small-diameter crystal particles having a particle diameter of not more than 0.25 μm.

【0009】このような構成によれば、個別には、誘電
体層中に含まれる粒径0.4μm以上の大径結晶粒子に
より誘電体の比誘電率が高まり、積層型電子部品の静電
容量を向上でき、一方、粒径0.25μm以下の小径結
晶粒子により、それに含まれる多数の粒界相による絶縁
性のために、誘電体の絶縁抵抗を高めることができる。
そして、これらの両結晶粒子を、混在させた微構造組織
を有する誘電体を形成すれば、大径結晶粒子、小径結晶
粒子単独の場合よりもCR積を向上できる。また、誘電
体層厚みが薄くなればなるほど絶縁抵抗が低下し、絶縁
抵抗の電界強度依存性は大きいが、本発明の積層型電子
部品では、大径結晶粒子の回りに小径結晶粒子が存在す
ることにより、絶縁抵抗Rの電界強度依存性を小さくす
ることができる。
According to such a configuration, the dielectric constant of the dielectric is individually increased by the large-diameter crystal particles having a particle diameter of 0.4 μm or more contained in the dielectric layer, and the electrostatic property of the multilayer electronic component is increased. The capacity can be improved, and the small-diameter crystal grains having a grain size of 0.25 μm or less can increase the insulation resistance of the dielectric due to the insulating properties of a large number of grain boundary phases contained therein.
When a dielectric having a microstructure in which both of these crystal grains are mixed is formed, the CR product can be improved as compared with the case where the large crystal grains and the small crystal grains are used alone. Further, as the thickness of the dielectric layer becomes smaller, the insulation resistance decreases, and the electric field strength dependence of the insulation resistance is large. However, in the multilayer electronic component of the present invention, small-diameter crystal grains exist around large-diameter crystal grains. This makes it possible to reduce the electric field strength dependency of the insulation resistance R.

【0010】上記積層型電子部品では、大径結晶粒子の
中で、粒径が0.4〜0.6μmの大径結晶粒子を90
体積%以上、小径結晶粒子の中で、粒径が0.1〜0.
25μmの小径結晶粒子を90体積%以上含むことが望
ましい。この構成によれば誘電体層が、大径結晶粒子と
小径結晶粒子のほぼ明確に分離された粒径分布を有する
ことにより、CR積をさらに向上でき、絶縁抵抗の電界
強度依存性をさらに小さくでき、誘電体層が両結晶粒子
の誘電性的、絶縁性的特徴の両方を兼ね備えることがで
きる。
In the above-mentioned laminated electronic component, 90% of large-diameter crystal grains having a diameter of 0.4 to 0.6 μm are included in the large-diameter crystal grains.
Volume% or more, among the small crystal grains, the particle size is 0.1 to 0.1.
It is desirable to include 90 volume% or more of small-diameter crystal grains of 25 μm. According to this configuration, the dielectric layer has a particle size distribution in which large-diameter crystal grains and small-diameter crystal grains are almost clearly separated, so that the CR product can be further improved, and the electric field strength dependence of insulation resistance is further reduced. In this case, the dielectric layer can have both the dielectric and insulating characteristics of both crystal grains.

【0011】上記積層型電子部品では、誘電体層の厚み
が2.5μm以下である場合に好適に用いることができ
る。この場合、誘電体層を薄層化でき、このように厚み
が2.5μm以下になっても、大容量、高絶縁性の積層
型電子部品を提供することができる。
In the above-mentioned laminated electronic component, it can be suitably used when the thickness of the dielectric layer is 2.5 μm or less. In this case, the dielectric layer can be made thinner, and even if the thickness becomes 2.5 μm or less, a large-capacity, high-insulation multilayer electronic component can be provided.

【0012】上記積層型電子部品では、誘電体層がBa
TiO3、Mnおよび希土類元素を含有することが好ま
しい。これらの誘電体素材料のうち、BaTiO3によ
り薄層化した誘電体層の高誘電率化を図ることができる
とともに、Mnおよび希土類元素により還元性雰囲気中
で焼成される誘電体層の結晶粒子の結晶成長を抑制しつ
つ、粒界相を生成させ、また、誘電体の還元反応を抑え
ることにより、高絶縁性の誘電体層を得ることができ
る。
In the above-mentioned multilayer electronic component, the dielectric layer is made of Ba.
It preferably contains TiO 3 , Mn and a rare earth element. Among these dielectric materials, it is possible to increase the dielectric constant of the dielectric layer thinned with BaTiO 3 , and to crystallize the dielectric layer fired in a reducing atmosphere with Mn and a rare earth element. A high-insulating dielectric layer can be obtained by generating a grain boundary phase while suppressing the crystal growth of and suppressing the reduction reaction of the dielectric.

【0013】上記積層型電子部品では、内部電極層およ
び外部電極層が卑金属元素から選ばれる少なくとも1種
であることが望ましい。例えば、内部電極層として、N
iやCuを用いることで、従来用いられていたPtやP
dなどの貴金属に比較して、製造コストを低減すること
ができる。また、外部電極用に、NiやCuを単体で使
用することに加えて、例えば、NiとCuの合金を用い
ることで、外部電極の耐酸化性を高め、はんだのみなら
ず有機樹脂を含有する導電性ペーストとの接着接合性を
高めることができる。
In the above-mentioned laminated electronic component, it is desirable that the internal electrode layer and the external electrode layer are at least one selected from base metal elements. For example, as the internal electrode layer, N
By using i or Cu, Pt or P
The manufacturing cost can be reduced as compared with a noble metal such as d. Also, for the external electrode, in addition to using Ni or Cu alone, for example, by using an alloy of Ni and Cu, the oxidation resistance of the external electrode is increased, and not only solder but also organic resin is contained. Adhesive bonding with the conductive paste can be improved.

【0014】[0014]

【発明の実施の形態】(構造)本発明の積層型電子部品
Aである積層セラミックコンデンサについて、図1の概
略断面図をもとに詳細に説明する。本発明の積層型電子
部品Aは、電子部品本体1の両端部に外部電極3を形成
して構成されている。この外部電極3は、例えば、Cu
もしくはCuとNiの合金ペーストを焼き付けて形成さ
れている。電子部品本体1は、内部電極層5と誘電体層
7を交互に積層してなる容量部9の積層方向の両面に、
誘電体層7と同一材料からなる絶縁層11を形成して構
成されている。また外部電極3の表面には、例えば、順
にNiメッキ層13、Snメッキ層もしくはSn−Pb
合金メッキ層15が形成されている。これらは外部電極
3のはんだ食われ防止やはんだ濡れ性を補うものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Structure) A multilayer ceramic capacitor which is a multilayer electronic component A according to the present invention will be described in detail with reference to the schematic sectional view of FIG. The multilayer electronic component A of the present invention is configured by forming external electrodes 3 on both ends of the electronic component body 1. This external electrode 3 is made of, for example, Cu
Alternatively, it is formed by baking an alloy paste of Cu and Ni. The electronic component body 1 is provided on both sides in the laminating direction of the capacitor portion 9 in which the internal electrode layers 5 and the dielectric layers 7 are alternately laminated.
An insulating layer 11 made of the same material as the dielectric layer 7 is formed. In addition, for example, a Ni plating layer 13, a Sn plating layer, or a Sn—Pb
An alloy plating layer 15 is formed. These are to prevent the solder erosion of the external electrode 3 and to supplement the solder wettability.

【0015】一方、内部電極層5は導電性ペーストの膜
を焼結させた金属膜からなり、導電性ペーストとして
は、例えば、Ni、Co、Cu等の卑金属が使用されて
いる。また、内部電極層5は、卑金属を主成分とし、概
略矩形状の導体膜であり、上から第1層目、第3層目、
第5層目・・・の奇数層の内部電極層5は、その一端が
コンデンサ本体1の一方端面に露出しており、上から第
2層目、第4層目、第6層目・・・の内部電極層5は、
その一端がコンデンサ本体1の他方端面に露出してい
る。尚、外部電極3と内部電極層5は必ずしも同一材料
から構成される必要はない。
On the other hand, the internal electrode layer 5 is formed of a metal film obtained by sintering a conductive paste film. As the conductive paste, for example, a base metal such as Ni, Co, or Cu is used. The internal electrode layer 5 is a substantially rectangular conductor film containing a base metal as a main component, and has a first layer, a third layer,
One end of each of the fifth-layer odd-numbered internal electrode layers 5 is exposed at one end surface of the capacitor body 1, and the second, fourth, sixth,... The internal electrode layer 5 of
One end is exposed on the other end surface of the capacitor body 1. Note that the external electrode 3 and the internal electrode layer 5 do not necessarily need to be made of the same material.

【0016】そして、本発明の積層型電子部品Aの主要
部となる誘電体層7には、図2に詳細に示しているよう
に、粒径が0.4μm以上の大径結晶粒子17と、粒径
が0.25μm以下の小径結晶粒子19が粒界相21を
介して密に混在し、適切に結晶成長が制御された微構造
組織となっている。即ち、大径結晶粒子17の回りを取
り巻くように小径結晶粒子19が配設されている。
As shown in detail in FIG. 2, the dielectric layer 7 which is a main part of the multilayer electronic component A according to the present invention includes large crystal grains 17 having a grain size of 0.4 μm or more. In addition, small crystal grains 19 having a grain size of 0.25 μm or less are densely mixed via the grain boundary phase 21 to form a microstructure in which crystal growth is appropriately controlled. That is, the small crystal grains 19 are arranged so as to surround the large crystal grains 17.

【0017】また、これらの大径結晶粒子17と小径結
晶粒子19の誘電体層中での割合は、粒径が0.4μm
以上の大径結晶粒子17が10〜30体積%、粒径が
0.25μm以下の小径結晶粒子19が50〜70体積
%存在する。
The ratio of the large-diameter crystal grains 17 to the small-diameter crystal grains 19 in the dielectric layer is such that the particle diameter is 0.4 μm.
The large crystal grains 17 are present in an amount of 10 to 30% by volume, and the small crystal grains 19 having a particle size of 0.25 μm or less are present in an amount of 50 to 70% by volume.

【0018】積層型電子部品の、例えば、積層セラミッ
クコンデンサに用いられる誘電体層として、高い誘電率
を発現するためには大径結晶粒子17の粒径は0.4μ
m以上が望ましく、また、誘電体の絶縁抵抗を高めるに
は小径結晶粒子19の粒径は0.25μm以下が好適で
ある。そして、これらの結晶粒子のうち、粒径0.4μ
m以上の大径結晶粒子17を10〜30体積%と、粒径
が0.25μm以下の小径結晶粒子19を50〜70体
積%の割合で混在することにより、積層型電子部品のC
R積を高め、さらに、絶縁抵抗の電界強度依存性を抑制
できる。
In order to exhibit a high dielectric constant as a dielectric layer used in a multilayer electronic component, for example, a multilayer ceramic capacitor, the diameter of the large-diameter crystal grains 17 is 0.4 μm.
m or more, and the particle size of the small-diameter crystal particles 19 is preferably 0.25 μm or less in order to increase the insulation resistance of the dielectric. And, among these crystal particles, a particle size of 0.4 μm
By mixing 10 to 30% by volume of large-diameter crystal particles 17 having a diameter of m or more and 50 to 70% by volume of small-diameter crystal particles 19 having a particle diameter of 0.25 μm or less, C
The R product can be increased, and the dependence of the insulation resistance on the electric field strength can be suppressed.

【0019】特に、大径結晶粒子17のうち、粒径が
0.4〜0.6μmである割合を90体積%以上と、小
径結晶粒子19のうち、粒径が0.1〜0.25μmで
ある割合を90体積%以上とすることが、CR積を高く
し、かつ、絶縁抵抗の電界強度依存性をさらに抑制し、
安定化するという点から望ましい。これらの結晶粒子か
ら構成されるシート状の誘電体層1層の厚みは2.5μ
m以下で形成されている。積層電子部品Aの、例えば、
積層セラミックコンデンサの大容量化に対して、誘電体
層を薄層化することは効果的な手段であり、近年の小
型、高容量の積層セラミックコンデンサを構成するため
には、その誘電体層厚みは2.0〜2.5μmが好適で
ある。
In particular, the proportion of the large crystal grains 17 having a particle size of 0.4 to 0.6 μm is 90% by volume or more, and the small crystal grains 19 have a particle size of 0.1 to 0.25 μm. When the ratio is 90% by volume or more, the CR product is increased, and the electric field strength dependence of the insulation resistance is further suppressed.
Desirable in terms of stabilization. One sheet-shaped dielectric layer composed of these crystal grains has a thickness of 2.5 μm.
m or less. For example, for the multilayer electronic component A,
In order to increase the capacity of a multilayer ceramic capacitor, it is effective to make the dielectric layer thinner, and in order to construct a small-sized, high-capacity multilayer ceramic capacitor in recent years, the thickness of the dielectric layer has to be increased. Is preferably 2.0 to 2.5 μm.

【0020】また、誘電体層7はシート状のセラミック
焼結体からなり、その材質としては、ぺロブスカイト型
結晶構造を持ついわゆる強誘電性を有するセラミック材
料であればよく、特に、BaTiO3、Mnおよび希土
類元素を含有する誘電体磁器組成物からなり、BaTi
3、Y23等の希土類元素、MgO、MnCO3と、ガ
ラス等の低温焼結助剤などからなることが望ましい。こ
れらの誘電体素材料を調整して含有することにより、誘
電体磁器の焼結性や耐還元性を高めることができる。
The dielectric layer 7 is made of a sheet-shaped ceramic sintered body, and may be made of a so-called ferroelectric ceramic material having a perovskite-type crystal structure. In particular, BaTiO 3 , A dielectric ceramic composition containing Mn and a rare earth element;
O 3, Y 2 O 3 rare earth elements such as, MgO, and MnCO 3, they are preferably made of low-temperature sintering aid such as glass. By adjusting and including these dielectric materials, the sinterability and reduction resistance of the dielectric ceramic can be improved.

【0021】(製法)本発明の積層型電子部品Aは、先
ず、誘電体となるグリーンシートを作製する。このグリ
ーンシートは、例えば、比表面積の大きな2種以上のB
aTiO3原料粉末を用いて形成することができ、主原
料のBaTiO3粉の合成法は、固相法、液相法(シュ
ウ酸塩を経過する方法等)、水熱合成法等があるが、そ
のうち粒度分布が狭く、結晶性が高いという理由から水
熱合成法が望ましい。そして、BaTiO3粉の比表面
積は1.7〜6.6(m2/g)が好ましい。
(Manufacturing Method) In the multilayer electronic component A of the present invention, first, a green sheet to be a dielectric is prepared. This green sheet includes, for example, two or more types of B having a large specific surface area.
It can be formed using aTiO 3 raw material powder, and the method for synthesizing the main raw material BaTiO 3 powder includes a solid phase method, a liquid phase method (such as passing through oxalate), and a hydrothermal synthesis method. Of these, hydrothermal synthesis is preferred because of its narrow particle size distribution and high crystallinity. The specific surface area of the BaTiO 3 powder is 1.7~6.6 (m 2 / g) are preferable.

【0022】次に、そのグリーンシートに導電性ペース
トからなる内部電極層5の電極パターンを印刷し、これ
を乾燥させる。次に、このグリーンシートを複数枚積層
し、熱圧着させる。その後、この積層物を格子状に切断
して、電子部品本体1の成形体を得る。この電子部品本
体1の両端面には、内部電極層5の電極パターンの端部
が交互に露出している。
Next, an electrode pattern of the internal electrode layer 5 made of a conductive paste is printed on the green sheet and dried. Next, a plurality of the green sheets are laminated and thermocompression-bonded. Thereafter, the laminate is cut into a lattice to obtain a molded body of the electronic component body 1. The ends of the electrode pattern of the internal electrode layer 5 are alternately exposed on both end surfaces of the electronic component body 1.

【0023】次に、この積層型電子部品本体1を大気中
で200〜450℃にて脱バインダー処理を行い、その
後1200℃〜1290℃の温度で2時間焼成し、続い
て大気雰囲気中950〜1050℃で再酸化処理を行
う。
Next, the multilayer electronic component body 1 is subjected to a binder removal treatment at 200 to 450 ° C. in the air, and then fired at a temperature of 1200 to 1290 ° C. for 2 hours. A reoxidation treatment is performed at 1050 ° C.

【0024】外部電極3は、焼成したコンデンサ本体の
両端面に、外部電極用ペーストを塗布して窒素中で焼き
付けることによって形成する。
The external electrodes 3 are formed by applying an external electrode paste to both end surfaces of the fired capacitor body and baking the paste in nitrogen.

【0025】さらに外部電極3の表面を脱脂、酸洗浄、
純水を用いた水洗を行った後、バレル方式により、Ni
メッキ、SnメッキもしくはSn−Pb合金メッキを行
う。
Further, the surface of the external electrode 3 is degreased, acid-washed,
After washing with pure water, the barrel method
Plating, Sn plating or Sn-Pb alloy plating is performed.

【0026】(作用)以上のように構成された積層型電
子部品Aでは、厚みが2.5μm以下の誘電体層7を形
成している粒径が、0.4μm以上の大径結晶粒子17
を10〜30体積%と、粒径が0.25μm以下の小径
結晶粒子19を50〜70体積%、の割合で含有するこ
とにより、積層型電子部品のCR積の向上と、絶縁抵抗
の電界強度依存性の抑制の点において、前記積層型電子
部品の性能を飛躍的に向上することができる。
(Function) In the multilayer electronic component A configured as described above, the large-diameter crystal particles 17 having a thickness of 0.4 μm or more forming the dielectric layer 7 having a thickness of 2.5 μm or less are used.
Is contained in an amount of 10 to 30% by volume and 50 to 70% by volume of small crystal grains 19 having a particle size of 0.25 μm or less, thereby improving the CR product of the multilayer electronic component and the electric field of insulation resistance. In terms of suppressing strength dependence, the performance of the multilayer electronic component can be dramatically improved.

【0027】更に、このように、積層型電子部品の、例
えば、積層セラミックコンデンサの誘電体素材量に、比
表面積の大きなBaTiO3粉末を用いることにより、
焼成温度を低下させ、製造コストを低減することができ
る。
Further, as described above, by using BaTiO 3 powder having a large specific surface area for the dielectric material amount of the multilayer electronic component, for example, the multilayer ceramic capacitor,
The firing temperature can be reduced, and the manufacturing cost can be reduced.

【0028】[0028]

【実施例】積層型電子部品の一つである積層セラミック
コンデンサを以下のようにして作製した。まず、誘電体
素材料として、比表面積が1.7、3.2、6.6(m
2/g)となる3種類のBaTiO3粉末と、このBaT
iO3100重量部に対してY23 を1重量部、Mg
Oを0.2重量部、MnCO3を0.1重量部、Li2
OとSiO2 とからなるガラス成分(LiとSiのモル
比が1:1)を0.5重量部とする原料粉末を、直径5
mmφのZrO2 ボールを用いたボールミルにて湿式粉
砕することにより、調製した。
EXAMPLE A multilayer ceramic capacitor, which is one of multilayer electronic components, was manufactured as follows. First, as a dielectric element material, the specific surface area is 1.7, 3.2, 6.6 (m
2 / g) and three types of BaTiO 3 powder,
1 part by weight of Y 2 O 3 per 100 parts by weight of iO 3 , Mg
0.2 parts by weight of O, 0.1 parts by weight of MnCO 3 , Li 2
A raw material powder containing 0.5 part by weight of a glass component composed of O and SiO 2 (the molar ratio of Li to Si is 1: 1) was used to obtain a powder having a diameter of 5
It was prepared by wet pulverization in a ball mill using ZrO 2 balls of mmφ.

【0029】次に、これらの3種類の粉末を表1の配合
例に示すような割合に配合した後、有機バインダを混合
してスラリーを調製し、ドクターブレードによりグリー
ンシートを作製した。
Next, these three types of powders were blended in the proportions shown in the formulation examples in Table 1, and then mixed with an organic binder to prepare a slurry, and a green sheet was prepared by a doctor blade.

【0030】次にこのグリーンシート上に、Ni粉末
と、エチルセルロース、テルピネオールとからなる内部
電極ペーストをスクリーン印刷した。この内部電極層の
有効面積は2.1mm2 であった。
Next, an internal electrode paste composed of Ni powder, ethylcellulose and terpineol was screen-printed on the green sheet. The effective area of this internal electrode layer was 2.1 mm 2 .

【0031】次に、内部電極ペーストを印刷したグリー
ンシートを100枚積層し、その上下面に、内部電極ペ
ーストを印刷していないグリーンシートをそれぞれ20
枚積層し、ホットプレス機を用いて一体化し、積層体を
得た。
Next, 100 green sheets on which the internal electrode paste was printed were laminated, and 20 green sheets on which the internal electrode paste was not printed were respectively placed on the upper and lower surfaces.
The sheets were laminated and integrated using a hot press machine to obtain a laminate.

【0032】この後、積層体を格子状に切断して、2.
3mm×1.5mm×1.5mmのコンデンサ本体1の
成形体を作製した。
Thereafter, the laminate is cut into a lattice shape.
A molded body of the capacitor body 1 having a size of 3 mm × 1.5 mm × 1.5 mm was produced.

【0033】次に、このコンデンサ本体の成形体を大気
中で400℃にて脱バインダー処理を行い、その後12
10℃〜1290℃(酸素分圧10-11 atm)で2時
間焼成し、続いて大気雰囲気中1000℃で再酸化処理
をして焼成されたコンデンサ本体を作製した。
Next, the molded body of the capacitor body is subjected to a binder removal treatment at 400 ° C. in the air.
The capacitor body was fired at 10 ° C. to 1290 ° C. (oxygen partial pressure: 10 −11 atm) for 2 hours, and then re-oxidized at 1000 ° C. in an air atmosphere to obtain a fired capacitor body.

【0034】次に、焼成したコンデンサ本体1をバレル
研磨した後、コンデンサ本体の両端部にCu粉末とガラ
スを含んだ外部電極ペーストを塗布し、850℃、窒素
中で焼き付けを行い外部電極を形成した。その後、電解
バレル機を用いて、この外部電極の表面に、順にNiお
よびSnメッキを行い、積層型電子部品を作製した。以
上のようにして得られた積層型電子部品に対して以下の
評価を行った。
Next, after the fired capacitor body 1 is barrel-polished, an external electrode paste containing Cu powder and glass is applied to both ends of the capacitor body and baked at 850 ° C. in nitrogen to form external electrodes. did. Then, using an electrolytic barrel machine, Ni and Sn plating were sequentially performed on the surface of the external electrode to produce a laminated electronic component. The following evaluation was performed on the multilayer electronic component obtained as described above.

【0035】まず、周波数1.0kHz、入力信号レベ
ル1.0Vrmsにて静電容量を測定した。その後、直
流電圧10Vを1分間印加して、絶縁抵抗を測定し、C
R積を算出した。
First, the capacitance was measured at a frequency of 1.0 kHz and an input signal level of 1.0 Vrms. Thereafter, a DC voltage of 10 V was applied for one minute, and the insulation resistance was measured.
The R product was calculated.

【0036】次に、誘電体層の誘電特性が常誘電性を示
す温度150℃において、エージング処理を行った後、
印加電圧30V、1分間の測定条件で絶縁抵抗を測定し
た。続いて、印加電圧10Vの絶縁抵抗に対する30V
の絶縁抵抗の比を算出し、絶縁抵抗の電界強度依存性を
評価した。このようにして評価した積層型電子部品で
は、CR積が3000ΩF以上、絶縁抵抗比が0.1以
上を良品とした。
Next, after performing an aging treatment at a temperature of 150 ° C. where the dielectric properties of the dielectric layer show paraelectricity,
The insulation resistance was measured under an applied voltage of 30 V for one minute. Subsequently, 30 V with respect to the insulation resistance at an applied voltage of 10 V
Was calculated, and the electric field strength dependence of the insulation resistance was evaluated. In the multilayer electronic component evaluated in this manner, a non-defective product having a CR product of 3000ΩF or more and an insulation resistance ratio of 0.1 or more was evaluated as good.

【0037】また、誘電体層の結晶粒径の測定は、積層
型電子部品の内部電極層を剥離して得られた誘電体層の
界面を走査型電子顕微鏡を用いて、2000倍で撮影し
た写真から一定の面積におけるセラミック結晶粒子につ
いて、切片法により結晶粒子の寸法を測定した。誘電体
層に含まれる結晶粒子の体積割合は、画像解析装置を用
いて、粒径を測定した結晶粒子のうち、0.4μm以上
の大径結晶粒子と0.25μm以下の小径結晶粒子とを
選別することによって評価した。
In measuring the crystal grain size of the dielectric layer, the interface of the dielectric layer obtained by peeling the internal electrode layer of the multilayer electronic component was photographed at a magnification of 2000 times using a scanning electron microscope. From the photograph, the dimensions of the crystal grains of the ceramic crystal grains in a certain area were measured by the intercept method. The volume ratio of the crystal grains contained in the dielectric layer was determined by dividing the large crystal grains of 0.4 μm or more and the small crystal grains of 0.25 μm or less among the crystal grains whose particle diameters were measured using an image analyzer. It was evaluated by sorting.

【0038】[0038]

【表1】 [Table 1]

【0039】表1の結果から明らかなように、厚みが
2.5μmの誘電体層を用いた、積層セラミックコンデ
ンサのうち、0.4μm以上の大径結晶粒子が10〜3
0体積%と0.25μm以下の小径結晶粒子を50〜7
0体積%含有し、1250℃以下の温度で焼成した試料
No.2、3、4、5、6、9、10、11、12、1
3、では、何れもCR積が3000ΩF以上の値(試料
No.2〜6、9〜13)を示し、且つ、絶縁抵抗比を
0.1以上に高めることができ、薄層化した誘電体の誘
電特性を大きく向上させることができた。
As is clear from the results shown in Table 1, among the multilayer ceramic capacitors using the dielectric layer having a thickness of 2.5 μm, large crystal grains having a diameter of 0.4 μm or more are 10 to 3 times.
0 volume% and small crystal grains having a diameter of 0.25 μm or less
0% by volume and fired at a temperature of 1250 ° C. or less. 2, 3, 4, 5, 6, 9, 10, 11, 12, 1,
In the case of No. 3, the CR product showed a value of 3000 ΩF or more (Sample Nos. 2 to 6 and 9 to 13), and the insulation resistance ratio could be increased to 0.1 or more. Was able to greatly improve the dielectric properties.

【0040】特に、0.4μm以上の大径結晶粒子が2
0体積%と0.25μm以下の小径結晶粒子を62体積
%含有し、1230℃の温度で焼成した試料No.11
では、誘電体層が2.5μmの積層セラミックコンデン
サにおいて、最も高いCR積が得られ、また、従来用い
られていた粒径分布が1つ山の誘電体層を用いた試料
(試料No.23)に比較して、2.5μmの誘電体層
厚みの場合に、電圧の変化に対する絶縁抵抗の低下が抑
制された。
In particular, large crystal grains of 0.4 μm or more
Sample No. 2 containing 0% by volume and 62% by volume of small-diameter crystal particles of 0.25 μm or less and fired at a temperature of 1230 ° C. 11
In the multilayer ceramic capacitor having a dielectric layer of 2.5 μm, the highest CR product was obtained, and a conventionally used sample using a dielectric layer having one peak of particle size distribution (sample No. 23) As compared with the case of (2), when the thickness of the dielectric layer was 2.5 μm, the decrease in the insulation resistance with respect to the change in the voltage was suppressed.

【0041】また、誘電体層の厚みを2.0〜5.0μ
mまで変えて作製した試料No.18〜22では、誘電
体層厚みの増加とともに、CR積が向上しているが、中
でも、本発明の誘電体層の厚みを2.0μmまで極めて
薄くした場合(試料No.18)でも、特に、CR積な
らびに絶縁抵抗比を高く維持することができた。これに
対して、大径結晶粒子を10体積%未満または30体積
%より多く含有するか、または小径結晶粒子を50体積
%未満または70体積%より多く含有した試料No.
1、7、8、14、15、16、17では、いずれも、
CR積が3000ΩF以下であった。
Further, the thickness of the dielectric layer is set to 2.0 to 5.0 μm.
m. In Nos. 18 to 22, the CR product was improved with an increase in the thickness of the dielectric layer. In particular, even when the thickness of the dielectric layer of the present invention was extremely reduced to 2.0 μm (Sample No. 18), , CR product and insulation resistance ratio could be maintained high. On the other hand, Sample No. containing less than 10% by volume or more than 30% by volume of large-diameter crystal particles, or less than 50% by volume or more than 70% by volume of small-diameter crystal particles.
In 1, 7, 8, 14, 15, 16, and 17,
The CR product was 3000ΩF or less.

【0042】また、図3に示すように、粒径0.25μ
m以下の小径結晶粒子以外は、粒径0.4μm以上の大
結晶粒子で構成した試料No.23、24では、いずれ
もCR積を高くできたが、誘電体層厚みが2.5μmの
場合に、絶縁抵抗比が低くなり、絶縁抵抗の電界強度依
存性が大きくなった。
Further, as shown in FIG.
m, except for the small-diameter crystal particles having a diameter of 0.4 μm or less. In Examples 23 and 24, the CR product could be increased, but when the thickness of the dielectric layer was 2.5 μm, the insulation resistance ratio was reduced, and the electric field strength dependence of the insulation resistance was increased.

【0043】[0043]

【発明の効果】上述したとおり、本発明の積層型電子部
品では、誘電体層が、粒径0.4μm以上の大径結晶粒
子を10〜30体積%と、粒径0.25μm以下の小径
結晶粒子を50〜70体積%の割合で含有することによ
り、積層型電子部品のCR積を高め、絶縁抵抗の電界強
度依存性を抑制することができる。
As described above, in the multilayer electronic component of the present invention, the dielectric layer is composed of 10 to 30% by volume of large-diameter crystal grains having a grain size of 0.4 μm or more and small-diameter grains having a grain size of 0.25 μm or less. By containing the crystal particles at a ratio of 50 to 70% by volume, the CR product of the multilayer electronic component can be increased, and the electric field strength dependence of the insulation resistance can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層型電子部品の概略断面図である。FIG. 1 is a schematic sectional view of a multilayer electronic component of the present invention.

【図2】本発明の積層型電子部品に用いられる誘電体の
微構造を示す断面図である。
FIG. 2 is a cross-sectional view showing a microstructure of a dielectric used in the multilayer electronic component of the present invention.

【図3】積層型電子部品の絶縁抵抗の電界強度依存性を
示すグラフである。
FIG. 3 is a graph showing electric field strength dependence of insulation resistance of a multilayer electronic component.

【符号の説明】[Explanation of symbols]

A 積層型電子部品 1 電子部品本体 3 外部電極 5 内部電極層 7 誘電体層 17 大径結晶粒子 19 小径結晶粒子 21 粒界相 A Laminated electronic component 1 Electronic component body 3 External electrode 5 Internal electrode layer 7 Dielectric layer 17 Large crystal grain 19 Small crystal grain 21 Grain boundary phase

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E001 AB03 AC09 AD00 AE02 AE03 AE04 AF06 5E082 AA01 AB03 BC14 EE04 EE23 EE35 FG06 FG26 FG54 GG10 GG11 GG28 JJ03 JJ12 JJ15 JJ23 MM24 PP09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5E001 AB03 AC09 AD00 AE02 AE03 AE04 AF06 5E082 AA01 AB03 BC14 EE04 EE23 EE35 FG06 FG26 FG54 GG10 GG11 GG28 JJ03 JJ12 JJ15 JJ23 MM24 PP09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】誘電体層と内部電極層とを交互に積層して
なる電子部品本体の両端部に、前記内部電極層と交互に
接続する一対の外部電極を形成してなる積層型電子部品
において、前記誘電体層が、粒径0.4μm以上の大径
結晶粒子を10〜30体積%の割合で含有するととも
に、粒径0.25μm以下の小径結晶粒子を50〜70
体積%の割合で含有することを特徴とする積層型電子部
品。
1. A laminated electronic component comprising a pair of external electrodes alternately connected to said internal electrode layers formed at both ends of an electronic component body comprising alternately laminated dielectric layers and internal electrode layers. In the above, the dielectric layer contains 10 to 30% by volume of large-diameter crystal particles having a particle diameter of 0.4 μm or more, and 50 to 70% of small-diameter crystal particles having a particle diameter of 0.25 μm or less.
A multilayer electronic component characterized in that it is contained in a volume percentage.
【請求項2】大径結晶粒子の中で、粒径が0.4〜0.
6μmの前記大径結晶粒子を90体積%以上含有し、且
つ小径結晶粒子の中で、粒径が0.1〜0.25μmの
前記小径結晶粒子を90体積%以上含有することを特徴
とする請求項1記載の積層型電子部品。
2. The large-diameter crystal particles having a particle size of 0.4 to 0.1.
It is characterized by containing 90% by volume or more of the large-diameter crystal particles of 6 μm and 90% by volume or more of the small-diameter crystal particles having a particle size of 0.1 to 0.25 μm among the small-diameter crystal particles. The multilayer electronic component according to claim 1.
【請求項3】誘電体層の厚みが2.5μm以下であるこ
とを特徴とする請求項1または2記載の積層型電子部
品。
3. The multilayer electronic component according to claim 1, wherein the thickness of the dielectric layer is 2.5 μm or less.
【請求項4】誘電体層がBaTiO3、Mnおよび希土
類元素を含有することを特徴とする請求項1乃至3のう
ちいずれかに記載の積層型電子部品。
4. The multilayer electronic component according to claim 1, wherein the dielectric layer contains BaTiO 3 , Mn, and a rare earth element.
【請求項5】内部電極層および外部電極が卑金属からな
ることを特徴とする請求項1乃至4のうちいずれかに記
載の積層型電子部品。
5. The multilayer electronic component according to claim 1, wherein the internal electrode layer and the external electrode are made of a base metal.
JP2000160580A 2000-05-30 2000-05-30 Multilayer electronic components Expired - Fee Related JP4471453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000160580A JP4471453B2 (en) 2000-05-30 2000-05-30 Multilayer electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000160580A JP4471453B2 (en) 2000-05-30 2000-05-30 Multilayer electronic components

Publications (2)

Publication Number Publication Date
JP2001338828A true JP2001338828A (en) 2001-12-07
JP4471453B2 JP4471453B2 (en) 2010-06-02

Family

ID=18664749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000160580A Expired - Fee Related JP4471453B2 (en) 2000-05-30 2000-05-30 Multilayer electronic components

Country Status (1)

Country Link
JP (1) JP4471453B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033070A (en) * 2003-07-09 2005-02-03 Tdk Corp Multilayer ceramic condenser and its manufacturing method
JP2006261561A (en) * 2005-03-18 2006-09-28 Kyocera Corp Multilayer ceramic capacitor and its manufacturing method
JP2006278615A (en) * 2005-03-29 2006-10-12 Kyocera Corp Laminated ceramic capacitor and its manufacturing method
KR101077738B1 (en) 2009-02-25 2011-10-27 가부시키가이샤 무라타 세이사쿠쇼 Laminated ceramic capacitor
US8445396B2 (en) 2010-09-28 2013-05-21 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated ceramic capacitor
CN103971925A (en) * 2013-01-31 2014-08-06 太阳诱电株式会社 Multilayer Ceramic Capacitor
US20140254063A1 (en) * 2012-03-07 2014-09-11 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor
CN105321714A (en) * 2014-08-01 2016-02-10 太阳诱电株式会社 Multilayer ceramic capacitor
US9293261B2 (en) 2012-09-27 2016-03-22 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033070A (en) * 2003-07-09 2005-02-03 Tdk Corp Multilayer ceramic condenser and its manufacturing method
JP2006261561A (en) * 2005-03-18 2006-09-28 Kyocera Corp Multilayer ceramic capacitor and its manufacturing method
JP4549210B2 (en) * 2005-03-18 2010-09-22 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP2006278615A (en) * 2005-03-29 2006-10-12 Kyocera Corp Laminated ceramic capacitor and its manufacturing method
KR101077738B1 (en) 2009-02-25 2011-10-27 가부시키가이샤 무라타 세이사쿠쇼 Laminated ceramic capacitor
US8445396B2 (en) 2010-09-28 2013-05-21 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated ceramic capacitor
US20140254063A1 (en) * 2012-03-07 2014-09-11 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor
US9418792B2 (en) * 2012-03-07 2016-08-16 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor
US9293261B2 (en) 2012-09-27 2016-03-22 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor
CN103971925A (en) * 2013-01-31 2014-08-06 太阳诱电株式会社 Multilayer Ceramic Capacitor
US9177726B2 (en) 2013-01-31 2015-11-03 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor
KR20160016588A (en) 2014-08-01 2016-02-15 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor
CN105321714A (en) * 2014-08-01 2016-02-10 太阳诱电株式会社 Multilayer ceramic capacitor
CN105321714B (en) * 2014-08-01 2018-01-26 太阳诱电株式会社 Laminated ceramic capacitor
US10468189B2 (en) 2014-08-01 2019-11-05 Taiyo Yuden Co., Ltd Multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP4471453B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP5046700B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4859593B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPH11273986A (en) Dielectric ceramic and its manufacture and laminated ceramic electronic part and its manufacture
JP4587924B2 (en) Multilayer ceramic capacitor
JPH11273985A (en) Dielectric ceramic and its manufacture, and laminated ceramic electronic part and its manufacture
JP4100173B2 (en) Dielectric ceramic and multilayer ceramic capacitors
WO2006082833A1 (en) Stacked ceramic capacitor and process for producing said stacked ceramic capacitor
JP2006206362A (en) Dielectric ceramic and multilayer ceramic capacitor
KR102163417B1 (en) Multi-layered ceramic capacitor
JP2010010157A (en) Stacked ceramic capacitor, and method of manufacturing the same
JP3603607B2 (en) Dielectric ceramic, multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
JP2008078516A (en) Laminated ceramic capacitor, and its manufacturing method
JP4557472B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4721576B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4471453B2 (en) Multilayer electronic components
JP4663141B2 (en) Dielectric porcelain and multilayer electronic components
JP2001307940A (en) Laminated ceramic capacitor and its manufacturing method
JP2006041392A (en) Multilayer ceramic capacitor
JP5046432B2 (en) Dielectric porcelain and multilayer electronic components
JP4511323B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR100395742B1 (en) Electronic device, dielectric ceramic composition, and method for producing same
JP3945033B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2010212503A (en) Laminated ceramic capacitor
JP4022162B2 (en) Multilayer electronic component and manufacturing method thereof
JP5372034B2 (en) Dielectric porcelain and multilayer electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4471453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees