JPH04322056A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH04322056A
JPH04322056A JP3117042A JP11704291A JPH04322056A JP H04322056 A JPH04322056 A JP H04322056A JP 3117042 A JP3117042 A JP 3117042A JP 11704291 A JP11704291 A JP 11704291A JP H04322056 A JPH04322056 A JP H04322056A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
negative electrode
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3117042A
Other languages
Japanese (ja)
Inventor
Kiyoaki Akashiro
赤代 清明
Mayumi Nakagawa
中川 真弓
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP3117042A priority Critical patent/JPH04322056A/en
Publication of JPH04322056A publication Critical patent/JPH04322056A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a battery of large discharging capacity, and of good charging/discharging cycle characteristic by using spherical carbon particulate having condensed polynuclear aromatic structure as a negative electrode active material. CONSTITUTION:In a battery for which an organic electrolyte in which lithium salt is dissolved in an organic solvent is used, spherical carbon particulate is used for which particles of condensed polynuclear aromatic structure serving as a negative electrode active material that forms a negative electrode 5 is properly cabonated into a crystalline structure similar to graphite. As the carbon particulate has a spherical grain form of normally 1-100mum of average grain diameter, when it is used as negative electrode active material, charging efficiency is improved. The discharging capacity par volume is increased, while charging/discharging characteristic is improved.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、有機溶媒にリチウム
塩を溶解させてなる有機電解液を用いたボタン型,筒型
などのリチウム二次電池に関するものである。 【0002】 【従来の技術】近年、放電容量が大きく、高電圧,高エ
ネルギ―密度で長時間使用できる充電可能なリチウム二
次電池に対する期待が高まつている。 【0003】この種のリチウム二次電池は、従来、有機
溶媒にリチウム塩を溶解させてなる有機電解液を用いる
一方、負極活物質としてリチウムまたはリチウム合金を
用いているが、この負極活物質によると内部短絡を起こ
しやすく、電池特性の劣化や安全性の面で問題があつた
。 【0004】そこで、リチウムまたはリチウム合金に代
えて、活性炭や黒鉛などの炭素材料を負極活物質として
用いることが、特開昭58−35881号公報、特開昭
59−143280号公報、「Journal of 
Electrochemical Society」第
222頁(1970年)、「第29回電池討論会講演要
旨集」第139頁(1988年)などにおいて、検討さ
れている。 【0005】 【発明が解決しようとする課題】しかるに、上記公知の
炭素材料では、いずれも十分な放電容量が得られにくい
うえに、充放電サイクル特性が悪かつたり、自己放電し
やすいなどの問題があり、未だ十分に満足できるものと
はいえなかつた。 【0006】この発明は、上記従来の事情に鑑み、放電
容量が大きく、充放電サイクル特性が良好であり、また
自己放電が少なく、安全性の面でも満足できるリチウム
二次電池を提供することを目的としている。 【0007】 【課題を解決するための手段】この発明者らは、上記の
目的を達成するために鋭意検討した結果、特定の結晶構
造を有する炭素材料を負極活物質として用いることによ
り、放電容量が大きく、充放電サイクル特性が良好であ
り、また自己放電が少なく、安全性にすぐれたリチウム
二次電池が得られることを見い出し、この発明を完成す
るに至つた。 【0008】すなわち、この発明は、有機溶媒にリチウ
ム塩を溶解させてなる有機電解液を用いたリチウム二次
電池において、縮合多環芳香環構造をもつ球状炭素微粒
子を負極活物質として用いたことを特徴とするリチウム
二次電池に係るものである。 【0009】 【発明の構成・作用】この発明に用いられる縮合多環芳
香環構造をもつ球状炭素微粒子とは、石炭系や石油系の
重質油、タ―ル、ピツチ類を加熱したときに温度の上昇
とともに芳香環が形成され、しだいに縮合多環芳香環構
造の分子に変換されるが、このものをさらに加熱して黒
鉛類似構造となるまで炭化処理することにより、球状の
炭素微粒子として得られるものであり、その平均粒子径
は一般に1〜100μm、真密度は1.4〜2.2の範
囲にある。 【0010】ここで、上記炭化処理前の縮合多環芳香環
構造の分子は、平面分子で、電子の供与体にも受容体に
もなりえ、自由な運動が可能であつて、分子間距離が小
さい液相状態ではフアンデルワ―ルス力によつて一定の
配向を示し、いわゆる液晶状態を呈する相が形成される
ことが知られており、また表面エネルギ―により新たな
異方性相は等方性マトリツクス中にて球状となり、その
構造は上記平面分子が積層し各ラメラ末端が球面と直交
していることが知られている。 【0011】このような縮合多環芳香環構造の分子を炭
化処理することにより、前記球状の炭素微粒子が得られ
るが、この際上記炭化処理の条件として黒鉛類似構造の
結晶構造となる適度な処理条件を選択することにより、
上記微粒子を負極活物質としたリチウム二次電池の放電
容量や充放電サイクル特性の向上に好結果を得ることが
でき、また自己放電の低下などにも好ましい結果を得る
ことができる。 【0012】これに対し、上記構造に至らない不十分な
炭化処理を行つたものでは、その真密度が小さくなつて
、これを負極活物質としたリチウム二次電池は体積あた
りの放電容量が小さくなり、また電解液との界面に電気
二重層を形成するだけで、陽イオンのインタ―カレ―ト
が起こらないことから、充放電サイクル特性が悪くなつ
たり、自己放電が多くなるなどの弊害を招きやすい。 また、これとは逆に、上記構造を超える、つまり完全な
黒鉛構造となる過度の炭化処理を行つたものでは、電解
液に対し不安定となり、陽イオンを取り込んだときにプ
ロピレンカ―ボネ―トなどの電解液と化学反応して、そ
の放電容量が低下してしまうという難点がある。 【0013】黒鉛類似構造の結晶構造となる適切な炭化
処理を施した場合、通常その炭素層面の平均面間隔が3
.35Å以上、c軸方向の結晶子の大きさが500Å以
下、a軸方向の結晶子の大きさが700Å以下であり、
かつアルゴンレ―ザを用いたラマンスペクトルにおける
1580cm−1のピ―ク強度に対する1380cm−
1のピ―ク強度の比が0.2以上となるのが普通である
。したがつて、このような特性値が得られるように炭化
処理の条件を適宜選択するのが望ましい。 【0014】ところで、黒鉛類似構造の結晶構造をもつ
た炭素材料を負極活物質として利用することについては
、特開昭62−90863号公報、特開昭62−122
066号公報、特開昭63−24555号公報、特開平
1−204361号公報などに開示されているように、
既に公知である。しかるに、この種の炭素材料は、前記
この発明のものとは全く異なる方法、たとえば固相、気
相炭素化法などの方法で製造される、縮合多環芳香環構
造をもつが、板状の粒子形態をとるものであつて、その
かさ密度が小さく、体積あたりの放電容量が著しく低い
という難点を有している。 【0015】これに対し、前記この発明の縮合多環芳香
環構造をもつ炭素微粒子は、平均粒子径が通常1〜10
0μmの範囲にある球状の粒子形態をとるものであるた
め、負極活物質として用いた場合にその充てん率を大幅
に向上でき、かつ異方性のないすぐれた放電反応を期待
できることから、体積あたりの放電容量が著しく増大す
るという特徴を有している。 【0016】この発明の球状炭素微粒子を負極活物質と
して用いる際には、これをそのまま電池内に装てんする
こともできるが、一般には予め上記粒子を含む所望形状
の成形体を作製し、これを電池内に装てんするのが望ま
しい。成形体の作製は、たとえば上記粒子とそのバイン
ダとなるポリテトラフルオロエチレン粉末などを水−ア
ルコ―ル系混合溶媒に分散させたスラリ―を調製し、こ
れをニツケル網などの金網上に塗布,乾燥したのち、上
記金網と一体に打ち抜いたうえで所望厚となるまで加圧
成形すればよい。 【0017】図1は、上記成形体を負極としたこの発明
のボタン型のリチウム二次電池の構造例を示す。この図
において、1は内面にニツケルメツキを施したステンレ
ス鋼からなる皿型の負極缶、2はステンレス鋼からなる
皿型の正極缶であり、この両缶1,2を向かい合わせ、
両者の周縁部を合成ゴムや合成樹脂などの弾性絶縁材料
からなる環状ガスケツト3を介在して嵌合圧着すること
により、偏平な密閉容器を構成している。 【0018】この容器の内部には、負極缶1にステンレ
スネツトからなる集電体4を介して接合した前記特定の
成形体からなる負極5と、正極缶2にステンレスネツト
からなる集電体6を介して接合した正極7と、両極5,
7間に介在するセパレ―タ8および電解液吸収体9とが
、装てんされており、さらに有機溶媒にリチウム塩を溶
解させてなる有機電解液が注入されている。 【0019】上記の有機電解液において、有機溶媒とし
ては、エチレンカ―ボネ―ト、プロピレンカ―ボネ―ト
、1,2−ジメトキシエタン、γ−ブチロラクトン、ジ
オキソランなどの極性溶媒が用いられる。また、リチウ
ム塩としては、LiCF3 SO3 、LiBF4 、
LiClO4 、LiBφ4 (φはフエニル基)、L
iPF6 、LiAsF6 などの各種塩が用いられる
。 【0020】なお、この発明は図示したボタン型電池に
限らず、筒型その他の種々の形態および構造のリチウム
二次電池に適用できるものである。 【0021】以上のように、この発明によれば、負極活
物質として特定の球状炭素微粒子を用いるようにしたこ
とにより、放電容量が大きく、充放電サイクル特性が良
好であり、また自己放電が少なく、安全性にすぐれたリ
チウム二次電池を提供することができる。 【0022】 【実施例】つぎに、この発明の実施例を記載してより具
体的に説明する。なお、以下の実施例では、縮合多環芳
香環構造をもつ球状炭素微粒子として、大阪社製のメリ
カ―ボンマイクロビ―ズを用いたが、この発明が上記商
品を使用したものにのみ限定されないことはいうまでも
ない。 【0023】実施例1 平均粒子径20μm、真密度2.006のメリカ―ボン
マイクロビ―ズ(結晶構造として、炭素層面の平均面間
隔が3.435Å、c軸方向の結晶子の大きさが25Å
、a軸方向の結晶子の大きさが20Å以下、アルゴンレ
―ザを用いたラマンスペクトルにおける1580cm−
1のピ―ク強度に対する1380cm−1のピ―ク強度
の比が0.9以上である)30g、純水4.7g、ポリ
テトラフルオロエチレンの濃度60重量%の水分散液1
.5ml、イソプロピルアルコ―ル2.8mlを、試料
びんの中に入れ、30分間攪拌してスラリ―状とした。 このスラリ―状物を60メツシユのニツケル網の上に乾
燥後の厚さが0.4mmとなるように塗布し、200℃
で1時間乾燥した。ついで、これを直径10mm(面積
約0.785cm2 )の大きさに打ち抜いたのち、1
トン/cm2 の圧で加圧成形して、全体厚が0.3m
mの成形体を作製した。 【0024】上記の成形体を負極とし、正極としてMn
O2 の合剤からなる厚さ0.5mm,直径10mmの
成形体を、セパレ―タとして微孔性ポリプロピレンフイ
ルムを、電解液吸収体としてポリプロピレン不織布を、
有機電解液としてエチレンカ―ボネ―トと1,2−ジメ
トキシエタンとの容量比1:1の混合溶媒にLiCF3
 SO3 を0.6モル/l溶解させてなる溶液を、環
状ガスケツトとしてポリプロピレン製のものを、それぞ
れ使用して、図1に示す構造のボタン型のリチウム二次
電池を作製した。 【0025】実施例2 縮合多環芳香環構造をもつ球状炭素微粒子として、平均
粒子径20μm、真密度1.943のメリカ―ボンマイ
クロビ―ズ(結晶構造として、炭素層面の平均面間隔が
3.481Å、c軸方向の結晶子の大きさが22Å、a
軸方向の結晶子の大きさが20Å以下、アルゴンレ―ザ
を用いたラマンスペクトルにおける1580cm−1の
ピ―ク強度に対する1355cm−1のピ―ク強度の比
が0.9以上である)を30g使用した以外は、実施例
1と同様にして、ボタン型のリチウム二次電池を作製し
た。 【0026】実施例3 縮合多環芳香環構造をもつ球状炭素微粒子として、平均
粒子径20μm、真密度2.15のメリカ―ボンマイク
ロビ―ズ(結晶構造として、炭素層面の平均面間隔が3
.421Å、c軸方向の結晶子の大きさが370Å、a
軸方向の結晶子の大きさが222Å、アルゴンレ―ザを
用いたラマンスペクトルにおける1580cm−1のピ
―ク強度に対する1355cm−1のピ―ク強度の比が
0.89である)を30g使用した以外は、実施例1と
同様にして、ボタン型のリチウム二次電池を作製した。 【0027】実施例4 縮合多環芳香環構造をもつ球状炭素微粒子として、平均
粒子径6μm、真密度2.00のメリカ―ボンマイクロ
ビ―ズ(結晶構造として、炭素層面の平均面間隔が3.
480Å、c軸方向の結晶子の大きさが24Å、a軸方
向の結晶子の大きさが20Å以下、アルゴンレ―ザを用
いたラマンスペクトルにおける1580cm−1のピ―
ク強度に対する1355cm−1のピ―ク強度の比が1
.09である)を30g使用した以外は、実施例1と同
様にして、ボタン型のリチウム二次電池を作製した。 【0028】比較例1 縮合多環芳香環構造をもつ球状炭素微粒子(平均粒子径
20μm、真密度2.006)に代えて、平均粒子径2
0μm、真密度2.25のグラフアイトを用いた以外は
、実施例1と同様にして、ボタン型のリチウム二次電池
を作製した。 【0029】上記の実施例および比較例の各電池につい
て、充放電サイクル数と放電容量との関係を調べた。そ
の結果は、つぎの表1に示すとおりであつた。 【0030】       【0031】上記の表1の結果から明らか
なように、この発明のリチウム二次電池は、放電容量が
大きく、かつ充放電サイクル特性も良好であり、自己放
電が少ない安全な電池として上記特徴を生かした各種の
用途に幅広く応用できるものであることがわかる。
Detailed Description of the Invention [0001] [Industrial Application Field] This invention relates to a button-type, cylindrical-type, etc. lithium secondary battery using an organic electrolyte prepared by dissolving a lithium salt in an organic solvent. It is. BACKGROUND OF THE INVENTION In recent years, expectations have been increasing for rechargeable lithium secondary batteries that have a large discharge capacity and can be used for long periods of time at high voltage and energy density. Conventionally, this type of lithium secondary battery uses an organic electrolyte prepared by dissolving a lithium salt in an organic solvent, and uses lithium or a lithium alloy as a negative electrode active material. This caused problems in terms of deterioration of battery characteristics and safety, as internal short circuits were likely to occur. Therefore, instead of lithium or lithium alloy, carbon materials such as activated carbon and graphite can be used as negative electrode active materials, as described in Japanese Patent Application Laid-open No. 58-35881, Japanese Patent Application Laid-Open No. 59-143280, and ``Journal of
"Electrochemical Society", p. 222 (1970), "29th Battery Symposium Abstracts", p. 139 (1988), etc. [Problems to be Solved by the Invention] However, with the above-mentioned known carbon materials, it is difficult to obtain sufficient discharge capacity, and there are problems such as poor charge/discharge cycle characteristics and easy self-discharge. However, it still cannot be said to be fully satisfactory. [0006] In view of the above-mentioned conventional circumstances, it is an object of the present invention to provide a lithium secondary battery that has a large discharge capacity, good charge/discharge cycle characteristics, little self-discharge, and is satisfactory in terms of safety. The purpose is [Means for Solving the Problems] As a result of intensive studies to achieve the above object, the inventors found that by using a carbon material having a specific crystal structure as a negative electrode active material, the discharge capacity can be increased. The present inventors have discovered that a lithium secondary battery can be obtained that has a large capacity, good charge-discharge cycle characteristics, little self-discharge, and is highly safe, leading to the completion of this invention. That is, the present invention uses spherical carbon fine particles having a condensed polycyclic aromatic ring structure as a negative electrode active material in a lithium secondary battery using an organic electrolyte prepared by dissolving a lithium salt in an organic solvent. The invention relates to a lithium secondary battery characterized by: Structure and operation of the invention: The spherical carbon fine particles having a condensed polycyclic aromatic ring structure used in the present invention are those that are used in the present invention when coal-based or petroleum-based heavy oils, tars, or pitches are heated. As the temperature rises, aromatic rings are formed and are gradually converted into molecules with a condensed polycyclic aromatic ring structure.By further heating this material and carbonizing it until it becomes a graphite-like structure, it becomes spherical carbon particles. The average particle diameter is generally in the range of 1 to 100 μm, and the true density is in the range of 1.4 to 2.2. [0010] Here, the molecules of the condensed polycyclic aromatic ring structure before the above carbonization treatment are planar molecules that can serve as electron donors and acceptors, are capable of free movement, and have a small intermolecular distance. In a liquid phase state where the It is known that the structure is spherical in the sexual matrix, and its structure is that the planar molecules described above are stacked, with each lamellar end perpendicular to the spherical surface. [0011] The spherical carbon fine particles can be obtained by carbonizing molecules having such a condensed polycyclic aromatic ring structure, but at this time, as a condition for the carbonization treatment, an appropriate treatment to obtain a crystal structure similar to graphite is required. By selecting the conditions,
Good results can be obtained in improving the discharge capacity and charge/discharge cycle characteristics of a lithium secondary battery using the above-mentioned fine particles as a negative electrode active material, and favorable results can also be obtained in reducing self-discharge. On the other hand, if the carbonization treatment is insufficient to achieve the above structure, the true density will be small, and a lithium secondary battery using this as a negative electrode active material will have a small discharge capacity per volume. Furthermore, since cation intercalation does not occur by simply forming an electric double layer at the interface with the electrolyte, there are no negative effects such as poor charge/discharge cycle characteristics or increased self-discharge. Easy to invite. On the other hand, if the structure exceeds the above, that is, if the carbonization process is excessive to create a complete graphite structure, it will become unstable with respect to the electrolyte, and when cations are taken in, the propylene carbon The problem is that it chemically reacts with the electrolyte such as carbon, reducing its discharge capacity. [0013] When an appropriate carbonization treatment is performed to obtain a crystal structure similar to graphite, the average interplanar spacing of the carbon layer planes is usually 3.
.. 35 Å or more, the crystallite size in the c-axis direction is 500 Å or less, and the crystallite size in the a-axis direction is 700 Å or less,
and 1380 cm-1 for the peak intensity of 1580 cm-1 in the Raman spectrum using an argon laser.
Usually, the ratio of the peak intensity of 1 to 1 is 0.2 or more. Therefore, it is desirable to appropriately select the conditions for carbonization treatment so that such characteristic values can be obtained. By the way, regarding the use of a carbon material having a crystal structure similar to graphite as a negative electrode active material, Japanese Patent Application Laid-Open No. 62-90863 and Japanese Patent Application Laid-Open No. 62-122
As disclosed in JP-A No. 066, JP-A-63-24555, JP-A-1-204361, etc.
It is already publicly known. However, this type of carbon material has a condensed polycyclic aromatic ring structure, which is produced by a method completely different from that of the present invention, such as a solid phase or gas phase carbonization method, but it has a plate-like structure. It takes the form of particles and has the drawbacks of low bulk density and extremely low discharge capacity per volume. On the other hand, the carbon fine particles having a condensed polycyclic aromatic ring structure of the present invention usually have an average particle diameter of 1 to 10
Since it takes the form of spherical particles in the range of 0 μm, when used as a negative electrode active material, the filling rate can be greatly improved, and an excellent discharge reaction without anisotropy can be expected. It is characterized by a marked increase in discharge capacity. When the spherical carbon fine particles of the present invention are used as a negative electrode active material, they can be loaded into a battery as they are, but generally, a molded body of a desired shape containing the above particles is prepared in advance, and then It is preferable to load it inside the battery. To produce a molded body, for example, a slurry is prepared by dispersing the above particles and polytetrafluoroethylene powder as a binder in a water-alcohol mixed solvent, and this is applied onto a wire mesh such as a nickel mesh. After drying, it may be punched out integrally with the wire mesh and then pressure molded to a desired thickness. FIG. 1 shows an example of the structure of a button-shaped lithium secondary battery of the present invention using the above molded body as a negative electrode. In this figure, 1 is a dish-shaped negative electrode can made of stainless steel with nickel plating on the inside, 2 is a dish-shaped cathode can made of stainless steel, and these cans 1 and 2 are placed facing each other.
A flat airtight container is constructed by fitting and press-bonding the peripheral edges of both with an annular gasket 3 made of an elastic insulating material such as synthetic rubber or synthetic resin interposed therebetween. Inside this container, a negative electrode 5 made of the specific molded body bonded to the negative electrode can 1 via a current collector 4 made of stainless steel net, and a current collector 6 made of stainless steel net attached to the positive electrode can 2. The positive electrode 7 and both electrodes 5,
A separator 8 and an electrolyte absorber 9 interposed between the electrodes 7 are loaded, and an organic electrolyte prepared by dissolving a lithium salt in an organic solvent is injected. In the above organic electrolyte, polar solvents such as ethylene carbonate, propylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, and dioxolane are used as the organic solvent. In addition, lithium salts include LiCF3 SO3, LiBF4,
LiClO4, LiBφ4 (φ is phenyl group), L
Various salts such as iPF6 and LiAsF6 are used. The present invention is not limited to the illustrated button type battery, but can be applied to lithium secondary batteries of various shapes and structures, including a cylindrical type. As described above, according to the present invention, by using specific spherical carbon fine particles as the negative electrode active material, the discharge capacity is large, the charge/discharge cycle characteristics are good, and self-discharge is reduced. , it is possible to provide a lithium secondary battery with excellent safety. EXAMPLES Next, examples of the present invention will be described in more detail. In the following examples, Mericarbon Microbeads manufactured by Osaka Co., Ltd. were used as spherical carbon particles having a condensed polycyclic aromatic ring structure, but the present invention is not limited to those using the above-mentioned products. Needless to say. Example 1 Mericarbon microbeads with an average particle diameter of 20 μm and a true density of 2.006 (as for the crystal structure, the average spacing between the carbon layer planes is 3.435 Å, and the crystallite size in the c-axis direction is 25Å
, the crystallite size in the a-axis direction is 20 Å or less, and the Raman spectrum using an argon laser is 1580 cm-
The ratio of the peak intensity at 1380 cm to the peak intensity at 1 is 0.9 or more) 30 g, 4.7 g of pure water, aqueous dispersion 1 of polytetrafluoroethylene with a concentration of 60% by weight
.. 5 ml of isopropyl alcohol and 2.8 ml of isopropyl alcohol were placed in a sample bottle and stirred for 30 minutes to form a slurry. This slurry-like material was applied onto a 60-mesh nickel net so that the thickness after drying was 0.4 mm, and the mixture was heated at 200°C.
It was dried for 1 hour. Next, after punching out this into a size of 10 mm in diameter (approximately 0.785 cm2 in area),
Pressure molded at a pressure of ton/cm2, total thickness 0.3m
A molded body of m was produced. The above molded body was used as a negative electrode, and Mn was used as a positive electrode.
A molded body with a thickness of 0.5 mm and a diameter of 10 mm made of a mixture of O2, a microporous polypropylene film as a separator, a polypropylene nonwoven fabric as an electrolyte absorber,
LiCF3 was added to a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1:1 as an organic electrolyte.
A button-shaped lithium secondary battery having the structure shown in FIG. 1 was fabricated using a solution prepared by dissolving 0.6 mol/l of SO3 and using a polypropylene annular gasket. Example 2 As spherical carbon fine particles having a condensed polycyclic aromatic ring structure, meric carbon microbeads with an average particle diameter of 20 μm and a true density of 1.943 (as for the crystal structure, the average interplanar spacing of the carbon layer planes is 3 .481 Å, the crystallite size in the c-axis direction is 22 Å, a
The crystallite size in the axial direction is 20 Å or less, and the ratio of the peak intensity at 1355 cm-1 to the peak intensity at 1580 cm-1 in the Raman spectrum using an argon laser is 0.9 or more). A button-shaped lithium secondary battery was produced in the same manner as in Example 1, except for using the following. Example 3 As spherical carbon fine particles having a condensed polycyclic aromatic ring structure, meric carbon microbeads with an average particle diameter of 20 μm and a true density of 2.15 (as for the crystal structure, the average interplanar spacing of the carbon layer planes is 3
.. 421 Å, the crystallite size in the c-axis direction is 370 Å, a
The crystallite size in the axial direction is 222 Å, and the ratio of the peak intensity at 1355 cm to the peak intensity at 1580 cm in the Raman spectrum using an argon laser is 0.89). A button-type lithium secondary battery was produced in the same manner as in Example 1 except for this. Example 4 As spherical carbon fine particles having a condensed polycyclic aromatic ring structure, meric carbon microbeads with an average particle diameter of 6 μm and a true density of 2.00 (as for the crystal structure, the average interplanar spacing of carbon layer planes is 3 ..
480 Å, the crystallite size in the c-axis direction is 24 Å, the crystallite size in the a-axis direction is less than 20 Å, and the peak at 1580 cm-1 in the Raman spectrum using an argon laser.
The ratio of the peak intensity at 1355 cm-1 to the peak intensity is 1
.. A button-shaped lithium secondary battery was produced in the same manner as in Example 1, except that 30 g of 09) was used. Comparative Example 1 Instead of using spherical carbon fine particles having a condensed polycyclic aromatic ring structure (average particle diameter 20 μm, true density 2.006), an average particle diameter of 2.
A button-shaped lithium secondary battery was produced in the same manner as in Example 1 except that graphite having a diameter of 0 μm and a true density of 2.25 was used. The relationship between the number of charge/discharge cycles and the discharge capacity of each of the batteries of the above examples and comparative examples was investigated. The results were as shown in Table 1 below. [0030] As is clear from the results in Table 1 above, the lithium secondary battery of the present invention has a large discharge capacity and good charge/discharge cycle characteristics, and can be used as a safe battery with little self-discharge. It can be seen that the above characteristics can be widely applied to various uses.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明のリチウム二次電池の構造例を示す断
面図である。
FIG. 1 is a sectional view showing a structural example of a lithium secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

5  負極 7  正極 5 Negative electrode 7 Positive electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  有機溶媒にリチウム塩を溶解させてな
る有機電解液を用いたリチウム二次電池において、縮合
多環芳香環構造をもつ球状炭素微粒子を負極活物質とし
て用いたことを特徴とするリチウム二次電池。
[Claim 1] A lithium secondary battery using an organic electrolyte prepared by dissolving a lithium salt in an organic solvent, characterized in that spherical carbon fine particles having a condensed polycyclic aromatic ring structure are used as a negative electrode active material. Lithium secondary battery.
【請求項2】  球状炭素微粒子はその平均粒子径が1
〜100μm、真密度が1.4〜2.2である請求項1
のリチウム二次電池。
[Claim 2] The spherical carbon fine particles have an average particle diameter of 1
~100 μm and true density of 1.4 to 2.2. Claim 1
lithium secondary battery.
【請求項3】  球状炭素微粒子はその炭素層面の平均
面間隔が3.35Å以上、c軸方向の結晶子の大きさが
500Å以下、a軸方向の結晶子の大きさが700Å以
下であり、かつアルゴンレ―ザを用いたラマンスペクト
ルにおける1580cm−1のピ―ク強度に対する13
80cm−1のピ―ク強度の比が0.2以上である結晶
構造を有する請求項1または請求項2のリチウム二次電
池。
3. The spherical carbon fine particles have an average interplanar spacing of carbon layer planes of 3.35 Å or more, a crystallite size in the c-axis direction of 500 Å or less, and a crystallite size in the a-axis direction of 700 Å or less, and 13 for the peak intensity at 1580 cm in the Raman spectrum using an argon laser.
The lithium secondary battery according to claim 1 or 2, having a crystal structure in which the ratio of peak intensities at 80 cm-1 is 0.2 or more.
JP3117042A 1991-04-19 1991-04-19 Lithium secondary battery Pending JPH04322056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3117042A JPH04322056A (en) 1991-04-19 1991-04-19 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3117042A JPH04322056A (en) 1991-04-19 1991-04-19 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH04322056A true JPH04322056A (en) 1992-11-12

Family

ID=14702001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3117042A Pending JPH04322056A (en) 1991-04-19 1991-04-19 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH04322056A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5389652B2 (en) * 2007-08-10 2014-01-15 昭和電工株式会社 Negative electrode for lithium secondary battery, method for producing carbon negative electrode active material, lithium secondary battery and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5389652B2 (en) * 2007-08-10 2014-01-15 昭和電工株式会社 Negative electrode for lithium secondary battery, method for producing carbon negative electrode active material, lithium secondary battery and use thereof
US8841029B2 (en) 2007-08-10 2014-09-23 Showa Denko K.K. Negative electrode for lithium secondary battery, method for producing carbon-based negative electrode active material, lithium secondary battery and use thereof
KR101522911B1 (en) * 2007-08-10 2015-05-26 쇼와 덴코 가부시키가이샤 Negative electrode for lithium secondary battery, method for producing carbon-based negative electrode active material, lithium secondary battery and use thereof

Similar Documents

Publication Publication Date Title
CA2156676C (en) Carbonaceous electrode material for secondary battery and process for production thereof
JP2884746B2 (en) Non-aqueous electrolyte secondary battery
JPH087885A (en) Lithium secondary battery
JP3532016B2 (en) Organic electrolyte secondary battery
JPH04190555A (en) Lithium secondary battery
WO2020251021A1 (en) Method for producing graphitized bulk mesophase
JP3236400B2 (en) Non-aqueous secondary battery
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JPH0737618A (en) Nonaqueous electrolyte secondary battery
JPH0660880A (en) Lithium secondary battery
JPH04322056A (en) Lithium secondary battery
JPH04280068A (en) Lithium secondary battery
JPH04342958A (en) Negative electrode for battery with non-aqueous electrolyte
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JP3064662B2 (en) Non-aqueous electrolyte secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JPH09320593A (en) Nonaqueous electrolyte secondary battery
JP3519462B2 (en) Lithium secondary battery
JPH065288A (en) Carbon electrode and lithium secondary battery using same electrode
JPH10233205A (en) Nonaqueous electrolyte secondary battery
JP6778385B2 (en) Conductive material for lithium ion secondary battery, composition for forming negative electrode of lithium ion secondary battery, composition for forming positive electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary Next battery
JPH065287A (en) Carbon electrode and lithium secondary battery using same electrode
JPH02239572A (en) Polyaniline battery
JPH1125986A (en) Nonaqueous electrolyte secondary battery
JPH04296471A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001003