JP3064662B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3064662B2
JP3064662B2 JP4111082A JP11108292A JP3064662B2 JP 3064662 B2 JP3064662 B2 JP 3064662B2 JP 4111082 A JP4111082 A JP 4111082A JP 11108292 A JP11108292 A JP 11108292A JP 3064662 B2 JP3064662 B2 JP 3064662B2
Authority
JP
Japan
Prior art keywords
graphite
lithium
negative electrode
secondary battery
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4111082A
Other languages
Japanese (ja)
Other versions
JPH05307958A (en
Inventor
健一 森垣
茂雄 小林
孝浩 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP4111082A priority Critical patent/JP3064662B2/en
Publication of JPH05307958A publication Critical patent/JPH05307958A/en
Application granted granted Critical
Publication of JP3064662B2 publication Critical patent/JP3064662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池
の、とくにそのリチウムをインターカレート、デインタ
ーカレートすることができる黒鉛質材料に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonaqueous electrolyte secondary battery, and more particularly to a graphite material capable of intercalating and deintercalating its lithium.

【0002】[0002]

【従来の技術】有機電解液を用い、リチウム金属を負極
活物質とするリチウム二次電池は、水溶液系の二次電池
に比べてエネルギー密度が高く、かつ低温特性に優れて
いることから注目を集めている。
2. Description of the Related Art A lithium secondary battery using an organic electrolyte and using lithium metal as a negative electrode active material has attracted attention because of its high energy density and excellent low-temperature characteristics as compared with an aqueous secondary battery. I am collecting.

【0003】しかしながら、充電によって生成される活
性なリチウムが電解液の有機溶媒と反応することや、デ
ンドライト状に成長して析出したリチウムと溶媒との反
応により絶縁層が形成されて電子伝導性のないリチウム
が生成すること(R.Selim and Bro,J.Electrochem,Soc,
121,1457(1974)など)により、リチウム金属を用いた負
極は充放電効率が悪いという問題点があった。また、デ
ンドライト状に成長したリチウムにより電池の内部短絡
が発生するなど安全性にも問題点があり、実用的に十分
なリチウム二次電池は開発されていない。
However, active lithium produced by charging reacts with the organic solvent of the electrolyte, or the reaction between the lithium grown and deposited in the form of dendrites and the solvent forms an insulating layer, which causes electron conductivity. No lithium is produced (R. Selim and Bro, J. Electrochem, Soc,
121, 1457 (1974)), there has been a problem that the negative electrode using lithium metal has poor charge / discharge efficiency. In addition, there is a problem in safety, such as an internal short circuit of the battery caused by lithium grown in a dendrite shape, and a practically sufficient lithium secondary battery has not been developed.

【0004】従来、このようなリチウム金属を用いた負
極の問題点を解決するために、特開昭57−20807
9号公報、特開昭59−143280号公報などに見ら
れるように黒鉛などの炭素質材料を負極として用いるこ
とが提案されている。
Conventionally, in order to solve the problems of the negative electrode using lithium metal, Japanese Patent Application Laid-Open No. 57-20807 has been proposed.
No. 9, JP-A-59-143280, and the like, it has been proposed to use a carbonaceous material such as graphite as a negative electrode.

【0005】たとえば、特開昭62−122066号公
報には、自己放電特性、サイクル特性、リチウムの貯蔵
安定性の改良を目的として、有機高分子系、縮合多環炭
化水素、多環複素環化合物などを炭素化して得られた材
料で、水素(H)/炭素(C)の原子比率が0.15未
満、X線回折法による(002)面の層間距離d(00
2)が3.37Å以上、c軸方向の結晶子の大きさLc
が150Å以下の擬黒鉛構造を有する炭素質材料が開示
されている。また、特開昭63−285872号公報に
は、サイクル特性の改良と高容量化を目的として、前記
d(002)が3.35〜3.8Å、前記Lcが10〜
250Å、a軸方向の結晶子の大きさLaが15〜25
0Åであり、かつBET法による比表面積が50m2
g以上であるカーボンブラックが開示されている。ま
た、特開昭63−121248号公報には、自己放電特
性、サイクル特性を改良することを目的として、BET
法による比表面積が0.1〜100m2/gで、真密度
ρが1.70〜2.18g/cm3、Lcが10<L
c(Å)<120ρ−189であり、かつ0.1〜50
μmの範囲に体積換算で90%以上の粒度分布を有する
粉粒状炭素質材料が開示されている。さらに特開平2−
284354号公報には、炭素質材料の粒度分布が粒径
5μm以下のものが体積率で5%以下であり、平均粒径
が25〜100μmの範囲にある炭素質材料が開示され
ている。
For example, Japanese Patent Application Laid-Open No. 62-122066 discloses an organic polymer, a condensed polycyclic hydrocarbon, and a polycyclic heterocyclic compound for the purpose of improving self-discharge characteristics, cycle characteristics, and storage stability of lithium. A hydrogen (H) / carbon (C) atomic ratio of less than 0.15, and an interlayer distance d (00) of the (002) plane determined by an X-ray diffraction method.
2) is 3.37 ° or more and the crystallite size L c in the c-axis direction
Discloses a carbonaceous material having a pseudographite structure of 150 ° or less. Further, in JP-A-63-285872, for the purpose of improving the high capacity of the cycle characteristics, the d (002) is 3.35~3.8A, wherein L c is 10
250 Å, the size L a in the a-axis direction of crystallites 15-25
0 °, and the specific surface area by the BET method is 50 m 2 /
g of carbon black is disclosed. Japanese Patent Application Laid-Open No. 63-112248 discloses a BET for improving the self-discharge characteristic and the cycle characteristic.
Specific surface area by the method is 0.1 to 100 m 2 / g, true density ρ is 1.70 to 2.18 g / cm 3 , and L c is 10 <L
c (Å) <120ρ-189, and 0.1 to 50
A particulate carbonaceous material having a particle size distribution of 90% or more by volume in the range of μm is disclosed. Further, JP-A-2-
Japanese Patent Publication No. 284354 discloses a carbonaceous material in which the particle size distribution of the carbonaceous material is 5 μm or less, the volume ratio is 5% or less, and the average particle size is in the range of 25 to 100 μm.

【0006】このように、負極用炭素質材料として各種
の炭化水素あるいは高分子材料を炭素化して粉砕したも
の、または適度な乱層構造を有して結晶性のあまり高く
ない擬黒鉛材料を用いてこれらにリチウムをインターカ
レート、デインターカレートするものが提案されてい
る。
As described above, as the carbonaceous material for the negative electrode, a material obtained by carbonizing and grinding various hydrocarbons or polymer materials, or a pseudo-graphite material having an appropriate turbostratic structure and not too high in crystallinity is used. In addition, lithium intercalation and deintercalation have been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記の
ような擬黒鉛材料を負極に用いた場合には、黒鉛の層状
構造が未発達で結晶性が低いため、インターカレートさ
れるリチウムの量が少なく、容量が低下するという問題
があった。
However, when the above-described pseudo-graphite material is used for the negative electrode, the amount of intercalated lithium is low because the layer structure of graphite is undeveloped and has low crystallinity. However, there was a problem that the capacity was reduced.

【0008】また、黒鉛化の進んだ結晶性の高い黒鉛質
材料を負極として用いた場合には、充電時に負極表面で
電解液の分解によるガス発生が起こり、リチウムのイン
ターカレーション反応が低下して、容量が低下するとと
もに負極表面でリチウムのデンドライトが発生するとい
う問題があった。
In addition, when a graphitized graphitic material having advanced graphitization is used as a negative electrode, gas is generated by decomposition of an electrolytic solution on the surface of the negative electrode during charging, and lithium intercalation reaction is reduced. Thus, there is a problem that the capacity is reduced and lithium dendrite is generated on the surface of the negative electrode.

【0009】本発明は、このような課題を解決するため
のもので、リチウムのインターカレートする量の多い高
容量な黒鉛質材料を提供するとともに充電時におけるリ
チウムのデンドライトの発生を防止して安全性の向上し
た非水電解液二次電池を提供するものである。
The present invention has been made to solve such a problem, and provides a high-capacity graphite material having a large amount of intercalating lithium and preventing the generation of lithium dendrites during charging. A non-aqueous electrolyte secondary battery with improved safety is provided.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の非水電解液二次電池の負極に用いる黒鉛
質材料は、ピッチ類の液相炭素化過程において生成した
メソフェーズ微小球体を黒鉛化した球状黒鉛であって、
X線回折法による層間距離d(002)が3.37Å以
下、c軸方向の結晶子の大きさLcが500Å以上、a
軸方向の結晶子の大きさLaが500Å以上であり、か
つ前記球状黒鉛の平均粒径が3〜50μmの範囲のもの
である。
In order to solve the above-mentioned problems, a graphitic material used for a negative electrode of a nonaqueous electrolyte secondary battery of the present invention comprises a mesophase microparticle formed in a liquid phase carbonization process of pitches. Spheroidal graphite obtained by graphitizing a sphere,
The interlayer distance d (002) determined by the X-ray diffraction method is 3.37 ° or less, the crystallite size L c in the c-axis direction is 500 ° or more, and a
Size L a in the axial direction of the crystallites is not less 500Å or more and an average particle diameter of the spherical graphite is in a range of 3 to 50 [mu] m.

【0011】[0011]

【作用】コールタールピッチなどを液相炭素化すること
によって得た炭素質材料は一般に易黒鉛化性のソフトカ
ーボンであり、高温熱処理の黒鉛化により結晶性の高い
構造が得られるが、本発明ではこれらピッチ類の液相炭
素化過程において生成したメソフェーズ微小球体を分
離、抽出してこれらを黒鉛化するものである。
The carbonaceous material obtained by liquid-phase carbonization of coal tar pitch or the like is generally graphitizable soft carbon, and a highly crystalline structure can be obtained by graphitization by high-temperature heat treatment. In this method, the mesophase microspheres generated in the liquid phase carbonization process of these pitches are separated and extracted to graphitize them.

【0012】したがって、黒鉛化する前の炭素前駆体の
状態ですでに多環芳香族分子の薄層が積み重なった構造
を有しているため、黒鉛化が容易で結晶性の高い黒鉛質
材料を得ることができる。
Therefore, since the carbon precursor before graphitization has a structure in which thin layers of polycyclic aromatic molecules are already stacked, a graphitic material which is easy to graphitize and has high crystallinity can be obtained. Obtainable.

【0013】また、黒鉛化によって緻密な球状黒鉛にな
っているため、これを負極に用いると、リチウムがイン
ターカレートする量の多い高容量な負極を提供すること
ができる。
[0013] Further, since dense spherical graphite is formed by graphitization, if this is used for the negative electrode, a high-capacity negative electrode with a large amount of intercalation of lithium can be provided.

【0014】[0014]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は、本発明の直径20mm、高さ1.6
mmのコイン形非水電解液二次電池の断面図である。
FIG. 1 shows a 20 mm diameter and a 1.6 mm height of the present invention.
1 is a cross-sectional view of a mm coin-type nonaqueous electrolyte secondary battery.

【0016】図1に示したように、本発明の非水電解液
二次電池はステンレス鋼製ケース1と、ステンレス鋼製
封口板2と、黒鉛質材料を用いた負極3と、所定の寸
法、材質のセパレータ5、正極6、有機電解液および絶
縁ガスケット7から構成されている。ここで、負極3に
用いた黒鉛質材料は、コールタールピッチを液相炭素化
する過程で生成したメソフェーズ微小球体を黒鉛化した
球状黒鉛であり、粉末X線回折による層間距離d(00
2)が3.36Å、c軸方向の結晶子の大きさL cが6
30Å、a軸方向の結晶子の大きさLaが3100Åの
ものである。そして、粒度分布が平均粒径20μm、粒
径6μm以下の小粒子が体積率で2%になっているもの
をフッ素樹脂の結着剤と重量比90:10で混合し、ス
テンレス鋼製の負極集電体4上に成型して負極3を作製
した。ついで、前記集電体4を封口板2にスポット溶接
し、電気的に接続した。
As shown in FIG. 1, the non-aqueous electrolyte of the present invention
The secondary battery is made of stainless steel case 1 and stainless steel
A sealing plate 2, a negative electrode 3 using a graphite material,
Method, material separator 5, positive electrode 6, organic electrolyte and absolute
The edge gasket 7 is constituted. Here, the negative electrode 3
The graphitic material used was coal tar pitch converted to liquid phase carbon.
Graphitized the mesophase microspheres formed during the process
Spheroidal graphite, and interlayer distance d (00
2) is 3.36 °, and the crystallite size L in the c-axis direction is cIs 6
30 °, crystallite size L in a-axis directionaIs 3100Å
Things. The particle size distribution is 20 μm in average particle size,
2% by volume of small particles with a diameter of 6μm or less
Is mixed with a fluororesin binder at a weight ratio of 90:10,
Formed on a negative electrode current collector 4 made of stainless steel to produce the negative electrode 3
did. Next, the current collector 4 is spot-welded to the sealing plate 2.
And electrically connected.

【0017】また正極6は、炭酸リチウムと四三酸化コ
バルトを等モル量混合し、900℃で10時間焼成して
正極活物質のLiCoO2を作製し、これを粉砕したも
のと導電材のカーボンブラックと結着剤のフッ素樹脂を
重量比80:10:10で混合して直径14.5mm、高
さ0.8mmのペレット状に成型した。
The positive electrode 6 is prepared by mixing lithium carbonate and cobalt tetroxide in equimolar amounts and calcining the mixture at 900 ° C. for 10 hours to produce a positive electrode active material LiCoO 2. Black and a fluororesin as a binder were mixed at a weight ratio of 80:10:10 and molded into a pellet having a diameter of 14.5 mm and a height of 0.8 mm.

【0018】また、電解液はエチレンカーボネイト(E
C)とジエチルカーボネイト(DEC)を体積比50:
50で混合した混合溶媒に、電解質として6フッ化リン
酸リチウムを1モル/lの濃度になるように溶解したも
のを用いた。
The electrolyte is ethylene carbonate (E
C) and diethyl carbonate (DEC) in a volume ratio of 50:
A solution obtained by dissolving lithium hexafluorophosphate so as to have a concentration of 1 mol / l as an electrolyte in the mixed solvent mixed at 50 was used.

【0019】比較例として、コールタールピッチを液相
炭素化して得たコークスを黒鉛化処理した人造黒鉛を粉
砕して得た粉粒体を負極として用いて、これ以外は本発
明と同様の電池を作製した。ここで得られた粉粒体の炭
素質材料は、X線回折法による層間距離d(002)が
3.36Å、c軸方向の結晶子の大きさLcが600
Å、a軸方向の結晶子の大きさLaが600Åであり、
平均粒径が35μmのものであった。
As a comparative example, a battery similar to that of the present invention was used except that powder obtained by pulverizing artificial graphite obtained by graphitizing coke obtained by liquid-phase carbonization of coal tar pitch was used. Was prepared. The obtained powdery carbonaceous material has an interlayer distance d (002) of 3.36 ° by X-ray diffraction and a crystallite size L c in the c-axis direction of 600.
Å, the size L a in the a-axis direction of crystallites is 600 Å,
The average particle size was 35 μm.

【0020】次に、本発明と比較例の電池を0.5mA
の定電流で充電終止電圧4.1V、放電終止電圧3.0
Vの範囲で充放電サイクル試験を行った。図2に5サイ
クル目の本発明と比較例の電池の充放電特性を示した。
図2から明らかなように、本発明の電池は放電容量が大
きくなっていることがわかる。また、人造黒鉛を用いた
比較例の電池は充電容量は比較的大きいのに対して放電
容量が小さく、従来から言われているように充電の際に
電解液の溶媒の分解反応が発生していると考えられる。
一方、本発明の球状黒鉛を用いた場合では充電と放電の
容量差は小さくなっており、溶媒の分解反応が防止さ
れ、リチウムイオンの黒鉛層間へのインターカレート、
デインターカレートが円滑に行われていることがわか
る。
Next, the batteries of the present invention and the comparative example were set to 0.5 mA.
At a constant current of 4.1 V and a discharge end voltage of 3.0 V
A charge / discharge cycle test was performed in the range of V. FIG. 2 shows the charge / discharge characteristics of the battery of the present invention and the comparative example at the fifth cycle.
As is clear from FIG. 2, the battery of the present invention has a large discharge capacity. In addition, the battery of the comparative example using artificial graphite has a relatively large charge capacity but a small discharge capacity, and a decomposition reaction of the solvent of the electrolytic solution occurs during charging as conventionally known. It is thought that there is.
On the other hand, when the spheroidal graphite of the present invention is used, the capacity difference between charge and discharge is small, decomposition reaction of the solvent is prevented, intercalation of lithium ions between graphite layers,
It can be seen that deintercalation is performed smoothly.

【0021】また、炭素質材料の結晶性はほぼ同程度で
あるにもかかわらず、このような差がみられることは、
次のように考えることができる。すなわち、比較例の人
造黒鉛はコールタールピッチから液相炭素化によって得
られたコークスをさらに黒鉛化熱処理を行って製造して
いるが、本発明の球状黒鉛はコールタールピッチの液相
炭化過程において非常に配向性が高いメソフェーズ微小
球体を選別し、これを黒鉛化したものであるので、X線
回折ではあらわれない非晶質部あるいは粒子の表面状態
などの特性が向上したためであると考えられる。
Although the crystallinity of carbonaceous materials is almost the same, such a difference is observed.
It can be considered as follows. That is, the artificial graphite of the comparative example is produced by further performing a graphitization heat treatment on the coke obtained by liquid-phase carbonization from coal tar pitch, but the spheroidal graphite of the present invention is produced during the liquid phase carbonization process of coal tar pitch. It is considered that because mesophase microspheres having extremely high orientation were selected and graphitized, the characteristics of the amorphous portion or the surface state of the particles, which are not revealed by X-ray diffraction, were improved.

【0022】次に、前記メソフェーズ微小球体の黒鉛化
熱処理条件を変えて、結晶性の異なる黒鉛質材料につい
て前記と同様の電池を構成し、上記に示した充放電条件
で放電容量の評価を行った。ここで、放電容量は電池の
放電時の容量を負極の黒鉛質材料の重量で割った放電比
容量で表す。この結果として、図3に層間距離d(00
2)と放電比容量との関係を、図4にc軸方向の結晶子
の大きさLcと放電比容量との関係を、図5にa軸方向
の結晶子の大きさLaと放電比容量との関係を示す。
Next, by changing the graphitizing heat treatment conditions for the mesophase microspheres, a battery similar to that described above was formed using a graphitic material having different crystallinity, and the discharge capacity was evaluated under the above-described charge / discharge conditions. Was. Here, the discharge capacity is represented by a discharge specific capacity obtained by dividing the capacity of the battery at the time of discharge by the weight of the graphite material of the negative electrode. As a result, FIG. 3 shows the interlayer distance d (00
The relationship 2) and the discharge specific capacity, the relationship between the discharge specific capacity and size L c of the c-axis direction of the crystallite in Figure 4, Figure 5 and the size L a in the a-axis direction of crystallites discharge The relationship with the specific capacity is shown.

【0023】図3,4,5に示したように、球状黒鉛の
層間距離d(002)が3.37Å以下の場合やLc
aがそれぞれ500Å以上の場合には、放電比容量が
250mAh/gと大きくなっていた。
[0023] As shown in FIGS. 3, 4, 5, when the interlayer distance of the spheroidal graphite d (002) and the case is less than 3.37 Å L c and L a is greater than or equal 500Å respectively, discharge specific capacity It was as large as 250 mAh / g.

【0024】このように、同じメソフェーズ微小球体に
黒鉛化処理を行った黒鉛質材料であっても、熱処理条件
が異なり、結晶性が異なると、その充放電特性、すなわ
ちリチウムの黒鉛層間へのインターカレート、デインタ
ーカレートの状態が異なることがわかる。
As described above, even in the case of the graphitic material obtained by subjecting the same mesophase microspheres to graphitization, if the heat treatment conditions are different and the crystallinity is different, their charge / discharge characteristics, that is, the intercalation of lithium between the graphite layers, is not possible. It can be seen that the states of calate and deintercalate are different.

【0025】一般に黒鉛層間化合物はステージ構造と呼
ばれる結晶構造を形成するため、リチウムイオンなどは
層間へランダムに侵入するのではなく、ある規則性をも
って侵入するとされており、これら規則性は積層秩序
性、面内秩序性と呼ばれている。従って、c軸方向の結
晶性だけでなく、a軸方向の結晶性も発達している結晶
構造の黒鉛の方が上記の積層秩序性、面内秩序性が良く
なるために侵入サイト量が多くなっている、すなわち充
放電容量が大きくなり、上記の結果となったものと考え
られる。
In general, a graphite intercalation compound forms a crystal structure called a stage structure, and lithium ions and the like do not randomly enter the interlayer but enter with a certain regularity. , Is called in-plane ordering. Accordingly, graphite having a crystal structure in which not only the crystallinity in the c-axis direction but also the crystallinity in the a-axis direction is developed has a higher stacking order and in-plane order, and thus has a larger amount of penetration sites. That is, it is considered that the charge / discharge capacity was increased and the above result was obtained.

【0026】さらに、液相炭素化の熱処理条件を変える
ことによりメソフェーズ微小球体の粒子径、すなわち球
状黒鉛の粒子径を変えた黒鉛質材料と、比較例の人造黒
鉛を分級して得た平均粒径の異なる人造黒鉛について、
前記と同様の評価を行い、その結果を図6に示した。図
6より、比較例の人造黒鉛では粒径が大きい方がやや放
電比容量が大きいとともに粒径の影響が小さいのに対し
て、本発明の球状黒鉛では、平均粒子径を3〜50μm
の範囲としたものが、放電比容量が大きく、約200m
Ah/g以上となっていた。これは、本発明の球状黒鉛
の場合には、平均粒径を液相炭素化の熱処理条件によっ
て変えることにより、黒鉛の本質的な性状に大きな影響
を与えていると考えられる。
Further, the average particle size obtained by classifying the graphite material in which the particle size of the mesophase microspheres, that is, the particle size of the spherical graphite was changed by changing the heat treatment conditions for liquid phase carbonization, and the artificial graphite of the comparative example were obtained. About artificial graphite with different diameters,
The same evaluation as described above was performed, and the results are shown in FIG. From FIG. 6, in the artificial graphite of the comparative example, the larger the particle size is, the larger the specific discharge capacity is and the influence of the particle size is small. On the other hand, in the spherical graphite of the present invention, the average particle size is 3 to 50 μm.
, The discharge specific capacity is large, about 200 m
Ah / g or more. This is thought to be because the spherical graphite of the present invention greatly affects the essential properties of graphite by changing the average particle size according to the heat treatment conditions for liquid-phase carbonization.

【0027】すなわち、液相炭素化の熱処理条件の温度
がより高く、時間もより長くすると、得られた球状黒鉛
は小粒子が融合して大粒子化しており、a軸、c軸方向
のミクロ的な配向性が悪くなり、さらに、粒子径が大き
くなると、かさ密度が小さくなって黒鉛質材料の充填性
が悪くなるために容量が低下するものと考えられる。一
方、液相炭素化の熱処理条件の温度がより低く、時間も
より短くすると、得られた球状黒鉛は、粒子径が小さく
表面積が大きくなるため、球状黒鉛の好ましい、優れた
粒子の表面特性・表面構造の効果が小さくなり、比較例
の人造黒鉛において見られたような溶媒との反応が生
じ、リチウムの黒鉛層間へのインターカレートが妨害さ
れるため容量が低下すると考えられる。従って、平均粒
子径が3〜50μmの範囲の球状黒鉛が最も放電容量が
大きくなると考えられる。
That is, when the temperature of the heat treatment conditions for the liquid phase carbonization is higher and the time is longer, the obtained spherical graphite is formed by fusing small particles into large particles, and the microparticles in the a-axis and c-axis directions are formed. It is considered that, when the general orientation is deteriorated and the particle diameter is increased, the bulk density is reduced and the filling property of the graphite material is deteriorated, so that the capacity is reduced. On the other hand, when the temperature of the heat treatment conditions for liquid phase carbonization is lower and the time is shorter, the obtained spherical graphite has a small particle size and a large surface area, so that the spherical graphite is preferable, and excellent surface characteristics of the particles are obtained. It is considered that the effect of the surface structure is reduced, the reaction with the solvent as seen in the artificial graphite of the comparative example occurs, and the intercalation of lithium between the graphite layers is hindered, so that the capacity is reduced. Therefore, it is considered that spherical graphite having an average particle diameter in the range of 3 to 50 μm has the largest discharge capacity.

【0028】なお本実施例ではコイン型電池を用いた
が、電池の形状は円筒形、角形などであってもよく、電
解液、正極活物質ともに本実施例以外で適当なものにつ
いては同様の効果を得た。
Although a coin-type battery was used in the present embodiment, the shape of the battery may be cylindrical, rectangular, or the like. The effect was obtained.

【0029】[0029]

【発明の効果】以上のように、本発明の非水電解液二次
電池の負極に用いる黒鉛質材料は、ピッチ類の液相炭素
化過程において生成したメソフェーズ微小球体を黒鉛化
した球状黒鉛であって、層間距離d(002)が3.3
7Å以下、c軸方向の結晶子の大きさLcが500Å以
上、a軸方向の結晶軸の大きさLaが500Å以上であ
り、かつ前記球状黒鉛の平均粒径が3〜50μmの範囲
であるので、リチウムがインターカレートする量が多く
高容量である負極を得ることができ、リチウムのデンド
ライトの発生を防止することができる高容量な非水電解
液二次電池を提供することができる。
As described above, the graphite material used for the negative electrode of the non-aqueous electrolyte secondary battery of the present invention is spherical graphite obtained by graphitizing mesophase microspheres generated in the liquid phase carbonization process of pitches. And the interlayer distance d (002) is 3.3
7Å or less, c-axis direction of the size L c of the crystallites 500Å or more, the size L a crystal axis in the a-axis direction is not less 500Å or more and an average particle diameter of the spherical graphite in the range of 3~50μm Therefore, a high-capacity negative electrode having a large amount of intercalated lithium can be obtained and a high-capacity non-aqueous electrolyte secondary battery capable of preventing generation of lithium dendrites can be provided. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解液二次電池の断面図FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery of the present invention.

【図2】本発明と比較例の非水電解液二次電池の充放電
特性図
FIG. 2 is a diagram showing charge / discharge characteristics of nonaqueous electrolyte secondary batteries of the present invention and a comparative example.

【図3】本発明の球状黒鉛の層間距離d(002)と放
電比容量の関係を示す図
FIG. 3 is a diagram showing the relationship between the interlayer distance d (002) and the specific discharge capacity of the spheroidal graphite of the present invention.

【図4】本発明の球状黒鉛のc軸方向の結晶子の大きさ
cと放電比容量の関係を示す図
Shows the relationship between the discharge specific capacity and size L c of the c-axis direction of crystallites of spherical graphite of the present invention; FIG

【図5】本発明の球状黒鉛のa軸方向の結晶子の大きさ
aと放電比容量との関係を示す図
Diagram showing the relationship between the size L a and the discharge specific capacity of the a-axis direction of crystallites of spherical graphite of the present invention; FIG

【図6】本発明と比較例の黒鉛の平均粒径と放電比容量
との関係を示す図
FIG. 6 is a graph showing the relationship between the average particle size and the specific discharge capacity of graphite of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 3 負極 4 負極集電体 5 セパレータ 6 正極 7 絶縁ガスケット DESCRIPTION OF SYMBOLS 1 Case 2 Sealing plate 3 Negative electrode 4 Negative electrode collector 5 Separator 6 Positive electrode 7 Insulating gasket

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−188559(JP,A) 特開 平4−115457(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/38 - 4/58 H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-188559 (JP, A) JP-A-4-115457 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/38-4/58 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】黒鉛質材料を主材料とする負極と、 リチウム含有金属酸化物を活物質とする正極と、 有機電解液と、 セパレータとからなり、 前記黒鉛質材料は、ピッチ類の液相炭素化過程において
生成したメソフェーズ微小球体を黒鉛化して得た球状黒
鉛であって、X線回折法による層間距離d(002)が
3.37Å以下、c軸方向の結晶子の大きさLcが50
0Å以上、a軸方向の結晶子の大きさLaが500Å以
上であり、かつ前記球状黒鉛の平均粒径が3〜50μm
の範囲にある非水電解液二次電池。
1. A negative electrode comprising a graphite material as a main material, a positive electrode comprising a lithium-containing metal oxide as an active material, an organic electrolytic solution, and a separator. Spheroidal graphite obtained by graphitizing the mesophase microspheres formed in the carbonization process, wherein the interlayer distance d (002) by X-ray diffraction is 3.37 ° or less, and the crystallite size L c in the c-axis direction is 50
0Å above, the size L a in the a-axis direction of crystallites is not less 500Å or more and an average particle diameter of the spherical graphite 3~50μm
Non-aqueous electrolyte secondary battery in the range.
JP4111082A 1992-04-30 1992-04-30 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3064662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4111082A JP3064662B2 (en) 1992-04-30 1992-04-30 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111082A JP3064662B2 (en) 1992-04-30 1992-04-30 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05307958A JPH05307958A (en) 1993-11-19
JP3064662B2 true JP3064662B2 (en) 2000-07-12

Family

ID=14551930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111082A Expired - Lifetime JP3064662B2 (en) 1992-04-30 1992-04-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3064662B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344296B1 (en) 1996-08-08 2002-02-05 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
TW399029B (en) * 1996-12-25 2000-07-21 Sony Corp Graphite powder suitable for negative electrode material of lithium ion secondary batteries
KR100269918B1 (en) 1997-08-28 2000-10-16 김순택 A negative active material for a lithium-based secondary cell and a method of preparing the same
US6632569B1 (en) * 1998-11-27 2003-10-14 Mitsubishi Chemical Corporation Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP4252847B2 (en) 2003-06-09 2009-04-08 パナソニック株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JPH05307958A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
JP4161376B2 (en) Non-aqueous electrolyte secondary battery
US6294291B1 (en) Secondary battery or cell with a non-aqueous electrolyte
JP3556270B2 (en) Lithium secondary battery
JP3844495B2 (en) Non-aqueous electrolyte secondary battery
JP3509050B2 (en) Lithium secondary battery and method of manufacturing the same
US20090162753A1 (en) Spherical carbons and method for preparing the same
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
KR19980080096A (en) Lithium secondary battery and negative electrode manufacturing method
JP2001102049A (en) Non-aqueous electrolyte secondary battery
JP3499584B2 (en) Lithium secondary battery
JP7334735B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP3311104B2 (en) Lithium secondary battery
JPH07226204A (en) Manufacture of nonaqueous electrolyte secondary battery
JPH0927344A (en) Nonaqueous electrolyte secondary battery
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JP3840087B2 (en) Lithium secondary battery and negative electrode material
JP3064662B2 (en) Non-aqueous electrolyte secondary battery
JP3052565B2 (en) Non-aqueous electrolyte secondary battery
JP3406843B2 (en) Lithium secondary battery
JPH0589879A (en) Lithium secondary battery
JP3863514B2 (en) Lithium secondary battery
JP4734707B2 (en) Non-aqueous electrolyte battery
JP2005019096A (en) Nonaqueous secondary battery
JPH08180873A (en) Manufacture of negative electrode material and nonaqueous electrolytic secondary battery
JPH06150927A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

EXPY Cancellation because of completion of term