JPH1125986A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH1125986A
JPH1125986A JP9176064A JP17606497A JPH1125986A JP H1125986 A JPH1125986 A JP H1125986A JP 9176064 A JP9176064 A JP 9176064A JP 17606497 A JP17606497 A JP 17606497A JP H1125986 A JPH1125986 A JP H1125986A
Authority
JP
Japan
Prior art keywords
positive electrode
graphite
expanded graphite
secondary battery
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9176064A
Other languages
Japanese (ja)
Other versions
JP3115256B2 (en
Inventor
Hiroto Sagisaka
博人 鷺坂
Naoya Nishino
直也 西野
Hideaki Nagura
秀哲 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP09176064A priority Critical patent/JP3115256B2/en
Publication of JPH1125986A publication Critical patent/JPH1125986A/en
Application granted granted Critical
Publication of JP3115256B2 publication Critical patent/JP3115256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the capacity and cycle characteristics of a non-aqueous lithium secondary battery by using expansion graphite as one kind graphite electro-conductive agent in a positive electrode mix and setting the mixing ratio of the expansion graphite and other electro-conductive agent properly. SOLUTION: A nonaqueous lithium secondary battery is provided with a positive electrode mix containing an composite oxide positive electrode substance containing lithium and an electro-conductive substance in a positive electrode 1. Expansion graphite is used in the electro-conductive substance as at least one kind thereof, and the same is contained by five sixths or less of the whole weight of the electro-conductive substance. As the other electro-conductive substance carbon black-based for instance, acetylene black is used, and the expansion graphite and the acetylene black are mixed in the weight ratio of (1:1) to (5:1).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極物質と導電性
物質とを含有する正極合剤を正極に用いた非水電解液二
次電池、より詳しくは、リチウムを含む複合酸化物の正
極物質と導電性物質とを含有した正極合剤を正極に用
い、負極に負極物質として炭素材料を用いた非水系リチ
ウム二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a positive electrode mixture containing a positive electrode material and a conductive material for a positive electrode, and more particularly, to a positive electrode material of a composite oxide containing lithium. The present invention relates to a non-aqueous lithium secondary battery in which a positive electrode mixture containing a carbon material and a conductive material is used for a positive electrode, and a carbon material is used as a negative electrode material for a negative electrode.

【0002】[0002]

【従来の技術】非水系リチウム二次電池であるリチウム
イオン二次電池は、正極活物質として、遷移金属のリチ
ウム含有複合酸化物、すなわち層状構造を有するLiM
2 あるいはスピネル構造を有するLiM2 4 (但し
Mは遷移金属、例えばコバルト、マンガン、ニッケル、
鉄のいずれか)などを用いると共に、負極物質としてリ
チウムイオンを吸蔵して層間化合物を形成する炭素材料
を用い、正極と負極との間で一方が放出したリチウムイ
オンを他方が吸蔵するという可逆反応によって充放電を
行うものである。
2. Description of the Related Art A lithium ion secondary battery, which is a non-aqueous lithium secondary battery, uses a lithium-containing composite oxide of a transition metal as a positive electrode active material, that is, LiM having a layered structure.
O 2 or LiM 2 O 4 having a spinel structure (where M is a transition metal such as cobalt, manganese, nickel,
Reversible reaction in which one of the positive and negative electrodes uses a carbon material that absorbs lithium ions and forms an intercalation compound, and the other absorbs lithium ions released between the positive and negative electrodes. Charge and discharge.

【0003】このリチウムイオン二次電池は、放電容量
が大きく、理論的に高電圧、高エネルギー密度であるこ
とから、その発展に大きな期待が寄せられている。
Since the lithium ion secondary battery has a large discharge capacity and a theoretically high voltage and high energy density, great expectations are placed on its development.

【0004】現在においては、上記リチウムイオン二次
電池には、リチウムイオンを保持できる炭素材料(黒
鉛、カーボン)を負極物質とし、これを酸化コバルト化
合物(LiCoO2 )、酸化ニッケル化合物(LiNi
2 )等のリチウムを含む複合酸化物の正極物質と組み
合わせたものが実用化されており、さらにその高容量
化、充放電サイクル特性の向上のための研究が進められ
ている。
At present, the above-mentioned lithium ion secondary battery uses a carbon material (graphite, carbon) capable of retaining lithium ions as a negative electrode material, and uses this material as a cobalt oxide compound (LiCoO 2 ) or a nickel oxide compound (LiNiO).
A combination of a lithium-containing composite oxide such as O 2 ) with a positive electrode material has been put to practical use, and further studies are being made to increase the capacity and improve the charge / discharge cycle characteristics.

【0005】ここで上記正極物質として用いられるリチ
ウム複合酸化物は導電性が低いため、導電性物質を含有
させて正極として用いるのが一般的である。
[0005] Here, since the lithium composite oxide used as the positive electrode material has low conductivity, it is common to use a lithium compound oxide containing a conductive material as the positive electrode.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記非水電
解液二次電池において、その高容量化、並びにサイクル
安定性の向上を図るには、正極に含まれるリチウム複合
酸化物の利用効率の向上及び含有量の増加を行う必要が
ある。
In order to increase the capacity and the cycle stability of the non-aqueous electrolyte secondary battery, the use efficiency of the lithium composite oxide contained in the positive electrode must be improved. It is necessary to increase the content.

【0007】しかしながら、従来多用されているアセチ
レンブラック、ケッチェンブラックのようなカーボンブ
ラック系の導電剤は、導電性に優れ且つ吸液性にも優れ
るが、成形性が悪く、また嵩密度が大きいので、正極合
剤の導電剤として単独で用いた場合に、黒鉛系の導電剤
に比べ大きな体積ロスを生じる。つまり、充放電のサイ
クル特性は良好に維持できるが、電極合剤密度が小さく
なって電極が厚く嵩高となり、結果として一定容積の電
池缶に入れられる正極活物質の量が少なくなって、高容
量化が図れないという問題がある。
However, carbon black conductive agents, such as acetylene black and Ketjen black, which have been widely used, are excellent in conductivity and liquid absorption, but are poor in moldability and large in bulk density. Therefore, when used alone as the conductive agent of the positive electrode mixture, a large volume loss occurs as compared with a graphite-based conductive agent. In other words, the charge / discharge cycle characteristics can be maintained well, but the density of the electrode mixture decreases, the electrodes become thick and bulky, and as a result, the amount of the positive electrode active material that can be put in a battery can of a fixed volume decreases, resulting in high capacity There is a problem that can not be achieved.

【0008】一方、上記黒鉛系の導電剤である人造黒鉛
は、炭素の六角板状結合が横に(A軸方向に)広がり、
板と板との間(C軸の長さ)が非常に広い結晶構造とな
っていて、結晶の面方向の導電性に優れるが、C軸方向
つまり炭素の六角板の積層方向の導電性が悪く、よって
これを単独で用いた場合には、初期容量は確保できて
も、サイクル特性が前者に比較して劣り、充放電を繰り
返すと容量減少が大きくなり、特に充放電時の電流値が
高いとその容量減少が顕著になる傾向がある。
On the other hand, artificial graphite, which is a graphite-based conductive agent, has hexagonal plate-like bonds of carbon spread laterally (in the A-axis direction).
The crystal structure between the plates (length of the C axis) is very wide, and the conductivity in the crystal plane direction is excellent, but the conductivity in the C axis direction, that is, the carbon hexagonal plate stacking direction is low. Poor, therefore, when this is used alone, even if the initial capacity can be secured, the cycle characteristics are inferior to the former, and the capacity decreases when charging and discharging are repeated, especially when the current value during charging and discharging is reduced. When it is high, the capacity tends to be remarkable.

【0009】このため従来より、正極合剤を構成する導
電剤には、カーボンブラック系の導電剤であるアセチレ
ンブラックやケッチェンブラックに黒鉛系の導電剤であ
る人造黒鉛を混合して用いることが一般的に行われてお
り、その際、これら両導電剤の混合割合は重量比で1:
1にするのが最も導電性を高くし得るとされていた。
For this reason, conventionally, as the conductive agent constituting the positive electrode mixture, it has been used to mix acetylene black or Ketjen black, which is a carbon black conductive agent, with artificial graphite, which is a graphite conductive agent. In general, the mixing ratio of these two conductive agents is 1: 1:
It has been said that setting to 1 can maximize the conductivity.

【0010】しかし、アセチレンブラックと人造黒鉛と
を重量比で1:1の割合で混合した導電剤を使用した場
合でも、黒鉛系の導電剤を単独で用いた場合に比べると
やはり体積ロスが生じるという問題があった。
However, even when a conductive agent in which acetylene black and artificial graphite are mixed at a weight ratio of 1: 1 is used, a volume loss still occurs as compared with a case where a graphite-based conductive agent is used alone. There was a problem.

【0011】本発明はこの様な従来の課題を解決するた
めになされたものであり、その目的は、二次電池の容量
及び充放電のサイクル特性の向上が図れる非水電解液二
次電池を提供することにある。
The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of improving the capacity and charge / discharge cycle characteristics of the secondary battery. To provide.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに本発明では、正極に正極物質と導電性物質とを含有
する正極合剤を備えた非水電解液二次電池において、前
記導電性物質は複数種のものを混合してなり、少なくと
もその一種として膨張黒鉛を前記導電性物質の全重量の
5/6以下含有させていることを特徴とする。
According to the present invention, there is provided a non-aqueous electrolyte secondary battery comprising a positive electrode mixture containing a positive electrode material and a conductive material. The conductive material is obtained by mixing a plurality of types, and at least one of them contains expanded graphite in an amount of 5/6 or less of the total weight of the conductive material.

【0013】ここで、前記導電性物質には、前記膨張黒
鉛とカーボンブラックとを用い、該膨張黒鉛とカーボン
ブラックとはその重量比を1:1〜5:1の範囲で混合
させることが望ましい。
Here, the expanded graphite and carbon black are preferably used as the conductive material, and the expanded graphite and carbon black are desirably mixed in a weight ratio of 1: 1 to 5: 1. .

【0014】また、前記膨張黒鉛には、そのC軸方向の
結晶子の大きさが500オングストローム以上で100
0オングストローム以下であるものを用いることが望ま
しい。
The expanded graphite has a crystallite size in the C-axis direction of not less than 500 Å and not more than 100 Å.
It is desirable to use one having a thickness of 0 Å or less.

【0015】本発明者らは、前記課題を解決するために
鋭意研究を重ねた結果、正極にリチウムを含む複合酸化
物の正極物質と導電性物質とを含有する正極合剤を備え
た非水電解液二次電池において、前記導電性物質の少な
くとも一種として、膨張黒鉛を前記導電性物質の全重量
の5/6以下含有させると、また特にその正極に含ませ
る導電性物質は、前記膨張黒鉛と例えばアセチレンブラ
ック等のカーボンブラック系の導電剤との混合物とし、
当該膨張黒鉛とカーボンブラック系導電剤とをその重量
比で1:1〜5:1の範囲で混合した導電剤を使用する
と、充放電サイクル特性が安定し、高容量化が図れるこ
とを見い出した。そして、さらにその作用効果は、前記
膨張黒鉛に、C軸方向の結晶子の大きさが500オング
ストローム以上1000オングストローム以下のものを
用いると良いことが確認できた。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a non-aqueous solution provided with a positive electrode mixture containing a positive electrode material of a composite oxide containing lithium and a conductive material in the positive electrode. In the electrolyte secondary battery, when expanded graphite is contained as at least one kind of the conductive substance in an amount equal to or less than 5/6 of the total weight of the conductive substance, and particularly, the conductive substance contained in the positive electrode is the expanded graphite. And a mixture of a carbon black conductive agent such as acetylene black,
It has been found that when a conductive agent obtained by mixing the expanded graphite and the carbon black-based conductive agent in a weight ratio of 1: 1 to 5: 1 is used, the charge / discharge cycle characteristics are stabilized and the capacity can be increased. . Further, it was confirmed that it is better to use the expanded graphite having a crystallite size of 500 Å or more and 1000 Å or less in the C-axis direction.

【0016】ここで、本発明のように導電剤の一種に膨
張黒鉛を用いてこれを導電性物質の全重量の5/6以下
含めると、電池の高容量化と充放電サイクル特性の改善
が図れる理由は、次のように考えられる。
Here, when expanded graphite is used as one kind of the conductive agent as in the present invention and is contained in an amount of not more than 5/6 of the total weight of the conductive material, the capacity of the battery is increased and the charge / discharge cycle characteristics are improved. The possible reasons are as follows.

【0017】即ち、前述したように、黒鉛の結晶は炭素
の六角板状結合が横に(A軸方向に)広がり、板と板と
の間(C軸の長さ)が非常に広い構造となっていて、黒
鉛系の導電剤は、結晶の面方向の導電性に優れるが、C
軸方向つまり炭素の六角板の積層方向の導電性が悪い。
That is, as described above, the graphite crystal has a structure in which hexagonal plate-like bonds of carbon are spread laterally (in the A-axis direction), and the distance between the plates (the length of the C-axis) is very wide. The graphite-based conductive agent has excellent conductivity in the crystal plane direction.
Poor conductivity in the axial direction, that is, in the direction in which the carbon hexagonal plates are stacked.

【0018】これに対し、膨張黒鉛はC軸方向の長さが
短いため、C軸方向の導電性が良好である。このため、
黒鉛系の導電剤として膨張黒鉛を用いると、C軸方向の
導電性が人造黒鉛より良好であるために充放電のサイク
ル特性が低下せず、よって、膨張黒鉛の含有量を増やし
てその分だけ嵩高なアセチレンブラックの含有量を減少
させることができ、もって電極合剤密度が大きくなっ
て、電池の一層の高容量化が達成されるものと考えられ
る。
On the other hand, expanded graphite has a short conductivity in the C-axis direction because of its short length in the C-axis direction. For this reason,
When expanded graphite is used as the graphite-based conductive agent, the conductivity in the C-axis direction is better than that of artificial graphite, so the charge / discharge cycle characteristics do not decrease. Therefore, the content of expanded graphite is increased and the amount is increased accordingly. It is considered that the content of bulky acetylene black can be reduced, the density of the electrode mixture increases, and a higher capacity of the battery can be achieved.

【0019】また、膨張黒鉛の含有量が5/6を超える
と放充電サイクル特性が低下して好ましくない。
On the other hand, if the content of the expanded graphite exceeds 5/6, the charge / discharge cycle characteristics are undesirably deteriorated.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態例につ
いて説明する。
Embodiments of the present invention will be described below.

【0021】図1に、作製した単三型リチウムイオン二
次電池の全体の構成を示す。
FIG. 1 shows the overall structure of the manufactured AA lithium ion secondary battery.

【0022】<電池の組立>図1において、1は正極板
であり、正極活物質のLiCoO2 と、導電剤のカーボ
ン粉末と、結着剤のPTFEの水性ディスパージョンと
を、重量比を表1の割合で混合し、水でペースト状に混
練したものを、厚さ30μmのアルミニウム箔の両面に
塗着した後、乾燥、圧延し、所定の大きさに切断して、
帯状の正極シートとして作成した。この正極シートの一
部をシートの長手方向に対して垂直に合剤を掻き取り、
チタン製の正極リード板を、集電体上にスポット溶接し
て取りつけた。
<Assembly of Battery> In FIG. 1, reference numeral 1 denotes a positive electrode plate, which represents the weight ratio of LiCoO 2 as a positive electrode active material, carbon powder as a conductive agent, and an aqueous dispersion of PTFE as a binder. The mixture was mixed at a ratio of 1 and kneaded into a paste with water, applied to both sides of a 30 μm-thick aluminum foil, dried, rolled, cut into a predetermined size,
It was prepared as a belt-like positive electrode sheet. A part of this positive electrode sheet is scraped off the mixture perpendicular to the longitudinal direction of the sheet,
A positive electrode lead plate made of titanium was mounted on the current collector by spot welding.

【0023】活物質のLiCoO2 は、酸化コバルト
(CoO)と炭酸リチウム(Li2 CO3 )をモル比で
2:1に混合し、空気中で900℃、9時間加熱したも
のを用いた。
As the active material, LiCoO 2 , a mixture of cobalt oxide (CoO) and lithium carbonate (Li 2 CO 3 ) at a molar ratio of 2: 1 and heating in air at 900 ° C. for 9 hours was used.

【0024】また、正極合剤の導電剤には、黒鉛系の導
電剤である市販の膨張黒鉛とカーボンブラック系の導電
剤である市販のアセチレンブラックとを、表1の如く、
重量比が1:1〜5:1の割合で混合したものを用い
た。ここで、上記膨張黒鉛は、黒鉛材料を次のように熱
処理することにより得たものである。即ち、硝酸と硫酸
との混合物の中に天然黒鉛のように結晶が高度に発達し
た黒鉛材料を浸漬する。この場合、硝酸と硫酸の混合物
はとくに限定されないが、重量比で、1:10〜10:
1であれば特に問題はない。そして、この浸漬後の黒鉛
材料を、1000℃で3時間焼成することで導電性黒鉛
材料としての上記膨張黒鉛を得た。また、この膨張黒鉛
には、C軸方向の結晶子の大きさが500オングストロ
ーム以上1000オングストローム以下であるものを用
いた。
As the conductive agent for the positive electrode mixture, commercially available expanded graphite as a graphite-based conductive agent and commercially available acetylene black as a carbon black-based conductive agent were used as shown in Table 1.
A mixture in which the weight ratio was 1: 1 to 5: 1 was used. Here, the expanded graphite is obtained by heat-treating a graphite material as follows. That is, a graphite material with highly developed crystals, such as natural graphite, is immersed in a mixture of nitric acid and sulfuric acid. In this case, the mixture of nitric acid and sulfuric acid is not particularly limited, but the weight ratio is 1:10 to 10:
If it is 1, there is no particular problem. Then, the graphite material after immersion was calcined at 1000 ° C. for 3 hours to obtain the expanded graphite as a conductive graphite material. The expanded graphite used had a crystallite size in the C-axis direction of not less than 500 Å and not more than 1000 Å.

【0025】また上記の材料の混合比のうち、PTFE
の水性ディスパージョンの割合はそのうちの固形分の割
合である。このときの正極活物質の重量は4.7gであ
る。
Of the above mixing ratios of the materials, PTFE
The ratio of the aqueous dispersion is the ratio of the solid content. At this time, the weight of the positive electrode active material was 4.7 g.

【0026】2は炭素材料を用いた負極で、市販の石炭
系ピッチコークスと結着剤のPTFEの水性ディスパー
ジヨンを重量比で100:5の割合で混練したものをニ
ッケル製エキスパンドメタルに圧入し、乾燥、切断し、
帯状の負極シートとして作成した。この負極シートの一
部をシートの長手方向に対して垂直に合剤を掻き取り、
ニッケル製の負極リードを集電体上にスポット溶接して
取り付けた。なおPTFEの比率は上記と同様に固形分
の割合である。負極2中の炭素質粉未の重量は2.1g
である。
Reference numeral 2 denotes a negative electrode using a carbon material, which is obtained by kneading a commercially available coal-based pitch coke and an aqueous dispersion of PTFE as a binder at a weight ratio of 100: 5, and pressing the mixture into a nickel expanded metal. Dry, cut,
It was prepared as a strip-shaped negative electrode sheet. A part of this negative electrode sheet is scraped off the mixture perpendicular to the longitudinal direction of the sheet,
A nickel negative electrode lead was spot-welded on the current collector. In addition, the ratio of PTFE is a ratio of a solid content similarly to the above. The weight of the carbonaceous powder in the negative electrode 2 is 2.1 g.
It is.

【0027】これら正極1と負極2とを、ポリエチレン
製の多孔質フィルムから成るセパレータ3を介して渦巻
状に巻回し、外装缶4内に挿入する。挿入後、チタン製
リード5をステンレス製封口板6にスポツト溶接する。
The positive electrode 1 and the negative electrode 2 are spirally wound through a separator 3 made of a porous film made of polyethylene and inserted into an outer can 4. After the insertion, the titanium lead 5 is spot welded to the stainless sealing plate 6.

【0028】7はアルミニウム製の正極カップ兼正極端
子で予め封口板6にスポット溶接してある。また負極リ
ード板11は負極端子を兼ねた外装缶4の円形底面の中
心位置にスポツト溶接してある。8はポリプロピレン製
の絶縁ガスケットである。10は電池に異常が起きて、
電池内圧が上昇した場合に、内部ガスが外部へ放出され
るように取りつけてある安全弁である。12はポリプロ
ピレン製絶縁底板で、巻回時に生じる空間13と同面積
になるように穴が開いている。
Reference numeral 7 denotes a positive electrode cup / positive terminal made of aluminum, which is spot-welded to the sealing plate 6 in advance. The negative electrode lead plate 11 is spot-welded to the center of the circular bottom surface of the outer can 4 also serving as the negative electrode terminal. Reference numeral 8 denotes a polypropylene insulating gasket. 10, the battery has an abnormality,
This safety valve is installed so that the internal gas is released to the outside when the internal pressure of the battery rises. Reference numeral 12 denotes an insulating bottom plate made of polypropylene, which has a hole so as to have the same area as the space 13 generated at the time of winding.

【0029】以上の操作の後、エチレンカーボネート、
ディエチルカーボネートがそれぞれ1:1の割合の有機
溶媒に電解質としてLiPF6 (1mol/l)を加え
たものを電解液とし、これを2.3ml注入し封口す
る。
After the above operation, ethylene carbonate,
An electrolyte was prepared by adding LiPF 6 (1 mol / l) as an electrolyte to an organic solvent having a ratio of 1: 1 of diethyl carbonate, and 2.3 ml of the electrolyte was injected and sealed.

【0030】完成した電池のサイズは単三型(直径1
4.5mm×50mm)である。
The size of the completed battery is AA type (diameter 1).
4.5 mm x 50 mm).

【0031】<電池の試験>組み立てた電池を、充電を
250mA、4.1V、5hrの定電流定電圧充電で行
い、放電を500mAで3.0Vまで定電流で行い、充
放電サイクルを繰り返した。
<Test of Battery> The assembled battery was charged at a constant current and a constant voltage of 250 mA, 4.1 V and 5 hr, discharged at a constant current of 500 mA to 3.0 V, and a charge / discharge cycle was repeated. .

【0032】<電池試験結果>図2、図3に各仕様電池
の放電容量とサイクル特性を、比較例と共に示す。また
図3、図4にサイクル毎の容量劣化率を、比較例と共に
示す。
<Battery Test Results> FIG. 2 and FIG. 3 show the discharge capacity and cycle characteristics of each specification battery together with comparative examples. FIG. 3 and FIG. 4 show the capacity deterioration rates for each cycle together with comparative examples.

【0033】[0033]

【表1】 [Table 1]

【0034】表1から分かるように、実施例1は500
オングストローム以上1000オングストローム以下の
膨張黒鉛を3wt%、アセチレンブラックを3wt%と
したもの、つまり膨張黒鉛とカーボンブラックとをその
重量比が1:1の割合で混合した導電剤を使用したもの
で、膨張黒鉛を導電性物質の全重量の3/6含有してい
るものである。
As can be seen from Table 1, Example 1 is 500
3% by weight of expanded graphite and 3% by weight of acetylene black of angstrom or more and 1000 angstrom or less, that is, a material using a conductive agent in which expanded graphite and carbon black are mixed at a weight ratio of 1: 1. It contains graphite at / of the total weight of the conductive material.

【0035】また、実施例2は500オングストローム
以上1000オングストローム以下の膨張黒鉛を4wt
%、アセチレンブラックを2wt%としたもの、つまり
膨張黒鉛とカーボンブラックとをその重量比が2:1の
割合で混合した導電剤を使用したもので、膨張黒鉛を導
電性物質の全重量の4/6含有しているものである。
In Example 2, 4 wt% of expanded graphite having a thickness of 500 Å to 1,000 Å was used.
%, Acetylene black being 2 wt%, that is, a conductive agent obtained by mixing expanded graphite and carbon black at a weight ratio of 2: 1 was used, and expanded graphite was 4% of the total weight of the conductive substance. / 6.

【0036】同様に、実施例3は500オングストロー
ム以上1000オングストローム以下の膨張黒鉛を5w
t%、アセチレンブラックを1wt%としたもの、つま
り膨張黒鉛とカーボンブラックとをその重量比が5:1
の割合で混合した導電剤を使用したもので、膨張黒鉛を
導電性物質の全重量の5/6含有しているものである。
Similarly, in Example 3, expanded graphite having a thickness of 500 Å to 1,000 Å was used for 5 watts.
% of acetylene black and 1 wt% of acetylene black, that is, the weight ratio of expanded graphite to carbon black is 5: 1.
In which the conductive agent is mixed at a ratio of 5%, and contains expanded graphite at 5/6 of the total weight of the conductive substance.

【0037】これらの実施例1〜3は、図4又は図5に
曲線で示すように電池の容量が大きく、また図2
又は図3に曲線で示すように充放電のサイクル特
性が安定している。なお、ここで実施例1〜3には人造
黒鉛は含ませておらず、0wt%となっている。
In Examples 1 to 3, the capacity of the battery was large as shown by the curve in FIG. 4 or FIG.
Alternatively, the charge / discharge cycle characteristics are stable as shown by the curve in FIG. Here, artificial graphite was not included in Examples 1 to 3, and the content was 0 wt%.

【0038】一方、比較例1は膨張黒鉛を6wt%、ア
セチレンブラックと人造黒鉛とを共に0wt%にして、
膨張黒鉛のみとしたたもの、比較例2は膨張黒鉛と人造
黒鉛とを0wt%、アセチレンブラックを6wt%にし
て、アセチレンブラックのみとしたもの、比較例3は膨
張黒鉛とアセチレンブラックとを共に0wt%、人造黒
鉛を6wt%にして人造黒鉛のみとしたものである。比
較例1は膨張黒鉛とカーボンブラックの重量比が5:1
を上回って6:0の割合になった場合に相当し、また比
較例2は同重量比が1:1を下回って0:6の割合にな
った場合に相当する。
On the other hand, in Comparative Example 1, 6 wt% of expanded graphite and 0 wt% of both acetylene black and artificial graphite were used.
Comparative Example 2 was made of only acetylene black with 0% by weight of expanded graphite and artificial graphite, 6% by weight of acetylene black, and Comparative Example 3 was made of 0% by weight of both expanded graphite and acetylene black. %, Artificial graphite was 6 wt% and only artificial graphite was used. In Comparative Example 1, the weight ratio of expanded graphite to carbon black was 5: 1.
And a ratio of 6: 0 was obtained, and Comparative Example 2 was a case where the weight ratio was lower than 1: 1 and became a ratio of 0: 6.

【0039】これらの比較例1〜3のサイクル特性を図
2に曲線a〜cで、また容量劣化率を図4に曲線a〜c
で示す。比較例1及び比較例3(曲線a及びc)は初期
容量は大きいがサイクル毎の容量劣化が大きい。このよ
うに膨張黒鉛とカーボンブラックとの混合割合が重量比
で1:1〜5:1の範囲を外れると、所望するような安
定したサイクル特性と高い放電容量は得られない。ま
た、表1中に示すように電極合剤密度が小さい比較例2
(曲線b)は、図2に示すようにサイクル特性は安定し
ているが、電極合剤密度が小さいため、もともとの初期
放電容量が実施例1〜3に比べ小さい。
The cycle characteristics of Comparative Examples 1 to 3 are shown by curves a to c in FIG. 2, and the capacity deterioration rate is shown by curves a to c in FIG.
Indicated by In Comparative Examples 1 and 3 (curves a and c), the initial capacity is large, but the capacity deterioration in each cycle is large. If the mixing ratio of the expanded graphite and the carbon black is out of the range of 1: 1 to 5: 1 as described above, the desired stable cycle characteristics and high discharge capacity cannot be obtained. Further, as shown in Table 1, Comparative Example 2 in which the electrode mixture density was small
(Curve b) shows that the cycle characteristics are stable as shown in FIG. 2, but the original initial discharge capacity is smaller than Examples 1 to 3 because the density of the electrode mixture is small.

【0040】また比較例4〜6は、上記実施例1〜3に
おける膨張黒鉛を用いる代わりに人造黒鉛を対応量づつ
含有させて使用したものである。これらの比較例4〜6
のサイクル特性を図3に曲線d〜fで、また容量劣化率
を図5に曲線d〜fで示す。いずれも初期容量は大きい
がサイクル毎の容量劣化が大きい。
In Comparative Examples 4 to 6, artificial graphite was used in a corresponding amount instead of using the expanded graphite in Examples 1 to 3 above. These comparative examples 4 to 6
3 are shown by curves df in FIG. 3, and the capacity deterioration rate is shown by curves df in FIG. In each case, the initial capacity is large, but the capacity is greatly deteriorated in each cycle.

【0041】また比較例7は、上記実施例1における5
00オングストローム以上1000オングストローム以
下の膨張黒鉛の代わりに、500オングストローム未満
の膨張黒鉛を用いたものである。図3に曲線hで示すよ
うに、500オングストローム未満の膨張黒鉛を用いた
場合は、満足の行くサイクル特性が得られない。これは
図3中に参考用に示した従来品の場合の曲線hと同等で
ある。
Comparative Example 7 is the same as Example 5
Instead of expanded graphite having a thickness of not less than 00 Å and not more than 1000 Å, expanded graphite having a thickness of less than 500 Å is used. As shown by the curve h in FIG. 3, satisfactory expanded cycle characteristics cannot be obtained when expanded graphite of less than 500 Å is used. This is equivalent to the curve h for the conventional product shown for reference in FIG.

【0042】上記の結果より明らかなように、非水系リ
チウム二次電池の正極に含有する導電剤に、膨張黒鉛と
カーボンブラック(アセチレンブラック)とを混合して
用いる場合に、実施例1〜3の如くその重量比を1:1
〜5:1の混合比として、膨張黒鉛の含有量を導電性物
質の全重量の1/2以上で5/6以下にすると、放電容
量が大きく、サイクル特性が安定な電池が得られること
が判った。また、比較例4〜6の如く、導電剤に市販の
人造黒鉛を用いて同様の重量比で比較した場合、サイク
ル劣化が起こった。
As is clear from the above results, when the expanded graphite and carbon black (acetylene black) are mixed and used as the conductive agent contained in the positive electrode of the non-aqueous lithium secondary battery, Examples 1 to 3 are used. The weight ratio is 1: 1
When the content of the expanded graphite is set to be not less than 1/2 and not more than 5/6 of the total weight of the conductive substance at a mixing ratio of ~ 5: 1, a battery having a large discharge capacity and stable cycle characteristics can be obtained. understood. As in Comparative Examples 4 to 6, when commercially available artificial graphite was used as the conductive agent and compared at the same weight ratio, cycle deterioration occurred.

【0043】[0043]

【発明の効果】以上説明したように本発明によれば、次
のような優れた効果が得られる。
As described above, according to the present invention, the following excellent effects can be obtained.

【0044】(1)正極にリチウムを含む複合酸化物の
正極物質と導電性物質とを含有する正極合剤を備えた非
水電解液二次電池において、前記導電性物質の少なくと
も一種として、C軸方向の導電性が人造黒鉛より良好で
ある膨張黒鉛を前記導電性物質の全重量の5/6以下含
有させることで、充放電のサイクル特性の低下を可及的
に抑制でき、また嵩高なカーボンブラック系のアセチレ
ンブラックの含有率を減少できることから、電極合剤密
度を高め、電池の高容量化を達成することができる。
(1) In a non-aqueous electrolyte secondary battery provided with a positive electrode mixture containing a positive electrode material of a composite oxide containing lithium and a conductive material on the positive electrode, at least one of the conductive materials may be C By including expanded graphite having better conductivity in the axial direction than artificial graphite in an amount of 5/6 or less of the total weight of the conductive material, it is possible to suppress deterioration of charge / discharge cycle characteristics as much as possible and to increase bulkiness. Since the content of the carbon black acetylene black can be reduced, the density of the electrode mixture can be increased and the capacity of the battery can be increased.

【0045】(2)正極に含まれる導電性物質として、
特にカーボンブラック系の導電剤であるアセチレンブラ
ックと黒鉛系の導電剤である膨張黒鉛との混合物を用い
て、その重量比を1:1〜5:1の範囲に納めること
で、従来及び他の混合割合の範囲のものに比べ、充放電
のサイクル特性の安定化と高容量化とが顕著に図れる。
(2) As a conductive substance contained in the positive electrode,
In particular, by using a mixture of acetylene black, which is a carbon black conductive agent, and expanded graphite, which is a graphite conductive agent, the weight ratio of the mixture is in the range of 1: 1 to 5: 1. Compared to those in the range of the mixing ratio, stabilization of charge / discharge cycle characteristics and increase in capacity can be remarkably achieved.

【0046】(3)前記導電性物質の膨張黒鉛に、C軸
方向の結晶子の大きさが500オングストローム以上1
000オングストローム以下のものを用いることによ
り、この範囲外の大きさの結晶子の膨張黒鉛を用いる場
合に比べ、より高容量でサイクル特性の安定した電池を
得ることができる。
(3) The expanded graphite of the conductive material has a crystallite size in the C-axis direction of 500 Å or more and 1
By using a battery having a size of 000 angstroms or less, a battery having higher capacity and stable cycle characteristics can be obtained as compared with the case of using expanded graphite having a crystallite size outside this range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した巻回式非水電解液二次電池の
断面図である。
FIG. 1 is a sectional view of a wound nonaqueous electrolyte secondary battery to which the present invention is applied.

【図2】本発明の実施例のサイクル特性を比較例と共に
示す図である。
FIG. 2 is a diagram showing cycle characteristics of an example of the present invention together with a comparative example.

【図3】本発明の実施例のサイクル特性を他の比較例と
共に示す図である。
FIG. 3 is a diagram showing cycle characteristics of an example of the present invention together with another comparative example.

【図4】本発明の実施例の容量劣化率を比較例と共に示
す図である。
FIG. 4 is a diagram showing a capacity deterioration rate of an example of the present invention together with a comparative example.

【図5】本発明の実施例のサイクル特性を他の比較例と
共に示す図である。
FIG. 5 is a diagram showing cycle characteristics of an example of the present invention together with another comparative example.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極 3 セパレータ 4 外装缶 5 リード 6 封口板 7 正極カップ兼正極端子 8 絶縁ガスケット 10 安全弁 11 負極リード板 12 ポリプロピレン製絶縁底板 13 空間 REFERENCE SIGNS LIST 1 positive electrode plate 2 negative electrode 3 separator 4 outer can 5 lead 6 sealing plate 7 positive electrode cup and positive terminal 8 insulating gasket 10 safety valve 11 negative electrode lead plate 12 polypropylene insulating bottom plate 13 space

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極に正極物質と導電性物質とを含有す
る正極合剤を備えた非水電解液二次電池において、前記
導電性物質は複数種のものが混合されてなり、少なくと
もその一種として膨張黒鉛が前記導電性物質の全重量の
5/6以下含有されていることを特徴とする非水電解液
二次電池。
1. A non-aqueous electrolyte secondary battery provided with a positive electrode mixture containing a positive electrode material and a conductive material in a positive electrode, wherein the conductive material is a mixture of a plurality of types. A non-aqueous electrolyte secondary battery, wherein expanded graphite is contained in an amount of 5/6 or less of the total weight of the conductive substance.
【請求項2】 前記導電性物質が、前記膨張黒鉛とカー
ボンブラックとでなり、該膨張黒鉛とカーボンブラック
とはその重量比が1:1〜5:1の範囲で混合されてい
ることを特徴とする請求項l記載の非水電解液二次電
池。
2. The method according to claim 1, wherein the conductive substance comprises the expanded graphite and carbon black, and the expanded graphite and carbon black are mixed in a weight ratio of 1: 1 to 5: 1. The non-aqueous electrolyte secondary battery according to claim 1, wherein
【請求項3】 前記膨張黒鉛は、そのC軸方向の結晶子
の大きさが500オングストローム以上で1000オン
グストローム以下であることを特徴とする請求項1また
は2記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the expanded graphite has a crystallite size in the C-axis direction of not less than 500 angstroms and not more than 1000 angstroms.
JP09176064A 1997-07-01 1997-07-01 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3115256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09176064A JP3115256B2 (en) 1997-07-01 1997-07-01 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09176064A JP3115256B2 (en) 1997-07-01 1997-07-01 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1125986A true JPH1125986A (en) 1999-01-29
JP3115256B2 JP3115256B2 (en) 2000-12-04

Family

ID=16007089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09176064A Expired - Fee Related JP3115256B2 (en) 1997-07-01 1997-07-01 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3115256B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002280A1 (en) * 1998-07-06 2000-01-13 Tdk Corporation Electrode for nonaqueous electrolyte battery
JP2002260664A (en) * 2001-02-28 2002-09-13 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2005290200A (en) * 2004-03-31 2005-10-20 Daido Metal Co Ltd Water-based electroconductive coating material and its manufacturing method
CN102509778A (en) * 2011-10-28 2012-06-20 奇瑞汽车股份有限公司 Lithium ion battery cathode material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002280A1 (en) * 1998-07-06 2000-01-13 Tdk Corporation Electrode for nonaqueous electrolyte battery
US6824924B1 (en) 1998-07-06 2004-11-30 Tdk Corporation Electrode for nonaqueous electrolyte battery
JP4529288B2 (en) * 1998-07-06 2010-08-25 Tdk株式会社 Nonaqueous electrolyte secondary battery electrode
JP2002260664A (en) * 2001-02-28 2002-09-13 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2005290200A (en) * 2004-03-31 2005-10-20 Daido Metal Co Ltd Water-based electroconductive coating material and its manufacturing method
CN102509778A (en) * 2011-10-28 2012-06-20 奇瑞汽车股份有限公司 Lithium ion battery cathode material and preparation method thereof

Also Published As

Publication number Publication date
JP3115256B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
JP5153156B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery
JP4325112B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
US6713217B2 (en) Nonaqueous electrolyte secondary battery with a polyolefin microporous membrane separator
JP2000077071A (en) Nonaqueous electrolyte secondary battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2002025611A (en) Nonaqueous electrolyte secondary battery
WO2021171843A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN104868168A (en) Nonaqueous electrolyte secondary battery
JPH10112318A (en) Nonaqueous electrolyte secondary battery
JP2004259511A (en) Lithium secondary battery
JP3068712B2 (en) Non-aqueous electrolyte secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JP3508411B2 (en) Lithium ion secondary battery
JP3115256B2 (en) Non-aqueous electrolyte secondary battery
JPH0927316A (en) Lithium secondary battery
JPH0547383A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPH11273726A (en) Nonaqueous electrolyte secondary battery
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
JPH0541244A (en) Nonaqueous electrolyte secondary battery
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
JPH1154122A (en) Lithium ion secondary battery
JP2005071712A (en) Manufacturing method of positive electrode
JP2730641B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees