JPH04320358A - Plastic sealed semiconductor device - Google Patents

Plastic sealed semiconductor device

Info

Publication number
JPH04320358A
JPH04320358A JP8811891A JP8811891A JPH04320358A JP H04320358 A JPH04320358 A JP H04320358A JP 8811891 A JP8811891 A JP 8811891A JP 8811891 A JP8811891 A JP 8811891A JP H04320358 A JPH04320358 A JP H04320358A
Authority
JP
Japan
Prior art keywords
resin
epoxy
semiconductor device
curing agent
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8811891A
Other languages
Japanese (ja)
Inventor
Kuniyuki Eguchi
州志 江口
Masaji Ogata
正次 尾形
Hiroyoshi Kokado
小角 博義
Hiroyuki Hozoji
裕之 宝蔵寺
Yasuhide Sugawara
菅原 泰英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8811891A priority Critical patent/JPH04320358A/en
Publication of JPH04320358A publication Critical patent/JPH04320358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To enhance heat resistance and to achieve low hygroscopicity and high adhesion by sealing a semiconductor device with a resin composition essentially containing a hardener which contains an epoxy resin and a resin of specified composition. CONSTITUTION:At least a resin shown by the formula is employed as a hardener. Consequently, glass transition temperature of sealing resin is elevated and high strength is maintained at the time of reflow, while furthermore hygloscopicity of resin is suppressed and adhesion is enhanced through increase of breaking elongation of resin. The resin shown by the formula is contained by 5-100wt% in the hardener. Viscosity of epoxy resin is set lower than 3 poise at 150 deg.C. Furthermore, filler composed of inorganic particles occupies 55-80vol.% of the entire composition.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は耐半田リフロー性に優れ
る樹脂封止型半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-encapsulated semiconductor device having excellent solder reflow resistance.

【0002】0002

【従来の技術】半導体封止材料にはエポキシ樹脂と硬化
剤としてノボラック型フェノール系樹脂に硬化促進剤を
配合した組成物が、成形性,吸湿特性および耐熱性の点
で優れるため用いられている。
[Prior Art] A composition containing an epoxy resin, a novolac type phenolic resin as a hardening agent, and a hardening accelerator is used as a semiconductor encapsulation material because it has excellent moldability, moisture absorption characteristics, and heat resistance. .

【0003】しかし、近年の半導体の集積度の上昇,パ
ッケージサイズやパッケージ形状,実装方式等の変遷に
伴い、耐熱性,耐湿性,低応力などを含めた信頼性のな
お一層の向上が望まれている。例えば、パッケージの実
装方式がピン挿入型から表面実装型の移行に伴い、プリ
ント基板への実装時にパッケージが200℃以上の高温
に曝されるようになって来たため、パッケージがクラッ
クを生じたり、チプと封止用樹脂との界面が剥離し、耐
湿性が低下するなどの問題が発生している。
However, with the recent increase in the degree of integration of semiconductors and changes in package size, package shape, mounting method, etc., there is a desire for further improvements in reliability, including heat resistance, moisture resistance, and low stress. ing. For example, with the shift in package mounting methods from pin insertion type to surface mount type, packages have come to be exposed to high temperatures of 200°C or higher when mounted on printed circuit boards, which can cause cracks in the packages. Problems such as peeling at the interface between the chip and the sealing resin, resulting in a decrease in moisture resistance, have occurred.

【0004】この要求に対し、従来から、封止用樹脂の
ガラス転移温度を上げ、リフロー時の温度(200〜2
60℃)における高温強度を高めたり、封止用樹脂の吸
湿率の低減や低応力化等の種々の試みがなされている。 封止用樹脂のガラス転移温度を上げる方法としては特開
昭64−9214号および特開昭64−31816 号
公報に記載されているような多官能エポキシ樹脂や特開
平1−126321 号公報のポリイミド樹脂を用いる
ことが提案されている。 また、特開平2−88621号および特開平2−110
958号公報には骨格にナフタレンを含む低吸湿のエポ
キシ樹脂が記載されている。さらに、低応力エポキシ樹
脂組成物として骨格にビフェニールを含むエポキシ樹脂
の使用が特開平1−268711号,特開平2−919
65号および特開平2−99514 号公報で検討され
ている。
In response to this demand, the glass transition temperature of the sealing resin has been raised and the reflow temperature (200 to 2
Various attempts have been made to increase the high-temperature strength at 60° C., reduce the moisture absorption rate of the sealing resin, and reduce stress. Methods for raising the glass transition temperature of the sealing resin include polyfunctional epoxy resins as described in JP-A-64-9214 and JP-A-64-31816, and polyimide as described in JP-A-1-126321. It has been proposed to use resin. Also, JP-A No. 2-88621 and JP-A No. 2-110
Publication No. 958 describes a low moisture absorption epoxy resin containing naphthalene in its skeleton. Furthermore, the use of epoxy resins containing biphenyl in the skeleton as low stress epoxy resin compositions is disclosed in JP-A-1-268711 and JP-A-2-919.
No. 65 and Japanese Unexamined Patent Publication No. 2-99514.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術は耐熱性
と低吸湿率並びに低応力の両立という点については充分
に考慮されておらず、高いガラス転移温度をもった多官
能エポキシ樹脂やポリイミド樹脂は吸湿率が大きくなっ
たり、接着力が低下する傾向にあり、また、低吸湿率並
びに低応力の樹脂は接着力は大きいものの、ガラス転移
温度が逆に従来よりも劣る問題があった。そのため、耐
リフロー性の向上に対しては何れの場合も満足しうるも
のではなかった。
[Problems to be Solved by the Invention] The above-mentioned conventional technology does not sufficiently take into account the need to achieve both heat resistance, low moisture absorption, and low stress, and it is difficult to use polyfunctional epoxy resins or polyimide resins that have a high glass transition temperature. Resins with low moisture absorption and low stress tend to have high adhesive strength, but have a problem in that their glass transition temperature is inferior to that of conventional resins. Therefore, the improvement in reflow resistance was not satisfactory in any case.

【0006】本発明の目的は、耐熱性に優れ、しかも低
吸湿率及び高接着力を有する樹脂組成物によって封止さ
れた耐リフロー性に優れる樹脂封止型半導体装置を提供
することにある。
An object of the present invention is to provide a resin-sealed semiconductor device that is encapsulated with a resin composition that has excellent heat resistance, low moisture absorption, and high adhesive strength, and has excellent reflow resistance.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、高耐熱性と低吸湿率ならびに高接着
力を両立しうる封止用樹脂について種々検討した。その
中で、特に硬化性や流動性などの成形性に優れるエポキ
シ樹脂に着目し、エポキシ樹脂並びに硬化剤について、
上述の特性を満足できる化学構造と組成を検討した。そ
の結果、硬化剤として少なくとも下記一般式(2)
[Means for Solving the Problems] In order to achieve the above object, the present inventors have conducted various studies on sealing resins that are capable of achieving both high heat resistance, low moisture absorption, and high adhesive strength. Among them, we focused on epoxy resins that have excellent moldability such as curability and fluidity, and we have developed
We investigated the chemical structure and composition that can satisfy the above characteristics. As a result, at least the following general formula (2) is used as a curing agent.

【0
008】
0
008]

【化2】[Case 2]

【0009】(式中、Rは水素原子又は炭素数1〜4の
アルキル基を表し、aは1〜4の整数を表す。)で表さ
れる樹脂を用いれば、封止用樹脂のガラス転移温度を上
げ、リフロー時の温度(200〜260℃)で高強度を
維持できるばかりでなく、樹脂の吸湿率の増大を抑え、
樹脂の破断伸びの増大による接着力の向上も図ることが
できることを見出し、本発明に至った。
(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and a represents an integer of 1 to 4.) If the resin is used, the glass transition of the sealing resin can be reduced. Not only can it maintain high strength at reflow temperatures (200 to 260°C) by raising the temperature, but it also suppresses the increase in moisture absorption of the resin.
It has been discovered that the adhesive force can be improved by increasing the elongation at break of the resin, and the present invention has been achieved.

【0010】又、少なくとも上記一般式で表される硬化
剤を含有するエポキシ樹脂組成物は従来のノボラック型
フェノール樹脂硬化剤と比べて、封止用樹脂の弾性率を
低下させることができるために、素子の歪や破損及びボ
ンディング線の切断原因である熱応力の低減に対しても
効果がある。
[0010] Also, since the epoxy resin composition containing at least the curing agent represented by the above general formula can lower the elastic modulus of the sealing resin compared to the conventional novolak type phenolic resin curing agent, It is also effective in reducing thermal stress, which causes distortion and damage to elements and breaks in bonding wires.

【0011】本発明において、一般式(2)で表される
フェノール樹脂は三官能であるために、耐熱性の向上を
図ることができるばかりでなく、エポキシ樹脂との硬化
後の架橋樹脂において、架橋間分子の一部がビスフェノ
ールA型で構成されるため、柔軟性と強靱性を合わせ持
つ構造となり、吸湿率と高接着並びに低弾性率等の特性
を同時に満足できる。構造式中のRa(aは1〜4の整
数を表す。)は水素又は炭素数1〜4のアルキル基を表
すが、樹脂の軟化温度と吸湿特性及び硬化特性に応じて
、置換基及びその数を選ぶことができる。Rが水素の場
合は硬化性並びに耐熱性に優れるが、樹脂の軟化温度が
高くなる傾向にある。Rとしてメチル基等のアルキル基
を用いると、樹脂の軟化温度と吸湿率は低くなるが、硬
化性が低下する傾向にある。そのため、本発明では、特
性に応じて、一般式(2)で表されるフェノール樹脂の
一種類又はRaの異なる樹脂の二種類以上を組み合わせ
て用いることができる。さらに、必要に応じて一般式(
2)で表される樹脂以外の硬化剤と併用することも可能
である。
In the present invention, since the phenol resin represented by the general formula (2) is trifunctional, it is not only possible to improve the heat resistance, but also to improve the crosslinked resin after curing with the epoxy resin. Since a part of the crosslinking molecules is composed of bisphenol A type, the structure has both flexibility and toughness, and can simultaneously satisfy characteristics such as moisture absorption, high adhesion, and low elastic modulus. Ra (a represents an integer of 1 to 4) in the structural formula represents hydrogen or an alkyl group having 1 to 4 carbon atoms, but the substituents and their You can choose the number. When R is hydrogen, the resin has excellent curability and heat resistance, but the softening temperature of the resin tends to be high. When an alkyl group such as a methyl group is used as R, the softening temperature and moisture absorption rate of the resin are lowered, but the curability tends to be lowered. Therefore, in the present invention, one type of phenolic resin represented by the general formula (2) or a combination of two or more types of resins having different Ra can be used depending on the characteristics. Furthermore, if necessary, the general formula (
It is also possible to use in combination with a curing agent other than the resin represented by 2).

【0012】本発明において、一般式(2)のフェノー
ル樹脂と併用する硬化剤としてはフェノール,クレゾー
ル,キシレノール,ナフトール等のフェノール類とホル
ムアルデヒド又はフェノールアルデヒドとをパラトルエ
ンスルホン酸,硫酸,塩酸,過塩素酸,蓚酸などの酸性
触媒下で反応することにより得られる縮合生成物やフェ
ノールとアラルキルエーテルの重縮合物を用いることが
できる。これらの硬化剤の例としては、例えば、フェノ
ールノボラック樹脂,クレゾールノボラック樹脂,フェ
ノール又はクレゾールベ−スの多官能型硬化剤,フェノ
ールとアラルキルエーテルの重縮合によって得られた樹
脂等がある。この場合の配合量は、一般式(2)で表さ
れる樹脂硬化剤(A)と上記の他の硬化剤(B)とを(
A):(B)=100:0〜5:95の割合で配合する
のが好ましい。一般式(2)で表される樹脂硬化剤(A
)の割合が5重量未満になると、本発明の目的である耐
熱性の向上にはほとんど効果がない。
In the present invention, the curing agent to be used in combination with the phenolic resin of general formula (2) is a combination of phenols such as phenol, cresol, xylenol, and naphthol, and formaldehyde or phenolaldehyde in combination with p-toluenesulfonic acid, sulfuric acid, hydrochloric acid, or peroxide. A condensation product obtained by reacting under an acidic catalyst such as chloric acid or oxalic acid or a polycondensate of phenol and aralkyl ether can be used. Examples of these curing agents include, for example, phenol novolac resins, cresol novolak resins, phenol- or cresol-based polyfunctional curing agents, and resins obtained by polycondensation of phenol and aralkyl ether. In this case, the amount of the resin curing agent (A) represented by general formula (2) and the other curing agent (B) described above is
It is preferable to mix them in a ratio of A):(B)=100:0 to 5:95. Resin curing agent (A
) is less than 5% by weight, there is little effect on improving heat resistance, which is the objective of the present invention.

【0013】本発明において用いるエポキシ樹脂は一分
子内に二個以上のエポキシ基を含むエポキシ樹脂全般を
意味するものであり、例えば、ビスフェノールA,ビス
フェノールS及びビスフェノールFやフェノールノボラ
ック樹脂及びクレゾールノボラック樹脂とエピクロロヒ
ドリンを反応させて得られるビスフェノール系エポキシ
樹脂やノボラック系エポキシ樹脂、又は、それらの臭素
化エポキシ樹脂,ナフタレン骨格又はビフェニール骨格
を有するエポキシ樹脂,フェノール又はクレゾールベー
スの三官能以上の多官能エポキシ樹脂,シクロヘキセン
,シクロペンタジエン,ジシクロペンタジエンのような
脂環式化合物から得られるエポキシ樹脂,ビニルポリマ
から得られるエポキシ樹脂,グリセリンのような多価ア
ルコールから得られるエポキシ樹脂、一般式(2)で表
されるフェノール樹脂とエピクロロヒドリンとを反応さ
せて得られるエポキシ樹脂又はこれらの臭素化エポキシ
樹脂等がある。
[0013] The epoxy resin used in the present invention refers to all epoxy resins containing two or more epoxy groups in one molecule, such as bisphenol A, bisphenol S, bisphenol F, phenol novolac resin, and cresol novolak resin. Bisphenol-based epoxy resins and novolac-based epoxy resins obtained by reacting with epichlorohydrin, or their brominated epoxy resins, epoxy resins having a naphthalene skeleton or biphenyl skeleton, phenol- or cresol-based polyfunctional Functional epoxy resin, epoxy resin obtained from alicyclic compounds such as cyclohexene, cyclopentadiene, dicyclopentadiene, epoxy resin obtained from vinyl polymer, epoxy resin obtained from polyhydric alcohol such as glycerin, general formula (2) There are epoxy resins obtained by reacting a phenol resin represented by the following with epichlorohydrin, and brominated epoxy resins thereof.

【0014】本発明では、硬化剤として少なくとも一般
式(2)で表される樹脂を用いるが、この樹脂は他の硬
化剤と比べて軟化温度が若干高い。そのため、この樹脂
の配合量が多くなると、吸湿特性並びに接着性を変えず
に耐熱性を大幅に向上できるものの、流動性の低下がお
こる。この低下を抑えるために、エポキシ樹脂として低
粘度のものを用いるのが好ましい。エポキシ樹脂の粘度
は、150℃において3ポアズ以下であれば、硬化剤の
全てに一般式(2)で表される樹脂を用いても、封止剤
の流動性を従来以上に確保できる。上述のエポキシ樹脂
は、本発明の効果を阻害しない範囲で単独又は二種類以
上組み合わせて用いることができる。
In the present invention, at least a resin represented by the general formula (2) is used as a curing agent, but this resin has a slightly higher softening temperature than other curing agents. Therefore, if the amount of this resin is increased, the heat resistance can be greatly improved without changing the moisture absorption properties and adhesiveness, but the fluidity will be reduced. In order to suppress this decrease, it is preferable to use an epoxy resin with low viscosity. If the viscosity of the epoxy resin is 3 poise or less at 150° C., even if the resin represented by the general formula (2) is used as the entire curing agent, the fluidity of the sealant can be ensured better than before. The above-mentioned epoxy resins can be used alone or in combination of two or more types as long as the effects of the present invention are not impaired.

【0015】本発明において、少なくとも一般式(2)
で表される樹脂を含有する硬化剤はエポキシ樹脂に対し
て0.5〜1.5当量配合するのが望ましい。硬化剤の
配合量がエポキシ樹脂に対して0.5 当量未満である
と、エポキシ樹脂の硬化が完全に行われないため、硬化
物の耐熱性,耐湿性並びに電気特性が劣り、1.5 当
量を越えると、逆に樹脂硬化後も硬化剤がもつ水酸基が
多量に残るために電気特性並びに耐湿性が悪くなる。
In the present invention, at least general formula (2)
It is desirable that the curing agent containing the resin represented by the formula is blended in an amount of 0.5 to 1.5 equivalents to the epoxy resin. If the amount of the curing agent is less than 0.5 equivalent to the epoxy resin, the epoxy resin will not be completely cured, resulting in poor heat resistance, moisture resistance, and electrical properties of the cured product. On the other hand, if it exceeds this amount, a large amount of hydroxyl groups in the curing agent remain even after the resin is cured, resulting in poor electrical properties and moisture resistance.

【0016】本発明で半導体封止用として用いる樹脂組
成物には、必要に応じ、組成物全体に対して55〜80
容量%の無機充填剤を配合する。無機充填剤は硬化物の
熱膨張係数や熱伝導率,弾性率等の改良を目的に添加す
るものであり、この配合量が55容量%未満ではこれら
の特性の改良を充分に行えず、又、80容量%を越えて
配合した場合には材料の粘度が著しく上昇し流動性が低
下してしまうためである。無機充填剤としては種々の化
合物が挙げられるが、電子部品には熱化学的に安定な充
填剤を用いることが重要であり、具体的には熔融シリカ
,結晶性シリカ,アルミナから選ばれる少なくとも一種
の無機粒子が望ましい。なお、これらの充填剤の平均粒
径は1〜30μmの範囲が望ましい。これは平均粒径が
1μm未満であると樹脂組成物の粘度が上昇し流動性が
著しく低下するためであり、又、30μmを越えると成
形時に樹脂成分と充填剤の分離が起きやすく硬化物が不
均一になり硬化物物性にばらつきが生じたり、狭い隙間
への充填性が悪くなるためである。
The resin composition used for semiconductor encapsulation in the present invention may contain 55 to 80% of the total composition, if necessary.
% by volume of inorganic filler. Inorganic fillers are added for the purpose of improving the coefficient of thermal expansion, thermal conductivity, modulus of elasticity, etc. of the cured product, and if the amount added is less than 55% by volume, these properties cannot be sufficiently improved. This is because if the amount exceeds 80% by volume, the viscosity of the material will increase significantly and the fluidity will decrease. Various compounds can be used as inorganic fillers, but it is important to use thermochemically stable fillers for electronic components, and specifically at least one type selected from fused silica, crystalline silica, and alumina. of inorganic particles are desirable. Note that the average particle size of these fillers is preferably in the range of 1 to 30 μm. This is because if the average particle size is less than 1 μm, the viscosity of the resin composition will increase and the fluidity will be significantly reduced, and if it exceeds 30 μm, the resin component and filler will likely separate during molding, resulting in a hardened product. This is because the cured product becomes non-uniform, resulting in variations in the physical properties of the cured product, and the ability to fill narrow gaps becomes poor.

【0017】さらに、本発明ではこの他必要に応じて、
樹脂組成物として硬化物の強靱性や低弾性率化のための
可撓化剤を用いることができる。可撓化剤の配合量は全
樹脂組成物に対し2〜20重量%であることが好ましい
。可撓化剤の配合量が2重量%未満では硬化物の強靱性
や低弾性率化に対してほとんど効果が無く、20重量%
を越えると樹脂組成物の流動性が極端に悪くなったり、
可撓化剤が樹脂硬化物表面に浮きでることによって、成
形用金型の汚れが顕著になる。可撓化剤としてはエポキ
シ樹脂組成物と非相溶のものがガラス転移温度を下げず
に硬化物の低弾性率化ができることから、ブタジエン・
アクリロニトリル系共重合体やそれらの末端又は側鎖ア
ミノ基,エポキシ基,カルボキシル基変性共重合体やア
クリロニトリル・ブタジエン・スチレン共重合体等のブ
タジエン系可撓化剤や末端又は側鎖アミノ基,水酸基,
エポキシ基,カルボキシル基変性シリコーン樹脂系可撓
化剤等が用いられるが、耐湿性や高純度の点から、シリ
コーン系可撓化剤が特に有用である。
Furthermore, in the present invention, if necessary,
A flexibilizing agent can be used in the resin composition to improve the toughness and lower the elastic modulus of the cured product. The blending amount of the flexibilizing agent is preferably 2 to 20% by weight based on the total resin composition. If the amount of the flexibilizing agent is less than 2% by weight, it will have little effect on the toughness or lower elastic modulus of the cured product;
If it exceeds this, the fluidity of the resin composition will become extremely poor,
When the flexibilizing agent floats on the surface of the cured resin, the mold becomes noticeably contaminated. As a flexibilizing agent, one that is incompatible with the epoxy resin composition can lower the elastic modulus of the cured product without lowering the glass transition temperature, so butadiene,
Acrylonitrile copolymers and their terminal or side chain amino groups, epoxy groups, carboxyl group-modified copolymers, acrylonitrile-butadiene-styrene copolymers, butadiene-based flexibilizing agents, terminal or side chain amino groups, and hydroxyl groups. ,
Epoxy group- and carboxyl group-modified silicone resin-based flexibilizers are used, but silicone-based flexibilizers are particularly useful from the viewpoint of moisture resistance and high purity.

【0018】本発明の樹脂封止型半導体装置に用いる組
成物にはこの他必要に応じ、樹脂の硬化反応を促進する
ための硬化触媒,樹脂成分と充填剤の接着性を高めるた
めのカップリング剤,着色のための染料や顔料,硬化物
の金型からの離型性を改良するための離形剤等の各種添
加剤を発明の目的を損なわない範囲において用いること
ができる。硬化触媒はトリフェニルホスフィン,テトラ
フェニルホスホニウムテトラフェニルボレート等の含燐
有機塩基性化合物、又は、これらのテトラ置換ボロン塩
,トリエチレンジアミン,ベンジルジメチルアミン等の
三級アミン、1,8−ジアザビシクロ(5,4,0)−
ウンデセン、イミダゾール等の少なくとも、一種を、さ
らにカップリング剤としてはエポキシシラン,アミノシ
ラン等の少なくとも、一種類を用いることができる。
The composition used for the resin-sealed semiconductor device of the present invention may also contain, if necessary, a curing catalyst to accelerate the curing reaction of the resin, and a coupling to improve the adhesion between the resin component and the filler. Various additives such as dyes and pigments for coloring, mold release agents for improving the releasability of the cured product from the mold can be used within the range that does not impair the purpose of the invention. The curing catalyst is a phosphorus-containing organic basic compound such as triphenylphosphine or tetraphenylphosphonium tetraphenylborate, or a tetra-substituted boron salt thereof, a tertiary amine such as triethylenediamine or benzyldimethylamine, or 1,8-diazabicyclo(5 ,4,0)-
At least one type of undecene, imidazole, etc. can be used, and as a coupling agent, at least one type of epoxysilane, aminosilane, etc. can be used.

【0019】このような原材料を用いて半導体封止用成
形材料を作製する一般的な方法としては、所定配合量の
原材料混合物を充分混合した後、熱ロールや押出し機等
によって混練し、冷却,粉砕することによって成形材料
を得ることができる。このようにして得られた成形材料
を用いて半導体を封止する方法としては、低圧トランス
ファ成形法が通常用いられるが、場合によっては、イン
ジェクション成形,圧縮成形,注型等の方法によっても
可能である。
[0019] A general method for producing a molding material for semiconductor encapsulation using such raw materials is to sufficiently mix a raw material mixture of a predetermined amount, knead it using a hot roll or an extruder, cool it, and then heat it. A molding material can be obtained by crushing. Low-pressure transfer molding is usually used to encapsulate semiconductors using the molding material obtained in this way, but in some cases, methods such as injection molding, compression molding, and casting may also be used. be.

【0020】[0020]

【作用】本発明で耐熱性,耐湿性及び耐リフロー性に優
れる樹脂封止型半導体装置が得られる理由は本発明に用
いられる一般式(2)で表わされる樹脂硬化剤の構造に
よるものである。
[Operation] The reason why a resin-sealed semiconductor device with excellent heat resistance, moisture resistance, and reflow resistance can be obtained in the present invention is due to the structure of the resin curing agent represented by the general formula (2) used in the present invention. .

【0021】一般式(2)で表わされる樹脂硬化剤は三
官能であるため、高耐熱の特徴を発揮することができる
。また、エポキシ樹脂との硬化後に形成される架橋樹脂
は架橋間分子の一部がビスフェノールA型で構成される
ため、柔軟性と強靱性をもつ構造の樹脂となり、高接着
性並びに低弾性をも同時に満足できる。さらに、一般式
(2)で表わされる樹脂硬化剤は三官能でありながら、
分子構造上ある程度の柔軟性をもつため樹脂の自由体積
低減の効果があり、従来の多官能硬化剤よりも低吸湿の
特徴をもつ。又、この硬化剤を低吸湿性のエポキシ樹脂
と併用することにより、封止材の低吸湿化に対してより
一層の効果が生まれる。耐熱に優れ、高温強度が大きく
、しかも高接着力,低吸湿の特徴をもつ一般式(2)の
樹脂硬化剤とエポキシ樹脂を必須成分とする樹脂組成物
によって封止された半導体装置は、リフロー加熱時に発
生するパッケージクラックの原因である水分を吸着し難
くなる。さらに、樹脂とリードフレームとの接着性の向
上はそれらの界面における透湿を低減させるために耐リ
フロー性が良好となる。又、リフロー加熱時の水蒸気圧
に耐えられる高温強度が大きいことも耐リフロー性のも
う一つの要因である。
Since the resin curing agent represented by the general formula (2) is trifunctional, it can exhibit high heat resistance. In addition, the crosslinked resin formed after curing with the epoxy resin has a part of crosslinked molecules composed of bisphenol A type, so the resin has a structure with flexibility and toughness, and has high adhesiveness and low elasticity. Satisfied at the same time. Furthermore, although the resin curing agent represented by general formula (2) is trifunctional,
Because it has a certain degree of flexibility due to its molecular structure, it has the effect of reducing the free volume of the resin, and has the characteristic of lower moisture absorption than conventional multifunctional curing agents. Further, by using this curing agent in combination with a low hygroscopic epoxy resin, a further effect is produced in reducing the hygroscopicity of the sealing material. Semiconductor devices encapsulated with a resin composition containing a resin curing agent of general formula (2) and an epoxy resin as essential components, which have excellent heat resistance, high high-temperature strength, high adhesive strength, and low moisture absorption, can be reflow sold. It becomes difficult to adsorb moisture, which is the cause of package cracks that occur during heating. Furthermore, improved adhesiveness between the resin and the lead frame reduces moisture permeation at the interface between them, resulting in improved reflow resistance. Another factor in the reflow resistance is that it has high high temperature strength that can withstand water vapor pressure during reflow heating.

【0022】又、本発明における樹脂組成物は低弾性率
である特徴をもつため、半導体装置に発生する熱応力が
小さくなる。
Furthermore, since the resin composition of the present invention is characterized by a low elastic modulus, the thermal stress generated in the semiconductor device is reduced.

【0023】[0023]

【実施例】以下、本発明について実施例に従い具体的に
説明するが、本発明の範囲はこれらの実施例に限定され
るものではない。
EXAMPLES The present invention will be explained in detail below with reference to Examples, but the scope of the present invention is not limited to these Examples.

【0024】〈実施例1〉構造式<Example 1> Structural formula

【0025】[0025]

【化3】[Chemical formula 3]

【0026】で表されるテトラメチルジヒドロキシビフ
ェニール・グリシジルエーテル(エポキシ当量188,
150℃における溶融粘度0.2 ポアズ),臭素化ビ
スフェノール型エポキシ樹脂(エポキシ当量375,軟
化温度68℃,150℃における溶融粘度1.3 ポア
ズ)及び構造式
Tetramethyldihydroxybiphenyl glycidyl ether (epoxy equivalent: 188,
Melt viscosity at 150°C 0.2 poise), brominated bisphenol epoxy resin (epoxy equivalent 375, softening temperature 68°C, melt viscosity at 150°C 1.3 poise) and structural formula

【0027】[0027]

【化4】[C4]

【0028】で表され、水酸基当量141のトリスフェ
ノール型樹脂硬化剤,表1に示す硬化触媒,充填剤とし
て平均粒径6μmの角形の溶融シリカと平均粒径30μ
mの球形の溶融シリカの30/70混合品,難燃化助剤
として三酸化アンチモン,カップリング剤としてエポキ
シシラン,離型剤としてモンタン酸エステルロウ,着色
剤としてカーボンブラックを用い、表1に示す配合割合
で成形材料を作製した。
A trisphenol type resin curing agent with a hydroxyl equivalent of 141, a curing catalyst shown in Table 1, prismatic fused silica with an average particle size of 6 μm as a filler, and a trisphenol type resin curing agent with an average particle size of 30 μm as fillers.
A 30/70 mixture of m spherical fused silica, antimony trioxide as a flame retardant aid, epoxy silane as a coupling agent, montanic acid ester wax as a mold release agent, and carbon black as a coloring agent were used, as shown in Table 1. Molding materials were prepared with the blending ratios shown.

【0029】[0029]

【表1】[Table 1]

【0030】各素材の混練には直径20インチの二軸ロ
ールを用い、ロール表面温度約55〜80℃で約10分
間の混練を行なった。
[0030] For kneading each material, a twin-screw roll having a diameter of 20 inches was used, and the kneading was carried out for about 10 minutes at a roll surface temperature of about 55 to 80°C.

【0031】〈実施例2〜13〉表1に示すように、エ
ポキシ樹脂並びに実施例1のトリスフェノール樹脂硬化
剤と併用する他の樹脂硬化剤の種類と配合量及び硬化促
進剤の種類を変えたほかは、実施例1と同様にして成形
材料を作製した。
Examples 2 to 13 As shown in Table 1, the types and amounts of other resin curing agents used in combination with the epoxy resin and the trisphenol resin curing agent of Example 1, and the type of curing accelerator were changed. A molding material was produced in the same manner as in Example 1 except for the above.

【0032】〈比較例1〉樹脂硬化剤としてフェノール
ノボラック樹脂(水酸基当量106,軟化温度65℃)
を用いた他は実施例1と同様にして成形材料を作製した
<Comparative Example 1> Phenol novolak resin as resin curing agent (hydroxyl equivalent: 106, softening temperature: 65°C)
A molding material was produced in the same manner as in Example 1 except that the following was used.

【0033】〈比較例2〉樹脂硬化剤として構造式<Comparative Example 2> As a resin curing agent, the structural formula

【0
034】
0
034]

【化5】[C5]

【0035】で表される樹脂(C)(水酸基当量173
,軟化温度69℃)を用いた他は実施例1と同様にして
成形材料を作製した。
Resin (C) represented by (hydroxyl equivalent: 173
A molding material was prepared in the same manner as in Example 1, except that a temperature of 69° C.) was used.

【0036】〈比較例3〉樹脂硬化剤として実施例1の
トリスフェノール樹脂2.5 重量部、フェノールノボ
ラック樹脂50重量部を用いた他は、実施例1と同等に
して成形材料を作製した。
Comparative Example 3 A molding material was prepared in the same manner as in Example 1, except that 2.5 parts by weight of the trisphenol resin and 50 parts by weight of the phenol novolak resin of Example 1 were used as resin curing agents.

【0037】〈比較例4〉エポキシ樹脂として、150
℃における溶融粘度が3ポアズであるオルソクレゾール
ノボラック型エポキシ樹脂(エポキシ当量195,軟化
温度65℃),硬化剤として比較例1のフェノールノボ
ラック樹脂を用いた他は、実施例1と同様にして成形材
料を作製した。
<Comparative Example 4> As an epoxy resin, 150
Molding was carried out in the same manner as in Example 1, except that an ortho-cresol novolac type epoxy resin (epoxy equivalent: 195, softening temperature 65 °C) having a melt viscosity of 3 poise at °C and the phenol novolac resin of Comparative Example 1 was used as the curing agent. The material was prepared.

【0038】〈比較例5〉エポキシ樹脂として、150
℃における溶融粘度が6ポアズであるオルソクレゾール
型ノボラック樹脂(エポキシ当量196,軟化温度77
℃)を用いた他は、実施例1と同様にして成形材料を作
製した。
<Comparative Example 5> As an epoxy resin, 150
Orthocresol type novolak resin with a melt viscosity of 6 poise at °C (epoxy equivalent: 196, softening temperature: 77
A molding material was produced in the same manner as in Example 1, except that the temperature (°C) was used.

【0039】〈実施例14〜17〉樹脂成分として前記
実施例と同じ素材と、新たに可撓化剤として側鎖エポキ
シ変性シリコーン樹脂(分子量73600,エポキシ当
量3900)を用い、表2に示す配合割合で成形材料を
作製した。
<Examples 14 to 17> Using the same material as in the previous example as a resin component and a new side chain epoxy-modified silicone resin (molecular weight 73,600, epoxy equivalent 3,900) as a flexibilizer, the formulations shown in Table 2 were prepared. A molding material was prepared according to the ratio.

【0040】〈比較例6〉前記実施例14〜17と同じ
素材を用い、表2に示す配合割合で前記と同様にして成
形材料を作製した。
Comparative Example 6 Using the same materials as those in Examples 14 to 17, molding materials were prepared in the same manner as above at the compounding ratios shown in Table 2.

【0041】このようにして得られた成形材料の180
℃における成形性と、金型温度180℃,成形圧力70
Kg/cm2 ,成形時間90秒で成形した後180℃
で6時間の後硬化を行なった成形品の諸物性の結果を表
1及び表2にまとめて示す。なお、表1及び表2におけ
る配合割合はすべて重量部で表してある。又、表中に示
してあるエポキシ樹脂の中で、記号(A)で表される樹
脂(エポキシ当量145,52℃における溶融粘度1.
3 ポアズ)の構造式は
180 of the molding material thus obtained
Formability at ℃, mold temperature 180℃, molding pressure 70℃
Kg/cm2, 180℃ after molding for 90 seconds
Tables 1 and 2 summarize the results of various physical properties of molded products that were post-cured for 6 hours. In addition, all the compounding ratios in Tables 1 and 2 are expressed in parts by weight. Also, among the epoxy resins shown in the table, the resin represented by symbol (A) (epoxy equivalent: 145, melt viscosity at 52°C: 1.
The structural formula of 3 Poise is

【0042】[0042]

【化6】[C6]

【0043】であり、記号(B)で表される樹脂(エポ
キシ当量215,150℃における溶融粘度約1ポアズ
)の構造式は
The structural formula of the resin represented by the symbol (B) (epoxy equivalent: 215, melt viscosity at 150°C: approximately 1 poise) is

【0044】[0044]

【化7】[C7]

【0045】である。表中の樹脂硬化剤の中で、記号(
D)で表される樹脂(水酸基当量107,軟化温度10
1℃)の構造式は
[0045] Among the resin curing agents in the table, the symbol (
Resin represented by D) (hydroxyl equivalent: 107, softening temperature: 10
The structural formula of 1℃) is

【0046】[0046]

【化8】[Chemical formula 8]

【0047】であり、記号(E)で表される樹脂(水酸
基当量120,軟化温度62℃)は次のような構造式
The resin represented by the symbol (E) (hydroxyl equivalent: 120, softening temperature: 62°C) has the following structural formula:


0048】
[
0048

【化9】[Chemical formula 9]

【0049】をもつノボラック型クレゾール樹脂である
。表中に記号で示した硬化触媒はDBU;1,8−ジア
ザビシクロ(5,4,0)−ウンデセン,TPP;トリ
フェニールホスフィン,2E4HZ;2−エチル4−メ
チルイミダゾールである。
This is a novolac type cresol resin having the following properties. The curing catalysts indicated by symbols in the table are DBU; 1,8-diazabicyclo(5,4,0)-undecene, TPP; triphenylphosphine, 2E4HZ; 2-ethyl 4-methylimidazole.

【0050】なお、表中の各種特性のうち、吸湿率と接
着力は以下により測定した。
Of the various properties listed in the table, the moisture absorption rate and adhesive strength were measured as follows.

【0051】(1)吸湿率:90mmφ,2mmtの円
盤を成形し、80℃/100%RH,200時間にて吸
湿させ、重量変化から求めた。
(1) Moisture absorption rate: A disk of 90 mmφ and 2 mm t was molded and allowed to absorb moisture at 80° C./100% RH for 200 hours, and was determined from the change in weight.

【0052】(2)接着力:3mmtのアルミ箔と成形
材料とのアルミピール強度を引っ張り速度50mm/分
にて測定した。
(2) Adhesive strength: The aluminum peel strength between a 3 mmt aluminum foil and a molding material was measured at a pulling speed of 50 mm/min.

【0053】表1から明らかなように、本発明における
半導体封止用樹脂組成物は比較例に示すノボラック型フ
ェノール樹脂硬化剤並びに他の樹脂硬化剤を用いた樹脂
組成物と比べて、接着性や吸湿特性を低減しないで、ガ
ラス転移温度並びに215℃の曲げ強度を向上させるこ
とができる。又、本発明における一般式(2)で表され
る樹脂硬化剤が全樹脂硬化剤に対して5重量%未満では
耐熱性の向上は見られない。さらに、エポキシ樹脂の1
50℃における溶融粘度が高い場合は成形材料のスパイ
ラルフローの低下が大きく、流動性に問題のあることが
分かる。一方、表2から明らかなように、本発明の可撓
化剤を含む樹脂組成物についても成形材料の弾性率を低
くできる他は、表1とほぼ同様の特性を示している。し
かし、可撓化剤の配合量が2重量%以下では低弾性率化
に対してほとんど効果がなく、20重量%以上では金型
汚れとスパイラルフローの低下が著しいことが分かる。
As is clear from Table 1, the resin composition for semiconductor encapsulation of the present invention has better adhesive properties than the resin composition using the novolac type phenolic resin curing agent and other resin curing agents shown in the comparative example. It is possible to improve the glass transition temperature and the bending strength at 215° C. without reducing the moisture absorption properties. Further, if the resin curing agent represented by the general formula (2) in the present invention is less than 5% by weight based on the total resin curing agent, no improvement in heat resistance is observed. Furthermore, epoxy resin 1
It can be seen that when the melt viscosity at 50° C. is high, the spiral flow of the molding material decreases significantly, indicating that there is a problem with fluidity. On the other hand, as is clear from Table 2, the resin composition containing the flexibilizing agent of the present invention exhibits almost the same characteristics as in Table 1, except that the elastic modulus of the molding material can be lowered. However, it can be seen that when the amount of the flexibilizing agent is less than 2% by weight, there is almost no effect on lowering the elastic modulus, and when it is more than 20% by weight, mold staining and a decrease in spiral flow are significant.

【0054】[0054]

【表2】[Table 2]

【0055】次に、上記成形材料を用いて、表面にアル
ミニウムのジグザグ配線を形成したシリコンチップ(6
×6mm)を42アロイ系のリードフレームに搭載し、
更にチップ表面のアルミニウム電極とリードフレーム間
を金銭(30μmφ)でワイヤボンディングした半導体
装置(外形20×14mm,厚さ2mm)を封止し、6
5℃/95%RH下にて所定時間放置後、215℃のベ
ーパリフロー炉中で90秒間加熱する試験を行ない、パ
ッケージのクラックしたものをクラック発生数として表
3に示した。
Next, using the above molding material, a silicon chip (6
×6mm) mounted on a 42 alloy lead frame,
Furthermore, a semiconductor device (external size 20 x 14 mm, thickness 2 mm) in which wire bonding was performed between the aluminum electrode on the chip surface and the lead frame with money (30 μmφ) was sealed, and 6
After being left at 5° C./95% RH for a predetermined time, a test was conducted in which the package was heated for 90 seconds in a vapor reflow oven at 215° C., and the number of cracks in the package is shown in Table 3.

【0056】[0056]

【表3】[Table 3]

【0057】表3から明らかなように、本発明の樹脂封
止型半導体は吸湿率が小さく、接着性が良好で、高温強
度の大きな樹脂組成物で封止しているため、耐リフロー
性が格段に優れている。
As is clear from Table 3, the resin-sealed semiconductor of the present invention has low moisture absorption, good adhesion, and is encapsulated with a resin composition that has high high-temperature strength, so it has good reflow resistance. It's extremely good.

【0058】[0058]

【発明の効果】本発明によって得られた樹脂封止型半導
体装置は、従来のものと比べて、高耐熱並びに高温高強
度を有するばかりでなく、高接着性と低吸湿の特徴を兼
ね備えているため、耐半田リフロー性に優れている。
[Effects of the Invention] Compared to conventional devices, the resin-sealed semiconductor device not only has high heat resistance and high strength at high temperatures, but also has the characteristics of high adhesiveness and low moisture absorption. Therefore, it has excellent solder reflow resistance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】エポキシ樹脂、および少なくとも一般式(
1) 【化1】 (式中、Rは水素原子又は炭素数1〜4のアルキル基を
表し、aは1〜4の整数を表す。)で表される樹脂を含
む硬化剤を必須成分として含有する樹脂組成物によって
封止されていることを特徴とする樹脂封止型半導体装置
Claim 1: An epoxy resin, and at least a compound having the general formula (
1) [Chemical formula 1] (wherein, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and a represents an integer of 1 to 4) as an essential component. A resin-sealed semiconductor device characterized in that it is sealed with a resin composition containing the resin composition.
【請求項2】請求項1において、前記硬化剤の全量に対
して、前記一般式(1)で表される樹脂が5〜100重
量%である樹脂封止型半導体装置。
2. The resin-sealed semiconductor device according to claim 1, wherein the resin represented by the general formula (1) accounts for 5 to 100% by weight based on the total amount of the curing agent.
【請求項3】請求項1において、前記エポキシ樹脂の粘
度が、150℃で3ポアズ以下である樹脂封止型半導体
装置。
3. The resin-sealed semiconductor device according to claim 1, wherein the epoxy resin has a viscosity of 3 poise or less at 150°C.
【請求項4】請求項1,2または3において、無機質微
粒子からなる充填剤が全組成物に対し55〜80容量%
含む樹脂半導体装置。
4. According to claim 1, 2 or 3, the filler made of inorganic fine particles is 55 to 80% by volume based on the total composition.
Resin semiconductor devices including.
JP8811891A 1991-04-19 1991-04-19 Plastic sealed semiconductor device Pending JPH04320358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8811891A JPH04320358A (en) 1991-04-19 1991-04-19 Plastic sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8811891A JPH04320358A (en) 1991-04-19 1991-04-19 Plastic sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPH04320358A true JPH04320358A (en) 1992-11-11

Family

ID=13933985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8811891A Pending JPH04320358A (en) 1991-04-19 1991-04-19 Plastic sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPH04320358A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006042766A1 (en) * 2004-10-19 2006-04-27 Robert Bosch Gmbh Component module for high-temperature applications and method for producing a component module of this type
JP2008266629A (en) * 2007-03-29 2008-11-06 Nippon Shokubai Co Ltd Resin composition and optical member
JP2013166959A (en) * 2005-12-22 2013-08-29 Dow Global Technologies Llc Curable epoxy resin composition having mixed catalyst system and laminate made therefrom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006042766A1 (en) * 2004-10-19 2006-04-27 Robert Bosch Gmbh Component module for high-temperature applications and method for producing a component module of this type
JP2013166959A (en) * 2005-12-22 2013-08-29 Dow Global Technologies Llc Curable epoxy resin composition having mixed catalyst system and laminate made therefrom
JP2008266629A (en) * 2007-03-29 2008-11-06 Nippon Shokubai Co Ltd Resin composition and optical member

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JPH08188638A (en) Resin-sealed semiconductor device and its production
KR970004948B1 (en) Resin encapsulation type semiconductor device
JP2660012B2 (en) Rubber-modified phenolic resin, epoxy resin composition, and resin-encapsulated semiconductor device
JPH06345847A (en) Epoxy resin composition and semiconductor device
JPH08157561A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP3562565B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH05259316A (en) Resin-sealed semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP2001002755A (en) Epoxy resin composition and semiconductor device
JP2000273280A (en) Epoxy resin composition and semiconductor device
JPH04320358A (en) Plastic sealed semiconductor device
JP4238431B2 (en) Epoxy resin composition and semiconductor device
JP2005089486A (en) Epoxy resin composition and semiconductor device
JP2002241583A (en) Epoxy resin composition and semiconductor device
JP2001151863A (en) Epoxy resin composition for semiconductor sealing use
JP2001240726A (en) Epoxy resin composition and semiconductor device
JP4145438B2 (en) Epoxy resin composition and semiconductor device
JP3206317B2 (en) Method for producing epoxy resin composition and epoxy resin composition
JPH04300915A (en) Epoxy resin composition and semiconductor device
JPH05160301A (en) Semiconductor device sealed with resin
JP2005225970A (en) Epoxy resin composition and semiconductor device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP2000309678A (en) Epoxy resin composition and semiconductor device
JP4788034B2 (en) Epoxy resin composition and semiconductor device