JPH04313256A - Semiconductor integrated circuit device and its manufacture - Google Patents

Semiconductor integrated circuit device and its manufacture

Info

Publication number
JPH04313256A
JPH04313256A JP7747591A JP7747591A JPH04313256A JP H04313256 A JPH04313256 A JP H04313256A JP 7747591 A JP7747591 A JP 7747591A JP 7747591 A JP7747591 A JP 7747591A JP H04313256 A JPH04313256 A JP H04313256A
Authority
JP
Japan
Prior art keywords
wiring
film
insulating film
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7747591A
Other languages
Japanese (ja)
Inventor
Tetsuo Uchiyama
哲夫 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Microcomputer System Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Microcomputer System Ltd, Hitachi Ltd filed Critical Hitachi Microcomputer System Ltd
Priority to JP7747591A priority Critical patent/JPH04313256A/en
Publication of JPH04313256A publication Critical patent/JPH04313256A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enable disconnection failure or damage of a wire to be reduced in a semiconductor device which is coated by an inorganic insulation film where the wire which is formed on a ground insulation film is deposited by the plasma CVD method and enable man-hour of production process to be reduced in the semiconductor integrated circuit device. CONSTITUTION:In a semiconductor integrated circuit device which is coated by an inorganic insulation film 8 where a wire 7 which is formed on a ground insulation film 4 is deposited by the plasma CVD method. a stress-relaxation layer (for example, polyimide resin film) 6 is constituted between the above wire 7 and the ground insulation film 4. Also. a forming process of the stress relaxation layer 6 is incorporated into a forming process of a connection hole 5 and that of the wire 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体集積回路装置に
関し、特に、下地絶縁膜上に形成された配線がプラズマ
CVD法で堆積された無機質の絶縁膜で被覆される半導
体集積回路装置に適用して有効な技術に関するものであ
る。
[Field of Industrial Application] The present invention relates to semiconductor integrated circuit devices, and is particularly applicable to semiconductor integrated circuit devices in which wiring formed on a base insulating film is covered with an inorganic insulating film deposited by plasma CVD. It is related to effective technology.

【0002】0002

【従来の技術】半導体記憶装置、例えばDRAM(Dy
namic Random Access Memor
y)は、特願平1−65848号に記載されるように、
データ線やシャント用ワード線として積層構造の配線が
使用される。積層構造の配線は、CVD法で堆積される
無機質の酸化珪素膜、PSG膜等の下地絶縁膜上に形成
され、MoSi2 膜、アルミニウム合金膜、MoSi
2 膜の夫々を順次積層した3層構造で構成される。
2. Description of the Related Art Semiconductor memory devices, such as DRAM (Dy
namic Random Access Memory
y), as described in Japanese Patent Application No. 1-65848,
Laminated wiring is used as data lines and shunt word lines. The layered wiring is formed on a base insulating film such as an inorganic silicon oxide film or a PSG film deposited by the CVD method.
It consists of a three-layer structure in which two films are sequentially laminated.

【0003】前記積層構造の配線の下層のMoSi2 
膜は半導体基板の主面に形成された半導体領域のSi原
子、中間層のアルミニウム合金膜のAl原子の夫々の相
互拡散を防止するバリアメタル膜として作用する。
[0003] MoSi2 in the lower layer of the wiring in the laminated structure
The film acts as a barrier metal film that prevents mutual diffusion of Si atoms in the semiconductor region formed on the main surface of the semiconductor substrate and Al atoms in the intermediate layer aluminum alloy film.

【0004】中間層のアルミニウム合金膜はアロイスパ
イク耐性を向上するSi、エレクトロマイグレーション
耐性を向上するCuのうち少なくともいずれかが添加さ
れるアルミニウム膜で形成される。
The intermediate layer aluminum alloy film is formed of an aluminum film to which at least one of Si, which improves alloy spike resistance, and Cu, which improves electromigration resistance, is added.

【0005】上層のMoSi2 膜は、光の反射率を低
減し、この積層構造の配線のパターンニングマスクを形
成するフォトリソグラフィ工程において、フォトレジス
ト膜の現像の際の回析現象に基づくパターン変化を低減
できる。また、このMoSi2膜は、中間層のアルミニ
ウム合金膜の表面を被覆し、その表面に発生するアルミ
ヒルロックの発生を低減できる。
The upper MoSi2 film reduces the reflectance of light and prevents pattern changes due to diffraction phenomena during development of the photoresist film in the photolithography process for forming a patterning mask for wiring in this layered structure. Can be reduced. Moreover, this MoSi2 film covers the surface of the intermediate layer aluminum alloy film, and can reduce the occurrence of aluminum hillocks on the surface.

【0006】前記DRAMは、前述の積層構造の配線が
2層構成され、最上層(2層目)の積層構造の配線上に
は最終保護膜(ファイナルパッシベーション膜)が被覆
される。最終保護膜は、耐湿性に優れたプラズマCVD
法で堆積される窒化珪素膜、同様の方法で堆積される酸
化珪素膜等、プラズマCVD法で堆積される緻密な無機
質の絶縁膜で形成される。
[0006] The above-mentioned DRAM has two layers of wiring having the above-mentioned laminated structure, and a final protective film (final passivation film) is coated on the uppermost (second layer) wiring of the laminated structure. The final protective film is plasma CVD with excellent moisture resistance.
The film is formed of a dense inorganic insulating film deposited by a plasma CVD method, such as a silicon nitride film deposited by a method or a silicon oxide film deposited by a similar method.

【0007】[0007]

【発明が解決しようとする課題】前記最終保護膜は、プ
ラズマCVD法で堆積される緻密な絶縁膜であるため、
線膨張係数が大きく、積層構造の配線に大きな応力を与
える。一方、積層構造の配線のうち、中間層のアルミニ
ウム合金膜は、高集積化に基づく微細化により、Alの
結晶粒のサイズ(グレインサイズ)に比べて配線幅寸法
が小さくなる確率が高くなる。つまり、Alの結晶粒間
の境界が配線幅方向においてアルミニウム合金膜を横切
る現象が多発する。このため、前述の最終保護膜で発生
する応力、特に配線長方向に作用する引張応力により、
Alの結晶粒間の境界が横切る領域を中心に、積層構造
の配線の中間層のアルミニウム合金膜に断線が発生する
。所謂、ストレスマイグレーションが発生する。
[Problems to be Solved by the Invention] Since the final protective film is a dense insulating film deposited by plasma CVD method,
It has a large coefficient of linear expansion and applies large stress to wiring in a laminated structure. On the other hand, among interconnects in a laminated structure, the wiring width dimension of the intermediate layer aluminum alloy film is likely to be smaller than the size of Al crystal grains (grain size) due to miniaturization due to higher integration. In other words, the phenomenon that boundaries between Al crystal grains often cross the aluminum alloy film in the wiring width direction occurs. Therefore, due to the stress generated in the final protective film mentioned above, especially the tensile stress acting in the wiring length direction,
Disconnections occur in the intermediate layer aluminum alloy film of the wiring in the stacked structure, mainly in areas where boundaries between Al crystal grains cross. So-called stress migration occurs.

【0008】本発明の目的は、下地絶縁膜上に形成され
た配線をプラズマCVD法で堆積した無機質の絶縁膜で
被覆する半導体集積回路装置において、前記配線の断線
不良若しくは損傷を低減することが可能な技術を提供す
ることにある。
An object of the present invention is to provide a semiconductor integrated circuit device in which wiring formed on a base insulating film is coated with an inorganic insulating film deposited by a plasma CVD method, in which disconnection or damage to the wiring can be reduced. Our goal is to provide the technology that is possible.

【0009】本発明の他の目的は、前記半導体集積回路
装置において、前記目的を達成する製造プロセスの工程
数を削減することが可能な技術を提供することにある。
Another object of the present invention is to provide a technique capable of reducing the number of manufacturing process steps to achieve the above object in the semiconductor integrated circuit device.

【0010】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述及び添付図面によって明らか
になるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

【0011】[0011]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば下
記のとおりである。
[Means for Solving the Problems] Among the inventions disclosed in this application, a brief overview of typical inventions is as follows.

【0012】(1)下地絶縁膜上に形成された、金属若
しくは合金を主体とする単層構造又は積層構造の配線が
プラズマCVD法で堆積される無機質の絶縁膜で被覆さ
れる半導体集積回路装置において、前記配線と下地絶縁
膜との間に前記配線、下地絶縁膜のいずれに比べても硬
度が低い応力緩和層が介在される。この応力緩和層は、
前記配線下のみに構成され、ポリイミド系樹脂で形成さ
れる。
(1) A semiconductor integrated circuit device in which a single-layer or multilayer interconnection mainly made of metal or alloy formed on a base insulating film is covered with an inorganic insulating film deposited by plasma CVD. In this method, a stress relaxation layer having a lower hardness than either the wiring or the underlying insulating film is interposed between the wiring and the underlying insulating film. This stress relief layer is
It is constructed only under the wiring and is made of polyimide resin.

【0013】(2)半導体集積回路装置の形成方法にお
いて、半導体基板の主面上、又は前記半導体基板の主面
上に配置された下層配線上を含む基板全面に下地絶縁膜
を形成する工程と、この下地絶縁膜上の全面に、前記下
地絶縁膜に比べて硬度が低くかつ有機質の第1樹脂膜を
形成するとともに、この第1樹脂膜上の全面にこの第1
樹脂膜に対してエッチング選択比を有しかつ感光性を有
する第2樹脂膜を形成する工程と、この第2樹脂膜の一
部の領域をフォトリソグラフィ技術で除去し、この第2
樹脂膜の他部の領域をエッチングマスクとして、第1樹
脂膜の一部の領域をエッチングで除去し、第1開口を形
成し、この後、前記エッチングマスクとして使用した第
2樹脂膜の他部の領域を除去する工程と、前記第1樹脂
膜の他部の領域をエッチングマスクとして、前記下地絶
縁膜の一部の領域を除去し、第2開口を形成する工程と
、前記第1樹脂膜の他部の領域上、前記第1開口及び第
2開口から露出する半導体基板の主面の一部又は下層配
線層の一部の領域上のいずれも含む基板全面に、金属若
しくは合金を主体に構成される単層構造又は積層構造の
配線層を形成する工程と、この配線層上の一部の領域に
前記第1樹脂膜と同一若しくはそれに近いエッチング選
択比を有するエッチングマスクを形成する工程と、この
エッチングマスクを使用し、配線層の他部の領域をエッ
チングで除去するとともに、配線層の残存する一部の領
域で配線を形成する工程と、前記エッチングマスクを除
去するとともに、前記配線下を除く第1樹脂膜の他部の
領域を除去し、前記配線下に残存する第1樹脂膜で応力
緩和層を形成する工程と、前記配線上を含む基板全面に
プラズマCVD法で堆積される無機質の絶縁膜を形成す
る工程とを備える。
(2) In the method for forming a semiconductor integrated circuit device, a step of forming a base insulating film over the entire surface of the substrate including on the main surface of the semiconductor substrate or on the lower layer wiring arranged on the main surface of the semiconductor substrate; A first resin film, which is organic and has lower hardness than the base insulating film, is formed on the entire surface of the base insulating film, and a first resin film is formed on the entire surface of the first resin film.
A step of forming a second resin film having an etching selectivity with respect to the resin film and having photosensitivity, and removing a part of the second resin film using photolithography technology.
Using the other part of the resin film as an etching mask, a part of the first resin film is removed by etching to form a first opening, and then the other part of the second resin film used as the etching mask is removed. a step of removing a part of the base insulating film using the other region of the first resin film as an etching mask to form a second opening; The entire surface of the substrate, including other regions, a part of the main surface of the semiconductor substrate exposed from the first opening and the second opening, or a part of the lower wiring layer, is mainly made of metal or alloy. a step of forming a wiring layer having a single-layer structure or a laminated structure; and a step of forming an etching mask having an etching selectivity equal to or close to that of the first resin film in a part of the wiring layer. , using this etching mask, etching away other areas of the wiring layer and forming wiring in the remaining part of the wiring layer; removing the etching mask, and removing the area under the wiring. forming a stress relaxation layer using the first resin film remaining under the wiring; and a step of forming an inorganic insulating film.

【0014】[0014]

【作用】上述した手段(1)によれば、半導体集積回路
装置において、前記プラズマCVD法で堆積される無機
質の絶縁膜の膨張に基づき、配線の配線長方向へ作用す
る応力(引張応力)を前記応力緩和膜で吸収し、配線の
ストレスマイグレーション耐性を向上できるので、配線
の断線不良や損傷を防止できる。
[Operation] According to the above-mentioned means (1), in a semiconductor integrated circuit device, stress (tensile stress) acting in the wiring length direction of the wiring is reduced based on the expansion of the inorganic insulating film deposited by the plasma CVD method. Since the stress relaxation film absorbs the stress and improves the stress migration resistance of the wiring, it is possible to prevent disconnection and damage to the wiring.

【0015】上述した手段(2)によれば、前記下地絶
縁膜に形成される第2開口をパターンニングする第2樹
脂膜を形成するとともに第1樹脂膜を形成し(多層レジ
スト膜の一部の層として第1樹脂膜を形成し)、第2樹
脂膜を使用し、第1樹脂膜の一部の領域を除去し、前記
第2樹脂膜に変えて、この第1樹脂膜の他部の領域をエ
ッチングマスクとして、下地絶縁膜に第2開口を形成し
、この後、前記配線をパターンニングするエッチングマ
スクを除去するとともに配線下にのみ第1樹脂膜を残存
し、この第1樹脂膜で応力緩和層を形成したので、第2
開口プロセス、配線のエッチングマスクの除去プロセス
の夫々に応力緩和層の形成プロセスを組込み、この応力
緩和層の形成プロセスに相当する分、半導体集積回路装
置の製造プロセスの工程数を低減できる。
According to the above-mentioned means (2), a second resin film is formed for patterning the second opening formed in the base insulating film, and a first resin film is also formed (part of the multilayer resist film). (a first resin film is formed as a layer), a second resin film is used, a part of the first resin film is removed, and the other part of the first resin film is replaced with the second resin film. A second opening is formed in the underlying insulating film using the area as an etching mask, and then the etching mask for patterning the wiring is removed, leaving the first resin film only under the wiring, and the first resin film is removed. Since the stress relaxation layer was formed in the second
A stress relaxation layer formation process is incorporated into each of the opening process and the wiring etching mask removal process, and the number of steps in the manufacturing process of a semiconductor integrated circuit device can be reduced by the amount corresponding to the stress relaxation layer formation process.

【0016】また、前記第1樹脂膜の他部の領域は配線
をエッチングマスクとしてパターンニングされるので、
配線下にのみ、この配線に対して自己整合で応力緩和層
を形成できる。
Furthermore, since the other region of the first resin film is patterned using the wiring as an etching mask,
A stress relaxation layer can be formed only under the wiring in a self-aligned manner with respect to the wiring.

【0017】以下、本発明の構成について、下地絶縁膜
上に形成された配線を最終保護膜で被覆する半導体集積
回路装置に適用した、一実施例とともに説明する。
The structure of the present invention will be described below along with one embodiment applied to a semiconductor integrated circuit device in which wiring formed on a base insulating film is covered with a final protective film.

【0018】なお、実施例を説明するための全図におい
て、同一機能を有するものは同一符号を付け、その繰り
返しの説明は省略する。
In all the drawings for explaining the embodiment, parts having the same functions are given the same reference numerals, and repeated explanations thereof will be omitted.

【0019】[0019]

【実施例】(実 施 例 1)本発明の実施例1である
半導体集積回路装置の概略構成を図1(要部断面図)で
示す。
[Embodiments] (Embodiment 1) A schematic configuration of a semiconductor integrated circuit device according to Embodiment 1 of the present invention is shown in FIG. 1 (cross-sectional view of main parts).

【0020】本実施例1の半導体集積回路装置は、図1
に示すように、例えば単結晶珪素からなる半導体基板1
を主体に構成される。この半導体基板1の主面(又はそ
の主面に形成されたウエル領域の主面)の活性領域には
MISFETのソース領域やドレイン領域、抵抗素子、
容量素子等、半導体素子を構成する反対導電型の半導体
領域2が構成される。半導体基板1の主面の非活性領域
上には半導体素子間を相互に分離する素子分離絶縁膜3
が構成される。この素子分離絶縁膜は例えば半導体基板
1の主面の非活性領域を選択的に酸化して形成される酸
化珪素膜で形成される。
The semiconductor integrated circuit device of Example 1 is shown in FIG.
As shown in FIG.
It is mainly composed of. The active region of the main surface of the semiconductor substrate 1 (or the main surface of the well region formed on the main surface) includes the source region and drain region of the MISFET, the resistive element,
Semiconductor regions 2 of opposite conductivity type forming a semiconductor element such as a capacitive element are formed. An element isolation insulating film 3 is provided on the non-active region of the main surface of the semiconductor substrate 1 to isolate the semiconductor elements from each other.
is configured. This element isolation insulating film is formed of, for example, a silicon oxide film formed by selectively oxidizing a non-active region on the main surface of the semiconductor substrate 1.

【0021】前記半導体素子上、素子分離絶縁膜3上の
夫々を含む半導体基板1の主面上の全面には配線の下地
絶縁膜として使用される層間絶縁膜4が構成される。こ
の層間絶縁膜4は、例えばCVD法で堆積される無機質
の酸化珪素膜、PSG膜、BPSG膜、SOG(Spi
n On Glass)法で塗布され硬化された酸化珪
素膜等、基本的に無機質の酸化珪素膜を主体に構成され
る。本実施例1において、層間絶縁膜4は単層構造で構
成されるが、例えばプラズマCVD法で堆積される酸化
珪素膜、SOG法で塗布及びベーク処理で硬化される酸
化珪素膜、プラズマCVD法で堆積される酸化珪素膜の
夫々を順次積層した積層構造で構成してもよい。
An interlayer insulating film 4 used as a base insulating film for wiring is formed over the entire main surface of the semiconductor substrate 1, including on the semiconductor element and on the element isolation insulating film 3. This interlayer insulating film 4 is made of, for example, an inorganic silicon oxide film, a PSG film, a BPSG film, or an SOG (Spi) film deposited by the CVD method.
Basically, it is mainly composed of an inorganic silicon oxide film, such as a silicon oxide film coated and cured by the n-on-glass method. In the first embodiment, the interlayer insulating film 4 has a single-layer structure, but for example, a silicon oxide film deposited by a plasma CVD method, a silicon oxide film coated by an SOG method and hardened by a baking process, a silicon oxide film deposited by a plasma CVD method, and a silicon oxide film hardened by a baking process. The silicon oxide film may be formed into a laminated structure in which the silicon oxide films deposited in the above steps are sequentially laminated.

【0022】前記層間絶縁膜4上には配線7が構成され
る。配線7は例えばアルミニウム膜又はアルミニウム合
金膜で形成される。アルミニウム合金膜はアロイスパイ
ク耐性を向上するSi、エレクトロマイグレーション耐
性を向上するCuのうち少なくともいずれかが添加され
たアルミニウム膜で形成される。アルミニウム膜若しく
はアルミニウム合金膜は、抵抗値が小さく、信号伝達速
度を速められ、又ドライエッチングが可能で、微細加工
ができる等の特徴がある。この配線7は層間絶縁膜4に
形成された接続孔5を通して半導体領域2に電気的に接
続される。
A wiring 7 is formed on the interlayer insulating film 4. The wiring 7 is formed of, for example, an aluminum film or an aluminum alloy film. The aluminum alloy film is formed of an aluminum film to which at least one of Si, which improves alloy spike resistance, and Cu, which improves electromigration resistance, is added. An aluminum film or an aluminum alloy film has characteristics such as low resistance, high signal transmission speed, dry etching, and microfabrication. This wiring 7 is electrically connected to the semiconductor region 2 through a contact hole 5 formed in the interlayer insulating film 4.

【0023】本実施例1においては、その説明を簡単化
する目的で、配線7の1層構造で構成されるが、本発明
は、基本的には2層、3層若しくはそれ以上の多層配線
構造を採用する半導体集積回路装置に適用してもよい。
In the first embodiment, the wiring 7 has a one-layer structure for the purpose of simplifying the explanation, but the present invention basically has a multilayer wiring structure of two, three or more layers. The present invention may also be applied to a semiconductor integrated circuit device that employs this structure.

【0024】前記配線7上を含む基板全面上には最終保
護膜(ファイナルパッシベーション膜)8が構成される
。この最終保護膜8は、耐湿性を向上するため、プラズ
マCVD法で堆積した窒化珪素膜を主体に構成される。 また、最終保護膜8は、前記窒化珪素膜の他に、プラス
マCVD法で堆積した酸化珪素膜、テトラエソキシシラ
ンガスをソースガスとするプラズマCVD法で堆積した
酸化珪素膜等の単層構造、若しくはこれらの方法で堆積
した窒化珪素膜及び酸化珪素膜の積層構造で構成しても
よい。
A final protective film (final passivation film) 8 is formed on the entire surface of the substrate including the wiring 7. This final protective film 8 is mainly composed of a silicon nitride film deposited by plasma CVD in order to improve moisture resistance. In addition to the silicon nitride film, the final protective film 8 has a single-layer structure such as a silicon oxide film deposited by a plasma CVD method, a silicon oxide film deposited by a plasma CVD method using tetraethoxysilane gas as a source gas, etc. Alternatively, a stacked structure of a silicon nitride film and a silicon oxide film deposited by these methods may be used.

【0025】このように構成される半導体集積回路装置
は下地絶縁膜としての層間絶縁膜4と配線7との間に応
力緩和層6が構成される。この応力緩和層6は、配線7
下、若しくは配線7と半導体領域2とが接続される場合
には接続孔5の領域を除く配線7下にのみ構成される。
In the semiconductor integrated circuit device constructed as described above, a stress relaxation layer 6 is formed between the interlayer insulating film 4 as a base insulating film and the wiring 7. This stress relaxation layer 6 is connected to the wiring 7
Alternatively, when the wiring 7 and the semiconductor region 2 are connected, it is formed only under the wiring 7 excluding the area of the connection hole 5.

【0026】この応力緩和層6は、下地絶縁膜としての
層間絶縁膜4、配線7の夫々の硬度に比べて低い硬度を
有し、例えば有機質でしかも絶縁性を有するポリイミド
系樹脂膜で形成される。応力緩和層6は、基本的に、硬
度が低いものであれば、無機質の材料でも、導電性を有
する材料で形成してもよい。
The stress relaxation layer 6 has a hardness lower than that of the interlayer insulating film 4 as a base insulating film and the wiring 7, and is made of, for example, an organic polyimide resin film having insulating properties. Ru. Basically, the stress relaxation layer 6 may be formed of an inorganic material or a conductive material as long as it has low hardness.

【0027】図2(従来のモデル化した要部拡大断面図
)は、層間絶縁膜4の表面上に配線7を直接配置した場
合に、最終保護膜8の膨張に基づく応力が配線7に作用
する状態を示す。同図2に示すように、配線7の端部に
発生する最大引張応力F1は層間絶縁膜4の表面に垂直
な方向の(配線7の端面に平行な)分力F3、層間絶縁
膜4の表面に平行な方向の(配線7の配線長方向に平行
な)分力F2の夫々に分解できる。垂直方向の分力F3
は、層間絶縁膜4の硬度が高く、この垂直方向への応力
の逃げが少ないので小さくなり、これに相当する分、平
行な方向の分力F2は大きくなる。つまり、配線7の特
に配線長方向の引張応力が高くなる。
FIG. 2 (an enlarged cross-sectional view of the main part modeled in the conventional method) shows that when the wiring 7 is placed directly on the surface of the interlayer insulating film 4, stress due to the expansion of the final protective film 8 acts on the wiring 7. Indicates the state of As shown in FIG. 2, the maximum tensile stress F1 generated at the end of the interconnect 7 is a component force F3 in a direction perpendicular to the surface of the interlayer insulating film 4 (parallel to the end surface of the interconnect 7), and a component force F3 of the interlayer insulating film 4 It can be decomposed into component forces F2 in a direction parallel to the surface (parallel to the length direction of the wiring 7). Vertical force F3
is small because the interlayer insulating film 4 has high hardness and there is little escape of stress in the vertical direction, and the component force F2 in the parallel direction becomes correspondingly large. In other words, the tensile stress of the wiring 7, especially in the wiring length direction, becomes high.

【0028】これに対して、図3(本発明のモデル化し
た要部拡大断面図)に示すように、層間絶縁膜4の表面
上に応力緩和層6を介在して配線7を関接配置した場合
、垂直方向の分力F3は応力緩和層6で吸収され大きく
できるので、この垂直方向の分力F3の増加に相当する
分、平行な方向の分力F2は小さくできる。すなわち、
配線7の配線長方向の引張応力を小さくできる。
On the other hand, as shown in FIG. 3 (an enlarged cross-sectional view of the main part modeled according to the present invention), the wiring 7 is disposed directly on the surface of the interlayer insulating film 4 with a stress relaxation layer 6 interposed therebetween. In this case, the vertical component force F3 can be absorbed and increased by the stress relaxation layer 6, so that the parallel component force F2 can be reduced by an amount corresponding to the increase in the vertical component force F3. That is,
The tensile stress of the wiring 7 in the wiring length direction can be reduced.

【0029】次に、このように構成される半導体集積回
路装置の具体的な形成方法について、図4乃至図9(各
製造工程毎に示す要部断面図)を使用し、簡単に説明す
る。
Next, a specific method for forming the semiconductor integrated circuit device constructed as described above will be briefly explained using FIGS. 4 to 9 (cross-sectional views of main parts shown for each manufacturing process).

【0030】まず、単結晶珪素からなる半導体基板1の
主面の非活性領域に素子分離絶縁膜3を形成する。この
後、前記半導体基板1の主面の活性領域に半導体領域2
を形成し、図示しない半導体素子を形成する。
First, an element isolation insulating film 3 is formed in an inactive region on the main surface of a semiconductor substrate 1 made of single crystal silicon. Thereafter, a semiconductor region 2 is formed in the active region of the main surface of the semiconductor substrate 1.
, and a semiconductor element (not shown) is formed.

【0031】次に、前記半導体素子上及び素子分離絶縁
膜3上を含む基板全面に層間絶縁膜4を形成する。層間
絶縁膜4は、前述のように、例えばCVD法で堆積され
た酸化珪素膜を主体に形成される。
Next, an interlayer insulating film 4 is formed over the entire surface of the substrate including the semiconductor element and the element isolation insulating film 3. As described above, the interlayer insulating film 4 is mainly formed of a silicon oxide film deposited by, for example, the CVD method.

【0032】次に、図4に示すように、前記層間絶縁膜
4上を含む基板全面に応力緩和層6、感光性フォトレジ
スト膜10の夫々を順次形成する。応力緩和層6は、例
えばポリイミド系樹脂膜を回転塗布法で塗布した後、ベ
ーク処理で硬化することにより形成される。感光性フォ
トレジスト膜10は応力緩和層6に対してエッチング選
択比を有する、例えば酸素反応性イオンエッチング耐性
を有するSi含有フォトレジスト膜(樹脂膜)を使用す
る。この感光性フォトレジスト膜10は、回転塗布法で
塗布した後、ベーク処理で硬化することにより形成され
る。
Next, as shown in FIG. 4, a stress relaxation layer 6 and a photosensitive photoresist film 10 are sequentially formed over the entire surface of the substrate including the interlayer insulating film 4. The stress relaxation layer 6 is formed, for example, by applying a polyimide resin film by a spin coating method and then hardening it by a baking process. The photosensitive photoresist film 10 is a Si-containing photoresist film (resin film) having an etching selectivity with respect to the stress relaxation layer 6, for example, having resistance to oxygen-reactive ion etching. This photosensitive photoresist film 10 is formed by coating by spin coating and then hardening by baking.

【0033】前記応力緩和層6、感光性フォトレジスト
膜10の夫々は、基本的に別々の工程で形成されるが、
いずれも樹脂膜を形成する工程であり、応力緩和層6を
フォトレジスト膜と見れば、多層フォトレジスト膜の1
回の形成工程と見れる。つまり、応力緩和層6を形成す
る工程は、感光性フォトレジスト膜(多層フォトレジス
ト膜)を形成する工程に組込まれ、半導体集積回路装置
の製造プロセスの工程数の増加にならない。
Although the stress relaxation layer 6 and the photosensitive photoresist film 10 are basically formed in separate steps,
Both are processes for forming a resin film, and if the stress relaxation layer 6 is viewed as a photoresist film, one of the multilayer photoresist films.
This can be seen as the formation process of 3 times. That is, the step of forming the stress relaxation layer 6 is incorporated into the step of forming a photosensitive photoresist film (multilayer photoresist film), and does not increase the number of steps in the manufacturing process of a semiconductor integrated circuit device.

【0034】次に、周知のフォトリソグラフィ技術を使
用し、感光性フォトレジスト膜10に感光及び現像を施
し、感光性フォトレジスト膜10の前記半導体領域2の
領域(接続孔5の形成領域)を除去し、感光性フォトレ
ジスト膜10の残存する領域でエッチングマスクを形成
する。
Next, using a well-known photolithography technique, the photosensitive photoresist film 10 is exposed and developed, and the area of the semiconductor region 2 (the area where the contact hole 5 is formed) of the photosensitive photoresist film 10 is exposed. After removal, an etching mask is formed in the remaining region of the photosensitive photoresist film 10.

【0035】次に、図5に示すように、感光性フォトレ
ジスト膜10をエッチングマスクとして使用し、このエ
ッチングマスクから露出する応力緩和層6の一部をエッ
チングで除去し(パターンを転写し)、接続孔11を形
成する。このエッチングは酸素反応性イオンエッチング
(O2 −RIE)で行う。酸素反応性イオンエッチン
グは、感光性フォトレジスト膜10に含有されるSiと
O2 との反応により、感光性フォトレジスト膜10の
表面にSiO2 膜を生成しながらエッチングを進行し
、このSiO2 膜とポリイミド系樹脂膜との間のエッ
チング選択比は高いので、感光性フォトレジスト膜10
と応力緩和層6との間のエッチング選択比を高く設定で
きる。
Next, as shown in FIG. 5, using the photosensitive photoresist film 10 as an etching mask, a part of the stress relaxation layer 6 exposed from this etching mask is removed by etching (the pattern is transferred). , forming the connection hole 11. This etching is performed by oxygen reactive ion etching (O2-RIE). In oxygen-reactive ion etching, etching progresses while forming a SiO2 film on the surface of the photosensitive photoresist film 10 due to a reaction between Si contained in the photoresist film 10 and O2, and this SiO2 film and polyimide are bonded together. Since the etching selectivity with respect to the photoresist film 10 is high, the photosensitive photoresist film 10
The etching selectivity between the stress relaxation layer 6 and the stress relaxation layer 6 can be set high.

【0036】次に、前記剥離液を使用し、前述の感光性
フォトレジスト膜10を剥離し除去する。
Next, using the stripping solution, the photosensitive photoresist film 10 described above is stripped and removed.

【0037】次に、図6に示すように、前記応力緩和層
6をエッチングマスクとして使用し、接続孔11で周囲
を規定された領域内において層間絶縁膜4をエッチング
で除去し、半導体領域2の表面が露出する接続孔5を形
成する。エッチングは、例えばCF4 系ガスを使用す
る反応性イオンエッチング(RIE)を使用する。
Next, as shown in FIG. 6, using the stress relaxation layer 6 as an etching mask, the interlayer insulating film 4 is removed by etching within the region defined by the connection hole 11, and the semiconductor region 2 is removed. A connecting hole 5 is formed in which the surface of the connecting hole 5 is exposed. For the etching, reactive ion etching (RIE) using, for example, CF4-based gas is used.

【0038】次に、図7に示すように、応力緩和層6の
残存する領域上、接続孔5内から露出する半導体領域2
の主面上を含む基板全面に配線層7を形成する。配線層
7は、前述のように、アルミニウム膜若しくはアルミニ
ウム合金膜を使用し、スパッタ法で堆積する。
Next, as shown in FIG. 7, the semiconductor region 2 exposed from inside the connection hole 5 is formed on the remaining region of the stress relaxation layer 6.
A wiring layer 7 is formed over the entire surface of the substrate including the main surface thereof. As described above, the wiring layer 7 is formed using an aluminum film or an aluminum alloy film and is deposited by sputtering.

【0039】次に、前記配線層7上を含む基板全面に回
転塗布法を使用しかつベーク処理で硬化した感光性フォ
トレジスト膜12を形成する。この後、この感光性フォ
トレジスト膜12は、周知のフォトリソグラフィ技術を
使用し、配線パターンが転写され、エッチングマスクと
して形成される。
Next, a photosensitive photoresist film 12 is formed on the entire surface of the substrate including the wiring layer 7 by using a spin coating method and hardened by a baking process. Thereafter, a wiring pattern is transferred to this photosensitive photoresist film 12 using a well-known photolithography technique, and it is formed as an etching mask.

【0040】次に、図8に示すように、前記感光性フォ
トレジスト膜12をエッチングマスクとして使用し、配
線層7の一部をエッチングにより除去し、配線層7の残
存する領域で配線7を形成する。このエッチングは、例
えばCl2系ガスを使用する反応性イオンエッチングを
使用する。
Next, as shown in FIG. 8, using the photosensitive photoresist film 12 as an etching mask, a part of the wiring layer 7 is removed by etching, and the wiring 7 is formed in the remaining area of the wiring layer 7. Form. This etching uses, for example, reactive ion etching using a Cl2-based gas.

【0041】次に、図9に示すように、配線7上のエッ
チングマスクとして使用した感光性フォトレジスト膜1
2を除去するとともに、配線7下を除く(配線7以外の
領域の)応力緩和層6を除去する(パターンニングする
)。この感光性フォトレジスト膜12の除去及び応力緩
和層6の除去は、例えば酸素反応性イオンエッチングを
使用し行う。
Next, as shown in FIG. 9, the photosensitive photoresist film 1 used as an etching mask on the wiring 7 is
At the same time, the stress relaxation layer 6 except under the wiring 7 (in the area other than the wiring 7) is removed (patterned). The removal of the photosensitive photoresist film 12 and the stress relaxation layer 6 are performed using, for example, oxygen-reactive ion etching.

【0042】この後、配線7上を含む基板全面に最終保
護膜8を形成することにより、前述の図1に示す半導体
集積回路装置は完成する。最終保護膜8は前述のように
プラズマCVD法で堆積した窒化珪素膜を使用する。
Thereafter, a final protective film 8 is formed over the entire surface of the substrate including the wiring 7, thereby completing the semiconductor integrated circuit device shown in FIG. As the final protective film 8, a silicon nitride film deposited by the plasma CVD method is used as described above.

【0043】このように、層間絶縁膜(下地絶縁膜)4
上に形成された、アルミニウム膜若しくはアルミニウム
合金膜を主体とする単層構造の配線7がプラズマCVD
法で堆積される無機質の最終保護膜8で被覆される半導
体集積回路装置において、前記配線7と層間絶縁膜4と
の間に前記配線7、層間絶縁膜4のいずれに比べても硬
度が低い応力緩和層6が介在される。この構成により、
半導体集積回路装置において、前記プラズマCVD法で
堆積される無機質の最終保護膜8の膨張に基づき、配線
7の配線長方向へ作用する応力(引張応力)を前記応力
緩和層6で吸収し、配線7のストレスマイグレーション
耐性を向上できるので、配線7の断線不良や損傷を防止
できる。
In this way, the interlayer insulating film (base insulating film) 4
The wiring 7 formed on the top, which has a single layer structure mainly made of an aluminum film or an aluminum alloy film, is formed by plasma CVD.
In a semiconductor integrated circuit device coated with an inorganic final protective film 8 deposited by a method, the wiring 7 and the interlayer insulating film 4 have lower hardness than either the wiring 7 or the interlayer insulating film 4. A stress relief layer 6 is interposed. With this configuration,
In the semiconductor integrated circuit device, the stress (tensile stress) acting in the wiring length direction of the wiring 7 is absorbed by the stress relaxation layer 6 based on the expansion of the inorganic final protective film 8 deposited by the plasma CVD method, and the wiring Since the stress migration resistance of the wiring 7 can be improved, disconnection defects and damage to the wiring 7 can be prevented.

【0044】また、半導体集積回路装置の形成方法にお
いて、半導体基板1の主面上を含む基板全面に層間絶縁
膜(下地絶縁膜)4を形成する工程と、この層間絶縁膜
4上の全面に、この層間絶縁膜4に比べて硬度が低くか
つ有機質(ポリイミド系樹脂膜)からなる応力緩和層6
を形成するとともに、この応力緩和層6上の全面にこの
応力緩和層6に対してエッチング選択比を有しかつ感光
性を有する感光性フォトレジスト膜10を形成する工程
と、この感光性フォトレジスト膜10の一部の領域をフ
ォトリソグラフィ技術で除去し、この感光性フォトレジ
スト膜10の他部の領域をエッチングマスクとして、応
力緩和層6の一部の領域をエッチングで除去し、接続孔
11を形成し、この後、前記エッチングマスクとして使
用した感光性フォトレジスト膜10の他部の領域を除去
する工程と、前記応力緩和層6の他部の領域をエッチン
グマスクとして、前記層間絶縁膜4の一部の領域を除去
し、接続孔5を形成する工程と、前記応力緩和層6の他
部の領域上、前記接続孔11及び接続孔5から露出する
半導体基板1に形成された半導体領域2の主面上のいず
れも含む基板全面に、アルミニウム膜若しくはアルミニ
ウム合金膜で形成される配線層7を形成する工程と、こ
の配線層7上の一部の領域に前記応力緩和層6と同一若
しくはそれに近いエッチング選択比を有する感光性フォ
トレジスト膜12を形成する工程と、この感光性フォト
レジスト膜12をエッチングマスクとして使用し、配線
層7の他部の領域をエッチングで除去するとともに、配
線層7の残存する一部の領域で配線7を形成する工程と
、前記感光性フォトレジスト膜12を除去するとともに
、前記配線7下を除く応力緩和層6の他部の領域を除去
し、前記配線7下にのみ残存する応力緩和層6を形成す
る工程と、前記配線7上を含む基板全面にプラズマCV
D法で堆積される無機質の最終保護膜8を形成する工程
とを備える。この構成により、前記層間絶縁膜4に形成
される接続孔5をパターンニングする感光性フォトレジ
スト膜10を形成するとともに応力緩和層6を形成し(
多層レジスト膜の一部の層として応力緩和層6を形成し
)、感光性フォトレジスト膜10をエッチングマスクと
して応力緩和層6の一部の領域を除去し、前記感光性フ
ォトレジスト膜10に変えて、この応力緩和層6の他部
の領域をエッチングマスクとして、層間絶縁膜4に接続
孔5を形成し、この後、前記配線7をパターンニングす
る感光性フォトレジスト膜(エッチングマスク)12を
除去するとともに配線7下にのみ応力緩和層6を残存し
たので、接続孔5の形成プロセス、配線7のエッチング
マスクの除去プロセスの夫々に応力緩和層6の形成プロ
セスを組込み、この応力緩和層6の形成プロセスに相当
する分、半導体集積回路装置の製造プロセスの工程数を
低減できる。
In the method for forming a semiconductor integrated circuit device, the step of forming an interlayer insulating film (base insulating film) 4 on the entire surface of the semiconductor substrate 1 including the main surface thereof, and , a stress relaxation layer 6 having lower hardness than the interlayer insulating film 4 and made of an organic material (polyimide resin film).
and a step of forming a photosensitive photoresist film 10 having an etching selectivity with respect to the stress relaxation layer 6 and having photosensitivity on the entire surface of the stress relaxation layer 6; A part of the film 10 is removed by photolithography, and using the other part of the photosensitive photoresist film 10 as an etching mask, a part of the stress relaxation layer 6 is removed by etching to form a connection hole 11. After this, a step of removing the other region of the photosensitive photoresist film 10 used as the etching mask, and using the other region of the stress relaxation layer 6 as an etching mask, the interlayer insulating film 4 is removed. a step of removing a part of the region to form a contact hole 5; and a step of removing a semiconductor region formed in the semiconductor substrate 1 exposed from the contact hole 11 and the contact hole 5 on the other region of the stress relaxation layer 6; A step of forming a wiring layer 7 made of an aluminum film or an aluminum alloy film on the entire surface of the substrate including both the main surfaces of or a process of forming a photosensitive photoresist film 12 having an etching selectivity close to that, and using this photosensitive photoresist film 12 as an etching mask, removing other areas of the wiring layer 7 by etching, and removing the wiring layer 7 by etching. A step of forming the wiring 7 in a part of the remaining region of the layer 7, removing the photosensitive photoresist film 12, and removing the other region of the stress relaxation layer 6 except under the wiring 7; A step of forming a stress relaxation layer 6 remaining only under the wiring 7, and a step of plasma CV over the entire surface of the substrate including the top of the wiring 7.
and a step of forming a final inorganic protective film 8 deposited by method D. With this configuration, a photosensitive photoresist film 10 for patterning connection holes 5 formed in the interlayer insulating film 4 is formed, and a stress relaxation layer 6 is also formed (
A stress relaxation layer 6 is formed as a part of a layer of a multilayer resist film), and a part of the stress relaxation layer 6 is removed using the photosensitive photoresist film 10 as an etching mask, and changed to the photosensitive photoresist film 10. Then, using the other region of this stress relaxation layer 6 as an etching mask, a contact hole 5 is formed in the interlayer insulating film 4, and then a photosensitive photoresist film (etching mask) 12 for patterning the wiring 7 is formed. Since the stress relaxation layer 6 remained only under the wiring 7 during the removal, the process of forming the stress relaxation layer 6 was incorporated into each of the process of forming the connection hole 5 and the process of removing the etching mask of the wiring 7. The number of steps in the manufacturing process of a semiconductor integrated circuit device can be reduced by the amount equivalent to the formation process of .

【0045】また、前記応力緩和層6の他部の領域は、
配線7をエッチングマスクとしてパターンニングされる
ので、配線7下にのみ、この配線7に対して自己整合で
応力緩和層6を形成される。
Further, the other region of the stress relaxation layer 6 is as follows:
Since patterning is performed using the wiring 7 as an etching mask, the stress relaxation layer 6 is formed only under the wiring 7 in self-alignment with the wiring 7.

【0046】(実 施 例 2)本実施例2は、半導体
集積回路装置の配線を積層構造で構成した、又は配線の
接続孔部分でのステップカバレッジを向上した、本発明
の第2実施例である。
(Embodiment 2) This embodiment 2 is a second embodiment of the present invention in which the wiring of a semiconductor integrated circuit device is constructed with a laminated structure, or the step coverage in the connection hole portion of the wiring is improved. be.

【0047】本発明の実施例2である半導体集積回路装
置の概略構成を図10(要部断面図)で示す。
A schematic configuration of a semiconductor integrated circuit device according to a second embodiment of the present invention is shown in FIG. 10 (cross-sectional view of main parts).

【0048】本実施例2の半導体集積回路装置の配線7
は、図10に示すように、下層のMoSi2 膜7A、
中間層のアルミニウム合金膜7B、上層のMoSi2 
膜7Cの夫々を順次積層した3層構造で構成される。下
層のMoSi2 膜は半導体領域2のSi原子、中間層
のアルミニウム合金膜7BのAl原子の夫々の相互拡散
を防止するバリアメタル膜として作用する。上層のMo
Si2 膜7Cは、光の反射率を低減し、この配線7の
パターンニングマスクを形成するフォトリソグラフィ工
程において、フォトレジスト膜(前述の実施例1におい
て感光性フォトレジスト膜12に相当する)の現像の際
の回析現象に基づくパターン変化を低減できる。また、
この上層のMoSi2 膜7Cは、中間層のアルミニウ
ム合金膜7Bの表面を被覆し、その表面に発生するアル
ミヒルロックの発生を低減できる。
Wiring 7 of the semiconductor integrated circuit device of Example 2
As shown in FIG. 10, the lower MoSi2 film 7A,
Intermediate layer aluminum alloy film 7B, upper layer MoSi2
It has a three-layer structure in which the films 7C are sequentially laminated. The lower MoSi2 film acts as a barrier metal film that prevents mutual diffusion of Si atoms in the semiconductor region 2 and Al atoms in the intermediate aluminum alloy film 7B. Upper Mo
The Si2 film 7C reduces the reflectance of light and is used during the development of a photoresist film (corresponding to the photosensitive photoresist film 12 in Example 1) in the photolithography process for forming a patterning mask for the wiring 7. Pattern changes due to diffraction phenomena can be reduced. Also,
This upper layer MoSi2 film 7C covers the surface of the intermediate layer aluminum alloy film 7B, and can reduce the occurrence of aluminum hillocks on the surface.

【0049】また、前記配線7、半導体領域2の夫々を
接続する接続孔5内には、選択CVD法で堆積される例
えばW(タングステン)13が埋込まれる。この接続孔
5内に埋込まれたW13は、接続孔5で形成される段差
形状を緩和し、配線7のステップカバレッジを向上でき
るので、配線7の断線不良をより低減できる。
Further, in the connection hole 5 connecting each of the wiring 7 and the semiconductor region 2, for example, W (tungsten) 13 deposited by selective CVD is buried. The W 13 embedded in the connection hole 5 can reduce the step shape formed by the connection hole 5 and improve the step coverage of the wiring 7, thereby further reducing disconnection defects in the wiring 7.

【0050】また、本実施例2及び前述の実施例1にお
いて、配線7下に形成される応力緩和層6は、回転塗布
法で塗布され、層間絶縁膜4に形成された接続孔5の領
域以外の領域で段差が発生した場合でも、表面を平担化
できるので、配線7の断線不良をより低減できる。
Furthermore, in the present embodiment 2 and the above-mentioned embodiment 1, the stress relaxation layer 6 formed under the wiring 7 is coated by a spin coating method, and is coated in the area of the contact hole 5 formed in the interlayer insulating film 4. Even if a step occurs in an area other than the above, the surface can be flattened, and disconnection defects in the wiring 7 can be further reduced.

【0051】なお、前記配線7の下層のMoSi2 膜
7Aは、TiN、TiW等のバリアメタル層に変えても
よい。
Note that the MoSi2 film 7A below the wiring 7 may be replaced with a barrier metal layer such as TiN or TiW.

【0052】以上、本発明者によってなされた発明を、
前記実施例に基づき具体的に説明したが、本発明は、前
記実施例に限定されるものではなく、その要旨を逸脱し
ない範囲において種々変更可能であることは勿論である
[0052] As described above, the invention made by the present inventor is as follows.
Although the present invention has been specifically described based on the above-mentioned embodiments, it goes without saying that the present invention is not limited to the above-mentioned embodiments, and can be modified in various ways without departing from the gist thereof.

【0053】例えば、本発明は、配線7の下地絶縁膜で
ある層間絶縁膜4自体を有機質のポリイミド系樹脂膜で
形成しかつ応力緩和層としてもよい。
For example, in the present invention, the interlayer insulating film 4 itself, which is the base insulating film of the wiring 7, may be formed of an organic polyimide resin film and may be used as a stress relaxation layer.

【0054】また、本発明は、半導体集積回路装置に限
定されず、エポキシ系樹脂を基板とするプリント配線基
板、単結晶珪素を基板とするマザーボード等、所謂配線
基板に適用できる。
Furthermore, the present invention is not limited to semiconductor integrated circuit devices, but can be applied to so-called wiring boards, such as printed wiring boards using epoxy resin as a substrate, and motherboards using single crystal silicon as a substrate.

【0055】[0055]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記のとおりである。
Effects of the Invention A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

【0056】下地絶縁膜上に形成された配線をプラズマ
CVD法で堆積した無機質の絶縁膜で被覆する半導体集
積回路装置において、前記配線の断線不良若しくは損傷
を低減できる。
In a semiconductor integrated circuit device in which wiring formed on a base insulating film is covered with an inorganic insulating film deposited by plasma CVD, disconnection defects or damage to the wiring can be reduced.

【0057】前記半導体集積回路装置において、製造プ
ロセスの工程数を削減できる。
In the semiconductor integrated circuit device, the number of steps in the manufacturing process can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例1である半導体集積回路装置の
概略構成を示す要部断面図。
FIG. 1 is a cross-sectional view of main parts showing a schematic configuration of a semiconductor integrated circuit device according to a first embodiment of the present invention.

【図2】従来の半導体集積回路装置をモデル化した要部
拡大断面図。
FIG. 2 is an enlarged sectional view of main parts modeling a conventional semiconductor integrated circuit device.

【図3】本発明の半導体集積回路装置をモデル化した要
部拡大断面図。
FIG. 3 is an enlarged sectional view of a main part modeling the semiconductor integrated circuit device of the present invention.

【図4】前記半導体集積回路装置の形成方法を説明する
第1工程での要部断面図。
FIG. 4 is a sectional view of a main part in a first step for explaining the method for forming the semiconductor integrated circuit device.

【図5】第2工程での要部断面図。FIG. 5 is a sectional view of main parts in a second step.

【図6】第3工程での要部断面図。FIG. 6 is a sectional view of main parts in the third step.

【図7】第4工程での要部断面図。FIG. 7 is a sectional view of main parts in the fourth step.

【図8】第5工程での要部断面図。FIG. 8 is a sectional view of main parts in the fifth step.

【図9】第6工程での要部断面図。FIG. 9 is a sectional view of main parts in the sixth step.

【図10】本発明の実施例2である半導体集積回路装置
の概略構成を示す要部断面図。
FIG. 10 is a sectional view of a main part showing a schematic configuration of a semiconductor integrated circuit device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…半導体基板、2…半導体領域、4…層間絶縁膜(下
地絶縁膜)、5…接続孔、6…応力緩和層、7…配線、
8…最終保護膜、10,12…感光性フォトレジスト膜
、13…W(埋込み層)。
DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Semiconductor region, 4... Interlayer insulating film (base insulating film), 5... Connection hole, 6... Stress relaxation layer, 7... Wiring,
8... Final protective film, 10, 12... Photosensitive photoresist film, 13... W (buried layer).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  下地絶縁膜上に形成された、金属若し
くは合金を主体とする単層構造又は積層構造の配線がプ
ラズマCVD法で堆積される無機質の絶縁膜で被覆され
る半導体集積回路装置において、前記配線と下地絶縁膜
との間に前記配線、下地絶縁膜のいずれに比べても硬度
が低い応力緩和層を介在したことを特徴とする半導体集
積回路装置。
Claim 1: In a semiconductor integrated circuit device in which a wiring having a single-layer structure or a multi-layer structure mainly made of metal or alloy formed on a base insulating film is covered with an inorganic insulating film deposited by a plasma CVD method. A semiconductor integrated circuit device, characterized in that a stress relaxation layer having a lower hardness than both the wiring and the underlying insulating film is interposed between the wiring and the underlying insulating film.
【請求項2】  前記応力緩和層は、前記配線下のみに
構成され、ポリイミド系樹脂で形成されることを特徴と
する請求項1に記載の半導体集積回路装置。
2. The semiconductor integrated circuit device according to claim 1, wherein the stress relaxation layer is formed only under the wiring and is made of polyimide resin.
【請求項3】  半導体基板の主面上、又は前記半導体
基板の主面上に配置された下層配線上を含む基板全面に
下地絶縁膜を形成する工程と、この下地絶縁膜上の全面
に、前記下地絶縁膜に比べて硬度が低くかつ有機質の第
1樹脂膜を形成するとともに、この第1樹脂膜上の全面
にこの第1樹脂膜に対してエッチング選択比を有しかつ
感光性を有する第2樹脂膜を形成する工程と、この第2
樹脂膜の一部の領域をフォトリソグラフィ技術で除去し
、この第2樹脂膜の他部の領域をエッチングマスクとし
て、第1樹脂膜の一部の領域をエッチングで除去し、第
1開口を形成し、この後、前記エッチングマスクとして
使用した第2樹脂膜の他部の領域を除去する工程と、前
記第1樹脂膜の他部の領域をエッチングマスクとして、
前記下地絶縁膜の一部の領域を除去し、第2開口を形成
する工程と、前記第1樹脂膜の他部の領域上、前記第1
開口及び第2開口から露出する半導体基板の主面の一部
又は下層配線層の一部の領域上のいずれも含む基板全面
に、金属若しくは合金を主体に構成される単層構造又は
積層構造の配線層を形成する工程と、この配線層上の一
部の領域に前記第1樹脂膜と同一若しくはそれに近いエ
ッチング選択比を有するエッチングマスクを形成する工
程と、このエッチングマスクを使用し、配線層の他部の
領域をエッチングで除去するとともに、配線層の残存す
る一部の領域で配線を形成する工程と、前記エッチング
マスクを除去するとともに、前記配線下を除く第1樹脂
膜の他部の領域を除去し、前記配線下に残存する第1樹
脂膜で応力緩和層を形成する工程と、前記配線上を含む
基板全面にプラズマCVD法で堆積される無機質の絶縁
膜を形成する工程とを備えたことを特徴とする半導体集
積回路装置の形成方法。
3. A step of forming a base insulating film on the entire surface of the substrate including on the main surface of the semiconductor substrate or on the lower layer wiring arranged on the main surface of the semiconductor substrate, and the step of forming a base insulating film on the entire surface of the base insulating film, Forming an organic first resin film having a hardness lower than that of the base insulating film, and having an etching selectivity with respect to the first resin film over the entire surface of the first resin film and having photosensitivity. a step of forming a second resin film;
A part of the resin film is removed using a photolithography technique, and using the other part of the second resin film as an etching mask, a part of the first resin film is removed by etching to form a first opening. After this, a step of removing the other region of the second resin film used as the etching mask, and using the other region of the first resin film as an etching mask,
a step of removing a part of the base insulating film to form a second opening;
A single layer structure or a laminated structure mainly made of metal or alloy is applied to the entire surface of the substrate, including both a part of the main surface of the semiconductor substrate exposed through the opening and the second opening, or a part of the lower wiring layer. a step of forming a wiring layer; a step of forming an etching mask having an etching selectivity the same as or close to that of the first resin film in a part of the wiring layer; and a step of forming the wiring layer using the etching mask. A step of removing other regions by etching and forming wiring in a part of the remaining region of the wiring layer, and removing the etching mask and etching other parts of the first resin film except under the wiring. a step of removing the area and forming a stress relaxation layer with the first resin film remaining under the wiring; and a step of forming an inorganic insulating film deposited by plasma CVD on the entire surface of the substrate including on the wiring. A method for forming a semiconductor integrated circuit device, comprising:
JP7747591A 1991-04-10 1991-04-10 Semiconductor integrated circuit device and its manufacture Withdrawn JPH04313256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7747591A JPH04313256A (en) 1991-04-10 1991-04-10 Semiconductor integrated circuit device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7747591A JPH04313256A (en) 1991-04-10 1991-04-10 Semiconductor integrated circuit device and its manufacture

Publications (1)

Publication Number Publication Date
JPH04313256A true JPH04313256A (en) 1992-11-05

Family

ID=13635015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7747591A Withdrawn JPH04313256A (en) 1991-04-10 1991-04-10 Semiconductor integrated circuit device and its manufacture

Country Status (1)

Country Link
JP (1) JPH04313256A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217445A (en) * 1996-12-04 2005-08-11 Seiko Epson Corp Production process of semiconductor device
JP2007227063A (en) * 2006-02-22 2007-09-06 Kyocera Corp Ceramic heater
US7470979B2 (en) 1996-12-04 2008-12-30 Seiko Epson Corporation Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board, and electronic instrument
US7521796B2 (en) 1996-12-04 2009-04-21 Seiko Epson Corporation Method of making the semiconductor device, circuit board, and electronic instrument
JP2011066020A (en) * 2011-01-05 2011-03-31 Kyocera Corp Ceramic heater

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217445A (en) * 1996-12-04 2005-08-11 Seiko Epson Corp Production process of semiconductor device
US7470979B2 (en) 1996-12-04 2008-12-30 Seiko Epson Corporation Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board, and electronic instrument
US7511362B2 (en) 1996-12-04 2009-03-31 Seiko Epson Corporation Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board, and electronic instrument
US7521796B2 (en) 1996-12-04 2009-04-21 Seiko Epson Corporation Method of making the semiconductor device, circuit board, and electronic instrument
JP4513973B2 (en) * 1996-12-04 2010-07-28 セイコーエプソン株式会社 Manufacturing method of semiconductor device
US7842598B2 (en) 1996-12-04 2010-11-30 Seiko Epson Corporation Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board, and electronic instrument
US7888260B2 (en) 1996-12-04 2011-02-15 Seiko Epson Corporation Method of making electronic device
US8115284B2 (en) 1996-12-04 2012-02-14 Seiko Epson Corporation Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board and electronic instrument
US8384213B2 (en) 1996-12-04 2013-02-26 Seiko Epson Corporation Semiconductor device, circuit board, and electronic instrument
JP2007227063A (en) * 2006-02-22 2007-09-06 Kyocera Corp Ceramic heater
JP2011066020A (en) * 2011-01-05 2011-03-31 Kyocera Corp Ceramic heater

Similar Documents

Publication Publication Date Title
US7173337B2 (en) Semiconductor device manufactured by the damascene process having improved stress migration resistance
US7592220B2 (en) Capacitance process using passivation film scheme
JPH06125013A (en) Semiconductor device and its manufacture
US8674404B2 (en) Additional metal routing in semiconductor devices
US6313037B1 (en) Semiconductor device and method for manufacturing the same
JPH04313256A (en) Semiconductor integrated circuit device and its manufacture
JP2004146812A (en) Semiconductor memory device
KR100889547B1 (en) Method for fabricating metal line of the semiconductor device
JPH08204002A (en) Manufacturing method for semiconductor integrated circuit device
KR20090055772A (en) Method for fabricating metal line of the semiconductor device
JP2007214284A (en) Semiconductor device
JP3167455B2 (en) Semiconductor device and manufacturing method thereof
JPH11186386A (en) Semiconductor device and manufacture thereof
JPH0427125A (en) Method of producing wiring member
KR100508534B1 (en) Method for forming an air gap in a semiconductor metal line manufacturing process
JPH10173051A (en) Wiring forming method
JP3342359B2 (en) Method for manufacturing semiconductor device
KR100524917B1 (en) Inter metal dielectric layer of semiconductor device and method of fabricating thereof
JP2004014761A (en) Semiconductor device
JPS60177652A (en) Manufacture of semiconductor device
JPH0936222A (en) Semiconductor device and its manufacture
JPH09129726A (en) Semiconductor device and manufacture thereof
KR20070074183A (en) Metal line in semiconductor device and method for forming the same
JP2002083867A (en) Semiconductor device and production method therefor
JPH10313052A (en) Method for forming wiring of semiconductor device and wiring structure

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711