JPH08204002A - Manufacturing method for semiconductor integrated circuit device - Google Patents

Manufacturing method for semiconductor integrated circuit device

Info

Publication number
JPH08204002A
JPH08204002A JP7009413A JP941395A JPH08204002A JP H08204002 A JPH08204002 A JP H08204002A JP 7009413 A JP7009413 A JP 7009413A JP 941395 A JP941395 A JP 941395A JP H08204002 A JPH08204002 A JP H08204002A
Authority
JP
Japan
Prior art keywords
wiring
manufacturing
integrated circuit
circuit device
connection hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7009413A
Other languages
Japanese (ja)
Inventor
Hideo Aoki
英雄 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7009413A priority Critical patent/JPH08204002A/en
Publication of JPH08204002A publication Critical patent/JPH08204002A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure

Abstract

PURPOSE: To shorten LSI manufacturing process having multilayer interconnection structure by, after a connecting hole is formed in the first insulating film by the etching with a photo-resist as a mask, forming a connecting hole in the second insulation film lower than a wiring layer by the etching with the photo-resist and the wiring as a mask. CONSTITUTION: By the etching with a photo-resist 14, which is formed on the first insulation film 12 covering a specified wiring layer, as a mask, connecting holes 15A and 15B are formed in the first insulation film 12. Then, by the etching with the photo-resist 14 and wirings 10A and 10B, in a wiring layer which is so assigned that a part of it overlaps the connecting holes 15A and 15B, as a mask, connecting holes 16A and 16B are formed in the second insulation film 9 lower than the wirings 10A and 10B. Thus, since the connecting holes 16A and 16B in the second insulation film 9 are formed in self-alignment to the wirings 10A and 10B, the connecting holes 15A and 15B in the first insulation film 12 and the connecting holes 16A and 16B in the second insulation film 9 are formed in a single process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路装置の
製造技術に関し、特に、多層配線を有する半導体集積回
路装置の製造に適用して有効な技術に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for manufacturing a semiconductor integrated circuit device, and more particularly to a technique effective when applied to the production of a semiconductor integrated circuit device having multi-layer wiring.

【0002】[0002]

【従来の技術】近年、LSIの高集積化に伴い、論理L
SIでは6〜7層以上の多層配線が採用され、またメモ
リLSIでも3〜4層以上の多層配線が採用されてい
る。
2. Description of the Related Art In recent years, with the high integration of LSIs, logic L
The SI uses multi-layered wiring of 6 to 7 layers or more, and the memory LSI also employs multi-layered wiring of 3 to 4 layers or more.

【0003】この種の多層配線を形成するには、一例と
して、半導体基板上に素子を形成した後、絶縁膜の堆積
→絶縁膜のエッチングによる接続孔の形成→W(タング
ステン)などによる接続孔の埋込み→メタル膜の堆積→
メタル膜のエッチングによるメタル配線の形成、という
プロセスを配線層の数だけ繰り返す必要がある。
To form this kind of multilayer wiring, for example, after forming an element on a semiconductor substrate, deposition of an insulating film → formation of a connection hole by etching the insulation film → a connection hole made of W (tungsten) or the like. Embedding → Metal film deposition →
It is necessary to repeat the process of forming the metal wiring by etching the metal film for the number of wiring layers.

【0004】また、半導体素子の微細化に伴って、接続
孔と配線や半導体素子との合わせ余裕が小さくなってい
ることから、場合によっては、接続孔の底部に多結晶シ
リコンのパッドを形成する工程を追加することによっ
て、マスク合わせずれによるショート防止を図ってい
る。
Further, with the miniaturization of the semiconductor element, the alignment margin between the connection hole and the wiring or the semiconductor element becomes smaller. Therefore, in some cases, a pad of polycrystalline silicon is formed at the bottom of the connection hole. By adding steps, short circuits due to mask misalignment are prevented.

【0005】なお、前記W(タングステン)による接続
孔の埋込み技術については、例えば特開昭58−288
56号公報などに記載がある。
A technique for burying a connection hole with W (tungsten) is disclosed in, for example, Japanese Patent Laid-Open No. 58-288.
It is described in Japanese Patent No. 56, etc.

【0006】[0006]

【発明が解決しようとする課題】前述したように、LS
Iの製造工程では、配線層の数が一層増えるごとに、絶
縁膜の堆積→接続孔の形成→接続孔の埋込み→メタル膜
の堆積→メタル配線の形成、というプロセスが繰り返さ
れるため、配線層の多いLSIの場合は、配線の形成だ
けでもかなりの工程数となり、これが多層配線を有する
LSIの製造歩留りを低下させる大きな原因となってい
る。また、接続孔のマスク合わせ余裕を確保するため
に、多結晶シリコンのパッドを形成した場合は、工程数
がさらに増加する。しかも、微細化の進行によって配線
の幅や接続孔の径が小さくなると、接続孔の内部におけ
る上下層配線間の接触面積が小さくなるため、コンタク
ト抵抗の増大も懸念される。
As mentioned above, the LS
In the manufacturing process of I, the process of depositing an insulating film → forming a contact hole → filling a contact hole → depositing a metal film → forming a metal interconnect is repeated every time the number of interconnect layers increases, so that the interconnect layer In the case of a large number of LSIs, the number of steps is considerable even if only wiring is formed, which is a major cause of lowering the manufacturing yield of LSIs having multilayer wiring. Further, when a pad of polycrystalline silicon is formed in order to secure a mask alignment margin for the connection hole, the number of steps is further increased. Moreover, when the width of the wiring and the diameter of the connection hole become smaller due to the progress of miniaturization, the contact area between the upper and lower wirings inside the connection hole becomes small, and there is concern that the contact resistance may increase.

【0007】このように、LSIの製造工程では、配線
層数の増加につれて製造歩留りの低下やコンタクト抵抗
の増大による回路設計の制約が深刻な問題となり、高性
能のLSIを安価に提供することが困難となる。
As described above, in the process of manufacturing an LSI, the restriction of circuit design due to a decrease in manufacturing yield and an increase in contact resistance becomes a serious problem as the number of wiring layers increases, and a high-performance LSI can be provided at a low cost. It will be difficult.

【0008】本発明の目的は、多層配線構造を有するL
SIの製造歩留りを向上させることのできる技術を提供
することにある。
An object of the present invention is to provide an L having a multilayer wiring structure.
It is to provide a technique capable of improving the manufacturing yield of SI.

【0009】本発明の他の目的は、接続孔内部の配線の
コンタクト抵抗を低減してLSIの微細化を促進するこ
とのできる技術を提供することにある。
Another object of the present invention is to provide a technique capable of reducing the contact resistance of the wiring inside the connection hole and promoting miniaturization of the LSI.

【0010】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0011】[0011]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
次のとおりである。
Of the inventions disclosed in the present application, a representative one will be briefly described below.
It is as follows.

【0012】(1)本発明の半導体集積回路装置の製造
方法は、所定の配線層を覆う第1の絶縁膜上に形成した
フォトレジストをマスクにしたエッチングで前記第1の
絶縁膜に接続孔を形成した後、前記フォトレジストと、
一部を前記接続孔と重なるように配置した前記配線層の
配線とをマスクにしたエッチングで前記配線層よりも下
層の第2の絶縁膜に接続孔を形成するものである。
(1) In the method of manufacturing a semiconductor integrated circuit device according to the present invention, a contact hole is formed in the first insulating film by etching using a photoresist formed on the first insulating film covering a predetermined wiring layer as a mask. After forming, with the photoresist,
The connection hole is formed in the second insulating film below the wiring layer by etching using the wiring of the wiring layer arranged so as to partially overlap the connection hole as a mask.

【0013】(2)本発明の半導体集積回路装置の製造
方法は、前記フォトレジストの開孔部の一端と前記配線
の一端との水平方向の距離を露光光の解像度以下の寸法
とするものである。
(2) In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the horizontal distance between one end of the opening of the photoresist and one end of the wiring is set to a dimension equal to or smaller than the resolution of exposure light. is there.

【0014】[0014]

【作用】上記した手段(1)によれば、フォトレジスト
をマスクにしたエッチングで第1の絶縁膜に接続孔を形
成した後、前記フォトレジストと、一部を前記接続孔と
重なるように配置した配線とをマスクにしたエッチング
で前記配線よりも下層の第2の絶縁膜に接続孔を形成す
ることにより、第2の絶縁膜の接続孔を前記配線に対し
てセルフアラインで形成することができるので、第1の
絶縁膜の接続孔と第2の絶縁膜の接続孔を1工程で形成
することができる。
According to the above-mentioned means (1), the contact hole is formed in the first insulating film by etching using the photoresist as a mask, and then the photoresist and the contact hole are arranged so as to partially overlap with the contact hole. By forming a connection hole in the second insulating film below the wiring by etching using the formed wiring as a mask, the connection hole of the second insulating film can be formed in self-alignment with the wiring. Therefore, the connection hole of the first insulating film and the connection hole of the second insulating film can be formed in one step.

【0015】また、上記した手段(1)によれば、接続
孔の内部の導電膜と配線とがこの配線の上面のみならず
側面でも接触するため、接続孔の径が微細な場合でも、
十分な接触面積を確保してコンタクト抵抗を低減するこ
とができる。
According to the above-mentioned means (1), since the conductive film inside the connection hole and the wiring contact not only on the upper surface but also on the side surface of the wiring, even if the diameter of the connection hole is small,
It is possible to secure a sufficient contact area and reduce the contact resistance.

【0016】上記した手段(2)によれば、フォトレジ
ストの開孔部の一端と配線の一端との水平方向の距離を
露光光の解像度以下の寸法とすることにより、第2の絶
縁膜に形成される接続孔の径をデバイスの最小加工寸法
以下とすることができる。
According to the above means (2), the horizontal distance between the one end of the opening portion of the photoresist and the one end of the wiring is set to a dimension equal to or smaller than the resolution of the exposure light, whereby the second insulating film is formed. The diameter of the formed connection hole can be made equal to or smaller than the minimum processing size of the device.

【0017】[0017]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。なお、実施例を説明するための全図におい
て同一機能を有するものは同一の符号を付し、その繰り
返しの説明は省略する。
Embodiments of the present invention will now be described in detail with reference to the drawings. In all the drawings for explaining the embodiments, those having the same function are designated by the same reference numeral, and the repeated description thereof will be omitted.

【0018】(実施例1)本発明の実施例1であるAl
(アルミニウム)2層配線を有するMOS・LSIの製
造方法を図1〜図9を用いて説明する。
Example 1 Al which is Example 1 of the present invention
A method of manufacturing a MOS / LSI having two layers of (aluminum) wiring will be described with reference to FIGS.

【0019】まず、図1に示すように、常法に従ってp
- 型の単結晶シリコンからなる半導体基板1の主面にp
型のウエル2を形成した後、このウエル2の主面上に素
子分離用のフィールド絶縁膜3を形成し、続いてアクテ
ィブ領域のウエル2の主面上にnチャネル型のMOSF
ETQn を形成する。
First, as shown in FIG. 1, p
On the main surface of the semiconductor substrate 1 made of-type single crystal silicon
Type well 2 is formed, then a field insulating film 3 for element isolation is formed on the main surface of the well 2, and then an n-channel type MOSF is formed on the main surface of the well 2 in the active region.
Form ETQn.

【0020】MOSFETQn は、ウエル2の主面上に
形成された酸化シリコンのゲート絶縁膜4と、このゲー
ト絶縁膜4上に形成された多結晶シリコンのゲート電極
5と、ゲート電極5の両側のウエル2の主面に形成され
たn型の半導体領域6A,6B(ソース領域、ドレイン
領域)とで構成され、ゲート電極5の一部はフィールド
絶縁膜3の上にも配置される。また、ゲート電極5の側
壁には酸化シリコンのサイドウォールスペーサ7が形成
され、ゲート電極5の上部には酸化シリコンのキャップ
絶縁膜8が形成される。
The MOSFET Qn has a gate insulating film 4 of silicon oxide formed on the main surface of the well 2, a gate electrode 5 of polycrystalline silicon formed on the gate insulating film 4, and both sides of the gate electrode 5. The n-type semiconductor regions 6A and 6B (source region, drain region) formed on the main surface of the well 2 are formed, and a part of the gate electrode 5 is also disposed on the field insulating film 3. Further, a sidewall spacer 7 of silicon oxide is formed on the sidewall of the gate electrode 5, and a cap insulating film 8 of silicon oxide is formed on the upper portion of the gate electrode 5.

【0021】次に、図2に示すように、MOSFETQ
n の上層にCVD法でBPSG(Boro Phospho Silicat
e Glass )からなる絶縁膜9を堆積した後、スパッタ法
で第1層目のメタル膜10を堆積する。このメタル膜1
0は、例えばTiN膜、Al膜、TiN膜の3層膜で構
成する。
Next, as shown in FIG.
BPSG (Boro Phospho Silicat
After depositing an insulating film 9 made of e-glass), a first metal film 10 is deposited by a sputtering method. This metal film 1
0 is composed of, for example, a three-layer film of a TiN film, an Al film, and a TiN film.

【0022】次に、図3に示すように、フォトレジスト
11をマスクにしてメタル膜10をエッチングすること
により、絶縁膜9上に第1層目の配線10A,10B,
10C,10Dを形成する。
Next, as shown in FIG. 3, the metal film 10 is etched using the photoresist 11 as a mask, so that the wirings 10A, 10B,
10C and 10D are formed.

【0023】このとき、図中の破線で示す接続孔形成領
域(a)の近傍の配線10Aの端部を接続孔形成領域
(a)と重なるように配置する。回路設計の都合上、所
定の接続孔形成領域の近傍に配線が存在しない場合は、
その接続孔形成領域の近傍にダミー配線を形成し、この
ダミー配線の端部をその接続孔形成領域と重なるように
配置する。例えば配線10Bはこの種のダミー配線であ
り、その端部は図中の接続孔形成領域(b)と重なるよ
うに配置される。ダミー配線は、フローティング状態で
あってもよく、あるいは実際の配線の一部を分岐させて
形成してもよい。
At this time, the end portion of the wiring 10A near the connection hole forming area (a) shown by the broken line in the drawing is arranged so as to overlap the connection hole forming area (a). Due to the circuit design, if there is no wiring near the prescribed connection hole formation area,
A dummy wiring is formed in the vicinity of the connection hole forming area, and an end portion of the dummy wiring is arranged so as to overlap the connection hole forming area. For example, the wiring 10B is a dummy wiring of this type, and its end portion is arranged so as to overlap the connection hole forming region (b) in the drawing. The dummy wiring may be in a floating state or may be formed by branching a part of the actual wiring.

【0024】次に、フォトレジスト11を除去した後、
図4に示すように、配線10A,10B,10C,10
Dの上層に酸化シリコン膜およびスピンオングラス(Sp
in On Glass )膜からなる層間絶縁膜12を堆積する。
Next, after removing the photoresist 11,
As shown in FIG. 4, wirings 10A, 10B, 10C, 10
Silicon oxide film and spin-on-glass (Sp
An interlayer insulating film 12 made of an in on glass) film is deposited.

【0025】次に、図5に示すように、接続孔形成領域
(a),(b)の上方に開孔13A,13Bを設けたフ
ォトレジスト14を層間絶縁膜12上に被着し、このフ
ォトレジスト14をマスクにして層間絶縁膜12をエッ
チングすることにより、層間絶縁膜12に接続孔15
A,15Bを形成する。このとき、接続孔15Aの底部
には配線10Aの端部が露出し、接続孔15Bの底部に
は配線10Bの端部が露出する。
Next, as shown in FIG. 5, a photoresist 14 having openings 13A and 13B above the connection hole forming regions (a) and (b) is deposited on the interlayer insulating film 12, By etching the interlayer insulating film 12 using the photoresist 14 as a mask, a connection hole 15 is formed in the interlayer insulating film 12.
A and 15B are formed. At this time, the end of the wiring 10A is exposed at the bottom of the connection hole 15A, and the end of the wiring 10B is exposed at the bottom of the connection hole 15B.

【0026】続いて、図6に示すように、上記フォトレ
ジスト14と配線10A,10Bとをマスクにして層間
絶縁膜12の残部、層間絶縁膜12の下層の絶縁膜9、
さらにその下層のゲート絶縁膜4を連続してエッチング
することにより、MOSFETQn の半導体領域6A,
6Bに達する接続孔16A,16Bを形成する。
Subsequently, as shown in FIG. 6, with the photoresist 14 and the wirings 10A and 10B as a mask, the remaining portion of the interlayer insulating film 12, the insulating film 9 below the interlayer insulating film 12,
Further, by continuously etching the underlying gate insulating film 4, the semiconductor region 6A of the MOSFET Qn,
The connection holes 16A and 16B reaching 6B are formed.

【0027】すなわち、配線10Aの下層の接続孔16
Aは、配線10Aに対してセルフアラインで形成され、
配線10Bの下層の接続孔16Bは、配線10Bに対し
てセルフアラインで形成される。従って、フォトレジス
ト14の開孔13Aの端部と配線10Aの端部の相対的
なレイアウトを規定することにより、配線10Aの下層
の接続孔16Aを所望の寸法および形状で形成すること
ができる。同様に、フォトレジスト14の開孔13Bの
端部と配線10Bの端部の相対的なレイアウトを規定す
ることにより、配線10Bの下層の接続孔16Bを所望
の寸法および形状で形成することができる。
That is, the connection hole 16 in the lower layer of the wiring 10A
A is formed in self-alignment with the wiring 10A,
The connection hole 16B in the lower layer of the wiring 10B is formed in self-alignment with the wiring 10B. Therefore, by defining the relative layout of the end portion of the opening 13A of the photoresist 14 and the end portion of the wiring 10A, the connection hole 16A in the lower layer of the wiring 10A can be formed in a desired size and shape. Similarly, by defining the relative layout of the end of the opening 13B of the photoresist 14 and the end of the wiring 10B, the connection hole 16B in the lower layer of the wiring 10B can be formed in a desired size and shape. .

【0028】次に、フォトレジスト14を除去した後、
アスペクト比の大きい接続孔15A,16A,15B,
16Bの内部に配線材料を確実に埋め込むため、まず図
7に示すように、カバレージに優れたCVD法によるT
iN/Ti膜17を接続孔15A,16A,15B,1
6Bの内部を含む半導体基板1の全面に堆積した後、図
8に示すように、接続孔15A,16A,15B,16
Bの内部にW(タングステン)膜18を埋め込む。W膜
18の埋め込みは、例えば接続孔15A,16A,15
B,16Bの内部を含む半導体基板1の全面にCVD法
でW膜18を堆積し、これをエッチバックして接続孔1
5A,16A,15B,16Bの内部に残す。
Next, after removing the photoresist 14,
Connection holes 15A, 16A, 15B having a large aspect ratio,
In order to securely embed the wiring material inside the 16B, as shown in FIG. 7, first, as shown in FIG.
The iN / Ti film 17 is provided with connection holes 15A, 16A, 15B, 1
After being deposited on the entire surface of the semiconductor substrate 1 including the inside of 6B, as shown in FIG. 8, connection holes 15A, 16A, 15B, 16 are formed.
A W (tungsten) film 18 is embedded inside B. The W film 18 is embedded by, for example, the connection holes 15A, 16A, 15
A W film 18 is deposited on the entire surface of the semiconductor substrate 1 including the insides of B and 16B by a CVD method, and this is etched back to form a contact hole 1
Leave inside 5A, 16A, 15B, 16B.

【0029】次に、図9に示すように、層間絶縁膜12
上にスパッタ法で堆積した、例えばAl膜、TiN膜の
2層膜をパターニングして、第2層目の配線19A,1
9B,19Cを形成する。配線19Aは、接続孔15
A,16Aを通じて第1層目の配線10AおよびMOS
FETQn の半導体領域6Aにそれぞれ接続され、配線
19Bは、接続孔15B,16Bを通じてMOSFET
Qn の半導体領域6Bに接続される。なお、MOSFE
TQn の半導体領域6Aを第1層目の配線10Aとのみ
接続したい場合は、第2層目の配線19Aをダミー配線
で構成すればよい。
Next, as shown in FIG. 9, the interlayer insulating film 12 is formed.
By patterning a two-layer film of, for example, an Al film and a TiN film deposited on the upper surface by sputtering, the second-layer wirings 19A, 1
9B and 19C are formed. The wiring 19A has a connection hole 15
First layer wiring 10A and MOS through A and 16A
The wiring 19B is connected to the semiconductor region 6A of the FET Qn, and the wiring 19B is connected to the MOSFET through the connection holes 15B and 16B.
It is connected to the semiconductor region 6B of Qn. In addition, MOSFE
When it is desired to connect the semiconductor region 6A of TQn only to the wiring 10A of the first layer, the wiring 19A of the second layer may be formed by a dummy wiring.

【0030】上記した本実施例の製造方法によれば、従
来は2工程で行っていた接続孔(15A,15B)およ
び接続孔(16A,16B)の形成を1工程で行うこと
ができるので、Al2層配線を有するMOS・LSIの
製造工程を短縮して製造歩留りを向上させることができ
る。
According to the manufacturing method of the present embodiment described above, the connection holes (15A, 15B) and the connection holes (16A, 16B) can be formed in one step, which was conventionally performed in two steps. The manufacturing yield can be improved by shortening the manufacturing process of the MOS / LSI having the Al2 layer wiring.

【0031】また、本実施例の製造方法によれば、接続
孔15A,16Aの内部の導電膜(TiN/Ti膜1
7)と第1層目の配線10Aとが配線10Aの上面のみ
ならず側面でも接触するため、接続孔15A,16Aの
径が微細な場合でも、十分な接触面積を確保してコンタ
クト抵抗を低減することができる。また、これにより、
回路設計の自由度も向上する。
Further, according to the manufacturing method of this embodiment, the conductive film (TiN / Ti film 1) inside the connection holes 15A and 16A is formed.
7) and the wiring 10A of the first layer are in contact not only on the upper surface but also on the side surface of the wiring 10A, so that even if the diameters of the connection holes 15A and 16A are small, a sufficient contact area is secured and the contact resistance is reduced. can do. This also gives
The degree of freedom in circuit design is also improved.

【0032】さらに、本実施例の製造方法によれば、フ
ォトレジスト14の開孔13A(13B)の端部から第
1層目の配線10A(10B)の端部までの水平方向の
距離を露光光の解像度以下の寸法とすることにより、配
線10A(10B)の下層の接続孔16A(16B)の
径をデバイスの最小加工寸法以下とすることができる。
すなわち、本実施例の製造方法によれば、位相シフトマ
スクのような高価なフォトマスクを使用したり、電子線
直描装置のようなスループットの低い装置を使用したり
しなくとも、設計ルール以下の微細な径の接続孔16A
(16B)を形成することができるので、MOS・LS
Iの微細化、高集積化を促進することができる。
Further, according to the manufacturing method of this embodiment, the horizontal distance from the end of the opening 13A (13B) of the photoresist 14 to the end of the first-layer wiring 10A (10B) is exposed. By setting the size to be equal to or smaller than the resolution of light, the diameter of the connection hole 16A (16B) in the lower layer of the wiring 10A (10B) can be set to be equal to or smaller than the minimum processing size of the device.
That is, according to the manufacturing method of the present embodiment, without using an expensive photomask such as a phase shift mask or using a low throughput device such as an electron beam direct writing device, the design rule Fine diameter connection hole 16A
Since (16B) can be formed, MOS / LS
The miniaturization and high integration of I can be promoted.

【0033】(実施例2)本発明の実施例2であるAl
3層配線を有するMOS・LSIの製造方法を図10〜
図13を用いて説明する。
Example 2 Al which is Example 2 of the present invention
A method of manufacturing a MOS / LSI having a three-layer wiring is shown in FIGS.
This will be described with reference to FIG.

【0034】ウエル2の主面上にMOSFETQn を形
成した後、第1層目の配線10A,10B,10C,1
0Dの上層に層間絶縁膜12を堆積するまでの工程(図
1〜図4参照)は、前記実施例1と同じである。
After forming the MOSFET Qn on the main surface of the well 2, the wirings 10A, 10B, 10C, 1 of the first layer are formed.
The steps until the interlayer insulating film 12 is deposited on the upper layer of 0D (see FIGS. 1 to 4) are the same as those in the first embodiment.

【0035】次に、図10に示すように、層間絶縁膜1
2の上層に第2層目の配線20A,20B,20Cを形
成し、続いてその上層に第2層目の層間絶縁膜21を堆
積する。配線20A,20B,20Cは、例えばTiN
膜、Al膜、TiN膜の3層膜で構成し、層間絶縁膜2
1は、例えば酸化シリコン膜とスピンオングラス膜とで
構成する。このとき、接続孔形成領域(a)の近傍の配
線20Aの端部を接続孔形成領域(a)と重なるように
配置する。また、フィールド絶縁膜3上に配置したゲー
ト電極5上の接続孔形成領域(c)の近傍の配線20C
の端部を接続孔形成領域(c)と重なるように配置す
る。
Next, as shown in FIG. 10, the interlayer insulating film 1
Second-layer wirings 20A, 20B, 20C are formed on the upper layer of No. 2, and then the second-layer interlayer insulating film 21 is deposited on the upper layer. The wirings 20A, 20B, 20C are made of, for example, TiN.
Film, an Al film, and a TiN film.
1 is composed of, for example, a silicon oxide film and a spin-on-glass film. At this time, the end portion of the wiring 20A near the connection hole formation region (a) is arranged so as to overlap the connection hole formation region (a). Further, the wiring 20C in the vicinity of the connection hole forming region (c) on the gate electrode 5 arranged on the field insulating film 3
Is arranged so as to overlap the connection hole forming region (c).

【0036】次に、図11に示すように、接続孔形成領
域(a),(b),(c)のそれぞれの上方に開孔22
A,22B,22Cを設けたフォトレジスト23を層間
絶縁膜21上に被着し、フォトレジスト23、第2層目
の配線20A,20B,20C、第1層目の配線10
A,10B,10Cをマスクにして層間絶縁膜21、層
間絶縁膜12、絶縁膜9、ゲート絶縁膜4を連続してエ
ッチングすることにより、層間絶縁膜21に接続孔24
A,24B,24Cを、層間絶縁膜12に接続孔15
A,15B,15Cを、絶縁膜9に接続孔16A,16
B,16Cをそれぞれ形成する。
Next, as shown in FIG. 11, an opening 22 is formed above each of the connection hole forming regions (a), (b) and (c).
A photoresist 23 having A, 22B and 22C is deposited on the interlayer insulating film 21, and the photoresist 23, the second layer wirings 20A, 20B and 20C, and the first layer wiring 10
The interlayer insulating film 21, the interlayer insulating film 12, the insulating film 9, and the gate insulating film 4 are continuously etched by using A, 10B, and 10C as a mask to form a contact hole 24 in the interlayer insulating film 21.
A, 24B, and 24C are connected to the interlayer insulating film 12 by a connection hole 15
A, 15B and 15C are connected to the insulating film 9 with connection holes 16A and 16C.
B and 16C are formed respectively.

【0037】このとき、第1層目の層間絶縁膜12の接
続孔15A,15B,15Cは、それぞれ第2層目の配
線20A,20B,20Cに対してセルフアラインで形
成され、絶縁膜9の接続孔16A,16B,16Cは、
それぞれ第2層目の配線20A,20Cおよび第1層目
の配線10A,10B,10Cに対してセルフアライン
で形成される。
At this time, the connection holes 15A, 15B, 15C of the first-layer interlayer insulating film 12 are formed in self-alignment with the second-layer wirings 20A, 20B, 20C, respectively, and the insulating film 9 of the insulating film 9 is formed. The connection holes 16A, 16B, 16C are
The wirings 20A and 20C of the second layer and the wirings 10A, 10B and 10C of the first layer are formed by self-alignment.

【0038】次に、フォトレジスト23を除去した後、
アスペクト比の大きい接続孔(24A,24B,24
C,15A,15B,15C,16A,16B,16
C)の内部に配線材料を確実に埋め込むため、図12に
示すように、カバレージに優れたCVD法によるTiN
/Ti膜17を接続孔(24A,24B,24C,15
A,15B,15C,16A,16B,16C)の内部
を含む半導体基板1の全面に堆積した後、第3層目の配
線材料であるAl膜25を接続孔(24A,24B,2
4C,15A,15B,15C,16A,16B,16
C)の内部を含む半導体基板1の全面にスパッタ法で堆
積する。
Next, after removing the photoresist 23,
Connection holes with high aspect ratio (24A, 24B, 24
C, 15A, 15B, 15C, 16A, 16B, 16
As shown in FIG. 12, since the wiring material is surely embedded in the inside of C), TiN by the CVD method having excellent coverage is formed.
/ Ti film 17 is formed into a connection hole (24A, 24B, 24C, 15
A, 15B, 15C, 16A, 16B, 16C), and then an Al film 25, which is the third layer wiring material, is formed on the entire surface of the semiconductor substrate 1 including connection holes (24A, 24B, 2C).
4C, 15A, 15B, 15C, 16A, 16B, 16
It is deposited by sputtering on the entire surface of the semiconductor substrate 1 including the inside of C).

【0039】このとき、半導体基板1を高温に加熱した
状態でAl膜25を堆積する。このようにすると、融点
の低い金属材料であるAlの流動性が高くなるので、ア
スペクト比の大きい接続孔(24A,24B,24C,
15A,15B,15C,16A,16B,16C)の
内部にAl膜25を良好に埋め込むことができる。
At this time, the Al film 25 is deposited while the semiconductor substrate 1 is heated to a high temperature. By doing so, the fluidity of Al, which is a metal material having a low melting point, increases, so that the connection holes (24A, 24B, 24C,
15A, 15B, 15C, 16A, 16B, 16C), the Al film 25 can be satisfactorily embedded.

【0040】また、通常のスパッタ法でAl膜25を堆
積した後、半導体基板1を高圧雰囲気中で高温に加熱し
てもよい。通常のスパッタ法でAl膜25を堆積する
と、アスペクト比の大きい接続孔(24A,24B,2
4C,15A,15B,15C,16A,16B,16
C)の内部にボイド(空隙)が発生する。その後、Al
膜25の表面が酸化しないようにしたまま半導体基板1
を高圧雰囲気中で高温に加熱すると、Alの流動性が高
くなると共にボイドが高圧で押し潰されるので、アスペ
クト比の大きい接続孔(24A,24B,24C,15
A,15B,15C,16A,16B,16C)の内部
にAl膜25を良好に埋め込むことができる。
After depositing the Al film 25 by a normal sputtering method, the semiconductor substrate 1 may be heated to a high temperature in a high pressure atmosphere. When the Al film 25 is deposited by the ordinary sputtering method, the connection holes (24A, 24B, 2) having a large aspect ratio are formed.
4C, 15A, 15B, 15C, 16A, 16B, 16
Voids (voids) occur inside C). Then Al
The semiconductor substrate 1 while keeping the surface of the film 25 from being oxidized
When Al is heated to a high temperature in a high pressure atmosphere, the flowability of Al becomes high and the voids are crushed at a high pressure. Therefore, the connection holes (24A, 24B, 24C, 15) having a large aspect ratio are formed.
(A, 15B, 15C, 16A, 16B, 16C), the Al film 25 can be satisfactorily embedded.

【0041】その後、Al膜25上にスパッタ法でTi
N膜を堆積した後、図13に示すように、このTiN膜
およびAl膜25をパターニングして、第3層目の配線
25A,25B,25Cを形成する。配線25Aは、接
続孔24A,15A,16Aを通じて第2層目の配線2
0A、第1層目の配線10AおよびMOSFETQnの
半導体領域6Aにそれぞれ接続され、配線25Bは、接
続孔24B,15B,16Bを通じて第2層目の配線2
0B、第1層目の配線10BおよびMOSFETQn の
半導体領域6Bにそれぞれ接続され、配線25Cは、接
続孔24C,15C,16Cを通じてフィールド絶縁膜
3上のゲート電極5にそれぞれ接続される。なお、第3
層目の配線25A,25B,25C、第2層目の配線2
0A,20B,20C、第1層目の配線10A,10
B,10Cのそれぞれの一部は、必要に応じてダミー配
線で構成してもよい。
Thereafter, Ti is sputtered on the Al film 25.
After depositing the N film, as shown in FIG. 13, the TiN film and the Al film 25 are patterned to form third-layer wirings 25A, 25B, 25C. The wiring 25A is the wiring 2 of the second layer through the connection holes 24A, 15A, 16A.
0A, the wiring 10A of the first layer and the semiconductor region 6A of the MOSFET Qn, and the wiring 25B is connected to the wiring 2 of the second layer through the connection holes 24B, 15B and 16B.
0B, the wiring 10B of the first layer and the semiconductor region 6B of the MOSFET Qn, and the wiring 25C is connected to the gate electrode 5 on the field insulating film 3 through the connection holes 24C, 15C and 16C, respectively. The third
Wiring 25A, 25B, 25C of the second layer, wiring 2 of the second layer
0A, 20B, 20C, first layer wiring 10A, 10
Part of each of B and 10C may be configured with dummy wirings as needed.

【0042】上記した本実施例の製造方法によれば、従
来は3工程で行っていた接続孔(24A,24B,24
C)、接続孔(15A,15B)および接続孔(16
A,16B)の形成を1工程で行うことができるので、
Al3層配線を有するMOS・LSIの製造工程を大幅
に短縮して製造歩留りを向上させることができる。
According to the above-described manufacturing method of this embodiment, the connection holes (24A, 24B, 24) which have conventionally been formed in three steps are used.
C), connection holes (15A, 15B) and connection holes (16
A, 16B) can be formed in one step,
It is possible to significantly shorten the manufacturing process of a MOS / LSI having an Al3 layer wiring and improve the manufacturing yield.

【0043】(実施例3)前記実施例2では、第1層目
の層間絶縁膜12の接続孔15Aを第2層目の配線20
Aに対してセルフアラインで形成し、絶縁膜9の接続孔
16Aを第2層目の配線20Aおよび第1層目の配線1
0Aに対してセルフアラインで形成したが、例えば図1
4に示すように、第2層目の配線20A,20Dをマス
クにして層間絶縁膜12および絶縁膜9をエッチングす
ることにより、半導体領域6Aに達する接続孔26Aを
形成することもできる。
(Embodiment 3) In Embodiment 2, the connection hole 15A of the first-layer interlayer insulating film 12 is formed in the second-layer wiring 20.
A is formed in self-alignment with respect to A, and the connection hole 16A of the insulating film 9 is provided with the second layer wiring 20A and the first layer wiring 1
Although it was formed by self-alignment with respect to 0 A, for example, as shown in FIG.
As shown in FIG. 4, the connection hole 26A reaching the semiconductor region 6A can be formed by etching the interlayer insulating film 12 and the insulating film 9 using the second layer wirings 20A and 20D as a mask.

【0044】また、接続孔(24A,24B,24C,
26A,15B,15C,16C)の内部に前記実施例
2で説明した方法でAl膜25を埋め込んだ後、図14
に示すように、層間絶縁膜21上のAl膜25をエッチ
バックで除去し、次いで接続孔24A,24B,24C
のそれぞれの上部にバリアメタル27を介してバンプ電
極28A,28B,28Cを形成してもよい。この場
合、バンプ電極28A,28B,28Cの一部はダミー
のバンプ電極であってもよい。
Further, the connection holes (24A, 24B, 24C,
26A, 15B, 15C, 16C) and after the Al film 25 is embedded by the method described in the second embodiment, FIG.
, The Al film 25 on the interlayer insulating film 21 is removed by etching back, and then the connection holes 24A, 24B, 24C are removed.
The bump electrodes 28A, 28B, 28C may be formed on the respective upper portions of the above via the barrier metal 27. In this case, some of the bump electrodes 28A, 28B, 28C may be dummy bump electrodes.

【0045】以上、本発明者によってなされた発明を実
施例に基づき具体的に説明したが、本発明は前記実施例
に限定されるものではなく、その要旨を逸脱しない範囲
で種々変更可能であることはいうまでもない。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.

【0046】前記実施例では、Al2層配線およびAl
3層配線を有するLSIの製造に適用した例を説明した
が、4層またはそれ以上の配線層を有するLSIの製造
に適用することができる。
In the above embodiment, the Al two-layer wiring and the Al
Although the example applied to the manufacture of the LSI having the three-layer wiring has been described, the present invention can be applied to the manufacture of the LSI having the four or more wiring layers.

【0047】図15は、第2層目の配線30および第1
層目の配線31をエッチングのマスクにして、第3層目
の配線32からアクティブ領域33(例えばMOSFE
Tのソース領域、ドレイン領域)に達する接続孔34を
形成する場合の配線レイアウトの一例を示す平面図であ
り、この例では3層の配線30,31,32を同一方向
に延在している。これは、合わせ余裕がX,Yのいずれ
か一方向しか取れない場合に有効である。この場合、配
線30,31,32の一部はダミー配線であってもよ
い。
FIG. 15 shows the second-layer wiring 30 and the first wiring.
The wiring 31 of the third layer is used as an etching mask and the wiring 32 of the third layer to the active region 33 (eg, MOSFE
FIG. 6 is a plan view showing an example of a wiring layout in the case of forming a connection hole 34 reaching a source region and a drain region of T). In this example, three layers of wirings 30, 31, 32 extend in the same direction. . This is effective when the alignment margin can be taken in only one of X and Y directions. In this case, some of the wirings 30, 31, 32 may be dummy wirings.

【0048】図16は、X方向に延在する第4層目の配
線35および第3層目の配線32と、Y方向に延在する
第2層目の配線30および第1層目の配線31とでアク
ティブ領域33に達する接続孔34を形成する場合の配
線レイアウトの一例を示す平面図であり、この例では、
ゲート電極5とのショートを避けるために、第4層目の
配線35および第3層目の配線32をダミー配線で構成
している。これは、X,Y両方向の合わせ余裕が取れな
い場合に有効である。
FIG. 16 shows a fourth layer wiring 35 and a third layer wiring 32 extending in the X direction, and a second layer wiring 30 and a first layer wiring extending in the Y direction. 3 is a plan view showing an example of a wiring layout in the case of forming a connection hole 34 reaching the active region 33 with 31. In this example,
In order to avoid a short circuit with the gate electrode 5, the wiring 35 of the fourth layer and the wiring 32 of the third layer are dummy wirings. This is effective when there is no room for alignment in both the X and Y directions.

【0049】[0049]

【発明の効果】本願によって開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
以下の通りである。
The effects obtained by the typical ones of the inventions disclosed in this application will be briefly described as follows.
It is as follows.

【0050】(1)本発明によれば、上下層の配線を接
続する接続孔および下層配線と半導体素子とを接続する
接続孔を1工程で形成することができるので、多層配線
を有するLSIの製造工程を短縮して製造歩留りを向上
させることができる。
(1) According to the present invention, it is possible to form the connection hole for connecting the wirings in the upper and lower layers and the connection hole for connecting the lower layer wiring and the semiconductor element in one step. The manufacturing process can be shortened and the manufacturing yield can be improved.

【0051】(2)本発明によれば、接続孔の径が微細
な場合でも、十分な接触面積を確保してコンタクト抵抗
を低減することができるので、LSIの信頼性、製造歩
留まりを向上させることができる。
(2) According to the present invention, the contact resistance can be reduced and the contact resistance can be reduced even if the diameter of the connection hole is small, so that the reliability and the manufacturing yield of the LSI are improved. be able to.

【0052】(3)本発明によれば、デバイスの最小加
工寸法以下の径を有する接続孔を容易に形成することが
できるので、LSIの高集積化を促進することができ
る。
(3) According to the present invention, it is possible to easily form a connection hole having a diameter equal to or smaller than the minimum processing size of the device, so that it is possible to promote high integration of the LSI.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1である半導体集積回路装置の
製造方法を示す半導体基板の要部断面図である。
FIG. 1 is a cross-sectional view of essential parts of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device which is Embodiment 1 of the present invention.

【図2】本発明の実施例1である半導体集積回路装置の
製造方法を示す半導体基板の要部断面図である。
FIG. 2 is a fragmentary cross-sectional view of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device which is Embodiment 1 of the present invention.

【図3】本発明の実施例1である半導体集積回路装置の
製造方法を示す半導体基板の要部断面図である。
FIG. 3 is a cross-sectional view of essential parts of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device which is Embodiment 1 of the present invention.

【図4】本発明の実施例1である半導体集積回路装置の
製造方法を示す半導体基板の要部断面図である。
FIG. 4 is a fragmentary cross-sectional view of the semiconductor substrate showing the method for manufacturing the semiconductor integrated circuit device which is Embodiment 1 of the present invention.

【図5】本発明の実施例1である半導体集積回路装置の
製造方法を示す半導体基板の要部断面図である。
FIG. 5 is a fragmentary cross-sectional view of the semiconductor substrate showing the method for manufacturing the semiconductor integrated circuit device which is Embodiment 1 of the present invention.

【図6】本発明の実施例1である半導体集積回路装置の
製造方法を示す半導体基板の要部断面図である。
FIG. 6 is a fragmentary cross-sectional view of the semiconductor substrate showing the method for manufacturing the semiconductor integrated circuit device which is Embodiment 1 of the present invention.

【図7】本発明の実施例1である半導体集積回路装置の
製造方法を示す半導体基板の要部断面図である。
FIG. 7 is a fragmentary cross-sectional view of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device which is Embodiment 1 of the present invention.

【図8】本発明の実施例1である半導体集積回路装置の
製造方法を示す半導体基板の要部断面図である。
FIG. 8 is a fragmentary cross-sectional view of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device which is Embodiment 1 of the present invention.

【図9】本発明の実施例1である半導体集積回路装置の
製造方法を示す半導体基板の要部断面図である。
FIG. 9 is a main-portion cross-sectional view of the semiconductor substrate showing the manufacturing method of the semiconductor integrated circuit device which is Embodiment 1 of the present invention.

【図10】本発明の実施例2である半導体集積回路装置
の製造方法を示す半導体基板の要部断面図である。
FIG. 10 is a cross-sectional view of essential parts of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device which is Embodiment 2 of the present invention.

【図11】本発明の実施例2である半導体集積回路装置
の製造方法を示す半導体基板の要部断面図である。
FIG. 11 is a fragmentary cross-sectional view of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device which is Embodiment 2 of the present invention.

【図12】本発明の実施例2である半導体集積回路装置
の製造方法を示す半導体基板の要部断面図である。
FIG. 12 is a fragmentary cross-sectional view of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device which is Embodiment 2 of the present invention.

【図13】本発明の実施例2である半導体集積回路装置
の製造方法を示す半導体基板の要部断面図である。
FIG. 13 is a fragmentary cross-sectional view of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device which is Embodiment 2 of the present invention.

【図14】本発明の実施例3である半導体集積回路装置
の製造方法を示す半導体基板の要部断面図である。
FIG. 14 is a fragmentary cross-sectional view of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device which is Embodiment 3 of the present invention.

【図15】本発明の他の実施例である半導体集積回路装
置の製造方法を示す平面図である。
FIG. 15 is a plan view showing a method for manufacturing a semiconductor integrated circuit device which is another embodiment of the present invention.

【図16】本発明の他の実施例である半導体集積回路装
置の製造方法を示す平面図である。
FIG. 16 is a plan view showing a method for manufacturing a semiconductor integrated circuit device which is another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 ウエル 3 フィールド絶縁膜 4 ゲート絶縁膜 5 ゲート電極 6A 半導体領域 6B 半導体領域 7 サイドウォールスペーサ 8 キャップ絶縁膜 9 絶縁膜 10 メタル膜 10A 配線 10B 配線 10C 配線 10D 配線 11 フォトレジスト 12 層間絶縁膜 13A 開孔 13B 開孔 14 フォトレジスト 15A 接続孔 15B 接続孔 15C 接続孔 16A 接続孔 16B 接続孔 16C 接続孔 17 TiN/Ti膜 18 W膜 19A 配線 19B 配線 19C 配線 20A 配線 20B 配線 20C 配線 20D 配線 21 層間絶縁膜 22A 開孔 22B 開孔 22C 開孔 23 フォトレジスト 24A 接続孔 24B 接続孔 24C 接続孔 25 Al膜 25A 配線 25B 配線 25C 配線 26A 接続孔 27 バリアメタル 28A バンプ電極 28B バンプ電極 28C バンプ電極 30 配線 31 配線 32 配線 33 アクティブ領域 34 接続孔 35 配線 1 semiconductor substrate 2 well 3 field insulating film 4 gate insulating film 5 gate electrode 6A semiconductor region 6B semiconductor region 7 sidewall spacer 8 cap insulating film 9 insulating film 10 metal film 10A wiring 10B wiring 10C wiring 10D wiring 11 photoresist 12 interlayer insulation Film 13A Open hole 13B Open hole 14 Photoresist 15A Connection hole 15B Connection hole 15C Connection hole 16A Connection hole 16B Connection hole 16C Connection hole 17 TiN / Ti film 18 W Film 19A Wiring 19B Wiring 19C Wiring 20A Wiring 20B Wiring 20C Wiring 20D Wiring 21 Interlayer Insulating Film 22A Opening 22B Opening 22C Opening 23 Photoresist 24A Connection Hole 24B Connection Hole 24C Connection Hole 25 Al Film 25A Wiring 25B Wiring 25C Wiring 26A Connection Hole 27 Barrier Metal 28 Bump electrode 28B bump electrode 28C bump electrode 30 wiring 31 wiring 32 wiring 33 active area 34 connecting hole 35 wire

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の主面上に複数の配線層を備
えた半導体集積回路装置の製造方法であって、所定の配
線層を覆う第1の絶縁膜上に形成したフォトレジストを
マスクにしたエッチングで前記第1の絶縁膜に接続孔を
形成した後、前記フォトレジストと、一部を前記接続孔
と重なるように配置した前記配線層の配線とをマスクに
したエッチングで前記配線層よりも下層の第2の絶縁膜
に接続孔を形成することを特徴とする半導体集積回路装
置の製造方法。
1. A method of manufacturing a semiconductor integrated circuit device having a plurality of wiring layers on a main surface of a semiconductor substrate, wherein a photoresist formed on a first insulating film covering a predetermined wiring layer is used as a mask. After forming the connection hole in the first insulating film by the etching, the etching is performed by using the photoresist and the wiring of the wiring layer arranged so as to partially overlap the connection hole as a mask. A method of manufacturing a semiconductor integrated circuit device, which further comprises forming a connection hole in the second lower insulating film.
【請求項2】 請求項1記載の半導体集積回路装置の製
造方法であって、前記配線層の配線の一部をダミー配線
で構成することを特徴とする半導体集積回路装置の製造
方法。
2. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein a part of the wiring of the wiring layer is formed by a dummy wiring.
【請求項3】 請求項1または2記載の半導体集積回路
装置の製造方法であって、前記フォトレジストの開孔部
の一端と前記配線層の配線の一端との水平方向の距離を
露光光の解像度以下の寸法とすることを特徴とする半導
体集積回路装置の製造方法。
3. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein a horizontal distance between one end of the opening portion of the photoresist and one end of the wiring of the wiring layer is set to a value of the exposure light. A method for manufacturing a semiconductor integrated circuit device, which is characterized in that the dimensions are equal to or less than the resolution.
【請求項4】 請求項1記載の半導体集積回路装置の製
造方法であって、前記第1および第2の絶縁膜に前記接
続孔を形成した後、前記接続孔の内部にCVD法でTi
N/Ti膜を堆積することを特徴とする半導体集積回路
装置の製造方法。
4. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein after forming the connection hole in the first and second insulating films, Ti is formed inside the connection hole by a CVD method.
A method for manufacturing a semiconductor integrated circuit device, comprising depositing an N / Ti film.
【請求項5】 請求項1記載の半導体集積回路装置の製
造方法であって、前記第1および第2の絶縁膜に前記接
続孔を形成した後、前記半導体基板の全面に堆積した導
電膜をエッチバックすることにより、前記接続孔の内部
に前記導電膜を埋め込むことを特徴とする半導体集積回
路装置の製造方法。
5. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein after forming the connection hole in the first and second insulating films, a conductive film deposited on the entire surface of the semiconductor substrate is formed. A method of manufacturing a semiconductor integrated circuit device, wherein the conductive film is embedded in the connection hole by etching back.
【請求項6】 請求項1記載の半導体集積回路装置の製
造方法であって、前記第1および第2の絶縁膜に前記接
続孔を形成した後、前記半導体基板を高温に加熱した状
態でその全面にAl膜を堆積することにより、前記接続
孔の内部に前記Al膜を埋め込むことを特徴とする半導
体集積回路装置の製造方法。
6. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein after the connection holes are formed in the first and second insulating films, the semiconductor substrate is heated to a high temperature. A method of manufacturing a semiconductor integrated circuit device, comprising: depositing an Al film on the entire surface to embed the Al film inside the connection hole.
【請求項7】 請求項1記載の半導体集積回路装置の製
造方法であって、前記第1および第2の絶縁膜に前記接
続孔を形成した後、前記半導体基板の全面にAl膜を堆
積し、次いで前記半導体基板を高圧雰囲気中で高温に加
熱することにより、前記接続孔の内部に前記Al膜を埋
め込むことを特徴とする半導体集積回路装置の製造方
法。
7. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein after forming the connection holes in the first and second insulating films, an Al film is deposited on the entire surface of the semiconductor substrate. Then, by heating the semiconductor substrate to a high temperature in a high-pressure atmosphere, the Al film is embedded in the inside of the connection hole, thereby manufacturing a semiconductor integrated circuit device.
【請求項8】 請求項1〜7のいずれか1項に記載の半
導体集積回路装置の製造方法であって、前記第1および
第2の絶縁膜に前記接続孔を形成した後、前記接続孔の
上部にバンプ電極を形成することを特徴とする半導体集
積回路装置の製造方法。
8. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein the connection hole is formed in the first and second insulating films, and then the connection hole is formed. A method of manufacturing a semiconductor integrated circuit device, comprising forming a bump electrode on the upper part of the substrate.
JP7009413A 1995-01-25 1995-01-25 Manufacturing method for semiconductor integrated circuit device Pending JPH08204002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7009413A JPH08204002A (en) 1995-01-25 1995-01-25 Manufacturing method for semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7009413A JPH08204002A (en) 1995-01-25 1995-01-25 Manufacturing method for semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH08204002A true JPH08204002A (en) 1996-08-09

Family

ID=11719711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7009413A Pending JPH08204002A (en) 1995-01-25 1995-01-25 Manufacturing method for semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH08204002A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034436A (en) * 1996-11-28 2000-03-07 Nec Corporation Semiconductor device having an improved through-hole structure
JP2008072044A (en) * 2006-09-15 2008-03-27 Nec Electronics Corp Semiconductor device and method of manufacturing the same
JP2009037115A (en) * 2007-08-03 2009-02-19 Sony Corp Semiconductor device, its manufacturing method, and display device
JP2009302372A (en) * 2008-06-16 2009-12-24 Nec Electronics Corp Semiconductor device
JP2012182428A (en) * 2011-02-09 2012-09-20 Canon Inc Method of manufacturing semiconductor device and semiconductor wafer
JP2012231148A (en) * 2012-06-04 2012-11-22 Sony Corp Semiconductor device, method of manufacturing the same, and display apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034436A (en) * 1996-11-28 2000-03-07 Nec Corporation Semiconductor device having an improved through-hole structure
JP2008072044A (en) * 2006-09-15 2008-03-27 Nec Electronics Corp Semiconductor device and method of manufacturing the same
JP2009037115A (en) * 2007-08-03 2009-02-19 Sony Corp Semiconductor device, its manufacturing method, and display device
US9053985B2 (en) 2007-08-03 2015-06-09 Sony Corporation Semiconductor device having a contact pattern electrically connecting at least three conductive layers
JP2009302372A (en) * 2008-06-16 2009-12-24 Nec Electronics Corp Semiconductor device
JP2012182428A (en) * 2011-02-09 2012-09-20 Canon Inc Method of manufacturing semiconductor device and semiconductor wafer
JP2012231148A (en) * 2012-06-04 2012-11-22 Sony Corp Semiconductor device, method of manufacturing the same, and display apparatus

Similar Documents

Publication Publication Date Title
US6989577B2 (en) Semiconductor device having multiple insulation layers
JPH06125013A (en) Semiconductor device and its manufacture
JP3590034B2 (en) Semiconductor capacitive element and manufacturing method thereof
US6876565B2 (en) Semiconductor memory device
JP3917683B2 (en) Semiconductor integrated circuit device
KR100460771B1 (en) Method of fabricating multi-level interconnects by dual damascene process
JP2001135723A (en) Semiconductor device and method of manufacturing the same
JPH08204002A (en) Manufacturing method for semiconductor integrated circuit device
JP2000323570A (en) Semiconductor device and manufacture thereof
US6399471B1 (en) Assorted aluminum wiring design to enhance chip-level performance for deep sub-micron application
KR100249779B1 (en) Method for forming a multi-metal interconnection in semiconductor device
JPH04313256A (en) Semiconductor integrated circuit device and its manufacture
JPH10340953A (en) Semiconductor device
JPS59195844A (en) Manufacture of semiconductor device
KR100230731B1 (en) Contact structure of semiconductor device and process for fabricating the same
JPH07135252A (en) Manufacture of semiconductor integrated circuit device
JPH0936229A (en) Semiconductor integrated circuit device and its manufacture
JPH0945767A (en) Semiconductor integrated circuit device and its manufacture
KR100356482B1 (en) Method of forming a metal wiring in a semiconductor device
JP2002083867A (en) Semiconductor device and production method therefor
KR940011731B1 (en) Forming method of contact hole
JPH10173051A (en) Wiring forming method
JPH0817923A (en) Semiconductor integrated circuit device and its manufacture
KR100452315B1 (en) Method for fabricating semiconductor device to prevent contact resistance from being increased in via hole
KR100728945B1 (en) A method for fabricating metal line