JPH04297001A - Electroless ni-re-p alloy thin-film resistor - Google Patents

Electroless ni-re-p alloy thin-film resistor

Info

Publication number
JPH04297001A
JPH04297001A JP3062204A JP6220491A JPH04297001A JP H04297001 A JPH04297001 A JP H04297001A JP 3062204 A JP3062204 A JP 3062204A JP 6220491 A JP6220491 A JP 6220491A JP H04297001 A JPH04297001 A JP H04297001A
Authority
JP
Japan
Prior art keywords
electroless
alloy thin
thin film
resistance
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3062204A
Other languages
Japanese (ja)
Other versions
JP2866486B2 (en
Inventor
Tetsuya Aisaka
哲彌 逢坂
Jun Kawaguchi
純 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Nihon Parkerizing Co Ltd
Original Assignee
Waseda University
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Nihon Parkerizing Co Ltd filed Critical Waseda University
Priority to JP3062204A priority Critical patent/JP2866486B2/en
Publication of JPH04297001A publication Critical patent/JPH04297001A/en
Application granted granted Critical
Publication of JP2866486B2 publication Critical patent/JP2866486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To provide an alloy thin-film resistor through an electroless method stably maintained up to temperatures having high specific resistance value and temperature resistance coefficient and high resistivity and temperature resistance coefficient. CONSTITUTION:An Ni-Re-P alloy thin-film having 5-75wt.% rhenium content and 1-14% phosphorus content is formed onto a base material through an electroless plating method.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、金属・セラミックス・
合成樹脂等で形成された基材表面を覆う無電解Ni−R
e−P合金により作製された、極めて高い比抵抗と低い
温度抵抗係数(TCR)を有し、しかもこれらの電気抵
抗特性が極めて高温まで安定に維持する薄膜抵抗体に関
するものである。
[Industrial Application Field] The present invention is applicable to metals, ceramics,
Electroless Ni-R covering the surface of a base material made of synthetic resin etc.
The present invention relates to a thin film resistor made of an e-P alloy, which has an extremely high specific resistance and a low temperature coefficient of resistance (TCR), and which maintains these electrical resistance characteristics stably up to extremely high temperatures.

【0002】0002

【従来の技術】無電解めっき法により作製されたりん含
有量5〜15重量%のNi−P合金薄膜は、微結晶、な
いしはアモルファス層で形成されており、比較的高い比
抵抗と低い温度抵抗係数(以下TCRと称する)を有す
ることから、金属薄膜型の電気抵抗材料として断続通電
用部品(ディスクリート部品)やハイブリッドIC等に
利用されている。ただし、この良好な電気抵抗特性はN
i−P合金の微結晶構造、ないしはアモルファス構造に
より得られており、これらの構造は熱力学的に準安定状
態なので耐熱性に劣るという欠点を有する。これは、抵
抗材料自体が本質的に発熱部品であること、しかもその
製造工程、組み付け工程には必ずといってよいほど加熱
過程が存在することを考慮すると極めて重要な問題であ
る。
[Prior Art] A Ni-P alloy thin film with a phosphorus content of 5 to 15% by weight, produced by electroless plating, is formed of a microcrystalline or amorphous layer, and has a relatively high specific resistance and low temperature resistance. Because it has a coefficient (hereinafter referred to as TCR), it is used as a metal thin film type electrical resistance material in intermittent energizing parts (discrete parts), hybrid ICs, etc. However, this good electrical resistance property is
It is obtained by the microcrystalline structure or amorphous structure of the i-P alloy, and since these structures are thermodynamically metastable, they have the disadvantage of poor heat resistance. This is an extremely important problem considering that the resistive material itself is essentially a heat-generating component and that its manufacturing and assembly processes almost always include a heating process.

【0003】この問題に対処する方法として、第3元素
としてW、Moなどの高融点金属をNi−P合金に共析
させることが検討されてきた。例えば、無電解Ni−1
3重量%P合金薄膜では比抵抗140μΩcm、TCR
118ppm/℃の特性を高々300℃までしか維持で
きないが、Wを共析させた無電解Ni−20重量%W−
6重量%P合金薄膜ではより高い比抵抗190μΩcm
、およびより低いTCR56ppm/℃を有し、しかも
これらの特性を約400℃まで維持することができる。 さらに、Moを共析させた無電解Ni−19重量%Mo
−1重量%P合金薄膜では、比抵抗150μΩcm、T
CR130ppm/℃の特性を約500℃まで維持する
ことができる(抵抗特性の絶対値はNi−W−P合金よ
り劣る)。なお、これらのデータの詳細については、「
逢坂,小岩,川口; 表面技術, 40. 807 (
1989)」等の文献に記載されている。
[0003] As a method to deal with this problem, studies have been made to eutectoid a high melting point metal such as W or Mo as a third element into the Ni-P alloy. For example, electroless Ni-1
3 wt% P alloy thin film has specific resistance of 140μΩcm, TCR
Although the property of 118 ppm/°C can only be maintained up to 300°C, electroless Ni with W eutectoid-20 wt% W-
6 wt% P alloy thin film has higher specific resistance of 190μΩcm
, and a lower TCR of 56 ppm/°C, yet can maintain these properties up to about 400°C. Furthermore, electroless Ni-19% by weight Mo eutectoid
-1 wt% P alloy thin film has a specific resistance of 150 μΩcm, T
A characteristic of CR 130 ppm/° C. can be maintained up to about 500° C. (the absolute value of the resistance characteristic is inferior to that of the Ni-W-P alloy). For details on these data, see
Osaka, Koiwa, Kawaguchi; Surface technology, 40. 807 (
1989).

【0004】ただし、これらの無電解めっき法により作
製された薄膜抵抗材料を、通常の金属薄膜型抵抗材料と
比較するとTCRがやや劣ることがわかる(表1)。さ
らに、一般に金属材料は薄膜化することにより比抵抗が
上昇し、TCRが減少することが知られているので(L
.I.Maissel and R.Glang; ”
Handbook of Thin FilmTech
nology”, p.18−6 (McGraw−H
ill, 1970) 等)、表1に示した金属抵抗材
料が実際には真空蒸着やスパッタリングなどの乾式成膜
法を用いて作製されていることを考慮すると、表1に示
す以上の特性を発現することも可能である。これに対し
、無電解めっき法などの湿式成膜法は、乾式成膜法に比
較して、コスト・量産性において優れるものの、極薄膜
領域での膜厚や物性が不安定であるために、薄膜化する
ことにより抵抗特性の向上を期待するのは困難である。 従って、無電解めっき法による薄膜抵抗材料は、その用
途が比較的抵抗値の低い領域、TCRが高くても許容さ
れる領域に限定されているのが現状である。
However, when comparing the thin film resistance materials produced by these electroless plating methods with the usual metal thin film type resistance materials, it is found that the TCR is slightly inferior (Table 1). Furthermore, it is generally known that as metal materials become thinner, their specific resistance increases and TCR decreases (L
.. I. Maissel and R. ”
Handbook of Thin FilmTech
p. 18-6 (McGraw-H
Ill, 1970), etc.), and considering that the metal resistance materials shown in Table 1 are actually produced using dry film formation methods such as vacuum evaporation and sputtering, it is possible that the metal resistance materials shown in Table 1 exhibit characteristics that exceed those shown in Table 1. It is also possible to do so. On the other hand, wet film formation methods such as electroless plating are superior in terms of cost and mass production compared to dry film formation methods, but the film thickness and physical properties are unstable in the ultra-thin film region. It is difficult to expect improvements in resistance characteristics by making the film thinner. Therefore, the current situation is that the use of thin film resistive materials produced by electroless plating is limited to areas where the resistance value is relatively low and where a high TCR is acceptable.

【0005】[0005]

【表1】[Table 1]

【0006】[0006]

【本発明が解決しようとする課題】しかるに、無電解め
っき法の低コストで、しかも量産性に優れるという長所
を活かしつつ、かつ高抵抗領域、高精密領域にその用途
を広げるためには以下に述べる特性を満足することが課
題となる。 イ.より比抵抗値の高い材料を開発すること。 ロ.より温度抵抗係数(TCR)の低い材料を開発する
こと。 ハ.これらの比抵抗値、TCRがより高い温度まで安定
に維持されること。
[Problems to be solved by the present invention] However, in order to take advantage of the advantages of electroless plating, such as low cost and excellent mass productivity, and to expand its application to high resistance and high precision areas, the following steps are required. The challenge is to satisfy the stated characteristics. stomach. Developing materials with higher specific resistance values. B. Developing materials with lower temperature coefficient of resistance (TCR). C. These resistivity values and TCR should be maintained stably up to higher temperatures.

【0007】[0007]

【課題を解決するための手段および作用】本発明はかか
る技術的背景の下に創案されたものであり、極めて高い
比抵抗と低いTCRを有し、しかもこれらの電気抵抗特
性が極めて高い温度まで安定に維持することが可能な無
電解Ni系合金薄膜抵抗材料の開発を目的としたもので
ある。そして、この目的はNi−P合金に対し、W・M
oと並ぶ高融点金属であるレニウム(以下Reと称する
)を第3元素として共析させた無電解Ni−Re−P合
金を作製することにより達成される。
[Means and effects for solving the problems] The present invention was created based on the above technical background, and has an extremely high specific resistance and a low TCR, and furthermore, these electrical resistance characteristics are maintained even at extremely high temperatures. The purpose is to develop an electroless Ni-based alloy thin film resistance material that can be stably maintained. And, this purpose is for Ni-P alloy, W.M.
This is achieved by producing an electroless Ni-Re-P alloy in which rhenium (hereinafter referred to as Re), which is a metal with a high melting point along with o, is eutectoid as a third element.

【0008】本発明者らは、無電解Ni−P合金に対す
るReの共析、並びにこれにより作製された無電解Ni
−Re−P合金薄膜の熱変化挙動に関する研究を行った
。Reの共析は従来の無電解めっき浴に対し、過レニウ
ム酸アンモニウムを添加することにより行ったが、めっ
き浴を最適化することによりReについては0〜75重
量%、Pについては0〜16重量%の範囲で共析が可能
となった。これはWの最大共析量20重量%(I.Ko
iwa, M.Usuda and T.Osaka;
 J.Electrochem.Soc., 135,
 1222 (1988)等)、Moの最大共析量22
重量%(I.Koiwa, M.Usuda,K. Y
amada and T.Osaka; J.Elec
trochem.Soc., 135, 718 (1
988) 等)と比較すると飛躍的な共析量と言うこと
ができる。以下、これらの無電解Ni−Re−P合金薄
膜の電気抵抗特性とそれらの加熱による変化について概
説する。
[0008] The present inventors have discovered the eutectoid of Re in an electroless Ni-P alloy, and the electroless Ni produced thereby.
A study was conducted on the thermal change behavior of -Re-P alloy thin films. Co-deposition of Re was performed by adding ammonium perrhenate to a conventional electroless plating bath, but by optimizing the plating bath, Re was 0 to 75% by weight and P was 0 to 16% by weight. Co-deposition became possible within the range of weight %. This is the maximum eutectoid amount of W of 20% by weight (I.Ko
iwa, M. Usuda and T. Osaka;
J. Electrochem. Soc. , 135,
1222 (1988), etc.), maximum eutectoid amount of Mo22
Weight% (I. Koiwa, M. Usuda, K.Y.
amada and T. Osaka; J. Elec
trochem. Soc. , 135, 718 (1
988), etc.), it can be said that this is a dramatic amount of eutectoid. The electrical resistance characteristics of these electroless Ni-Re-P alloy thin films and their changes due to heating will be summarized below.

【0009】無電解Ni−Re−P合金薄膜は、薄膜中
のRe含有量が大きければ大きいほど高い比抵抗を有す
るが、60重量%を境にその性質が大きく2つに分類さ
れる。イ.Re含有量60重量%以下の場合Re含有量
の増加とともに比抵抗は徐々に上昇し、例えばRe含有
量45重量%のとき比抵抗は約150μΩcmとなり、
通常の無電解Ni−P系合金薄膜と同様の値を示し、6
0重量%になると比抵抗は約350μΩcmと極めて高
い値を示す。また、TCRは負の値ではあるが、それぞ
れ−30〜−35ppm/℃と通常のNi−P系合金に
比較するとその絶対値は明らかに低い。また、これらの
皮膜に熱処理を施すと比抵抗値は温度の上昇にともない
徐々に減少するが、500℃までは通常のNi−P系合
金より優れた値を示す。しかも、TCRはむしろ熱処理
を施した方が、その絶対値は低く、10〜20ppm/
℃と極めて良好な値を示す。従って、精密用途に用いる
場合や、高温で使用する場合は熱処理を施すことが推奨
される。
The electroless Ni-Re-P alloy thin film has a higher resistivity as the Re content in the thin film increases, but its properties can be broadly classified into two categories at 60% by weight. stomach. When the Re content is 60% by weight or less, the specific resistance gradually increases as the Re content increases. For example, when the Re content is 45% by weight, the specific resistance is about 150 μΩcm,
It shows the same value as a normal electroless Ni-P alloy thin film, and 6
At 0% by weight, the specific resistance shows an extremely high value of about 350 μΩcm. Further, although the TCR is a negative value, the absolute value is clearly lower than that of a normal Ni-P alloy, which is -30 to -35 ppm/°C. Furthermore, when these films are subjected to heat treatment, the resistivity value gradually decreases as the temperature rises, but up to 500°C they show a value superior to that of ordinary Ni-P alloys. Moreover, the absolute value of TCR is lower when heat treatment is applied, 10 to 20 ppm/
℃, which shows an extremely good value. Therefore, heat treatment is recommended when using for precision purposes or when using at high temperatures.

【0010】ロ.Re含有量60重量%を超える場合こ
の領域では薄膜中のRe含有量が増加すると、比抵抗は
指数関数的に増加し、最大約3600μΩcmにもなる
。通常の無電解めっき皮膜でこのような大きな比抵抗を
示す場合には、めっき時の内部応力による皮膜の割れや
、酸化物の形成などが考えられるが、走査型電子顕微鏡
(SEM)やX線光電子分光法(XPS)などによる観
察によればこれらのような異常はみられなかった。現在
のところこの原因は不明であるが、めっき時に発生する
ガス等が吸着し、絶縁層を形成したものと考えられる。 事実、この領域の薄膜はTCRが−60〜−150pp
m/℃と大きく負の値を示し、半導体的な性質を示唆し
ている。しかも、この領域の皮膜の比抵抗値は高々10
0〜200℃での加熱で急激に400μΩcm程度まで
減少してしまうのでそのままでは使用できない。これに
対して200〜500℃で熱処理を施すことにより安定
化することができる。
B. When the Re content exceeds 60% by weight, in this region, as the Re content in the thin film increases, the specific resistance increases exponentially and reaches a maximum of about 3600 μΩcm. If a normal electroless plated film exhibits such a large resistivity, it may be due to cracking of the film due to internal stress during plating or the formation of oxides. According to observation using photoelectron spectroscopy (XPS), etc., no abnormalities like these were observed. The cause of this is currently unknown, but it is thought that gases generated during plating were adsorbed and formed an insulating layer. In fact, thin films in this region have a TCR of -60 to -150pp.
It shows a large negative value of m/°C, suggesting semiconducting properties. Moreover, the specific resistance value of the film in this region is at most 10
When heated at 0 to 200°C, the resistance rapidly decreases to about 400 μΩcm, so it cannot be used as is. On the other hand, it can be stabilized by heat treatment at 200 to 500°C.

【0011】イ.の領域の皮膜と比較すると、同じ温度
で熱処理した場合の比抵抗は、ロ.の領域の方が大きな
値を示すので、高比抵抗でかつ高温まで安定であること
が必要な場合はロ.の領域の皮膜を熱処理して用いるべ
きである。TCRについてはイ.と同様、熱処理を施す
ことにより±20ppm/℃程度になり、極めて良好な
値を示す。
[0011]B. Compared to the film in the region of , the resistivity when heat treated at the same temperature is . Since the value is larger in the region of , if high resistivity and stability up to high temperatures are required, choose region . The film in the area should be heat treated before use. Regarding TCR, see i. Similarly, by applying heat treatment, the value becomes about ±20 ppm/°C, which is an extremely good value.

【0012】以上のことより、無電解Ni−Re−P合
金薄膜抵抗体は従来の無電解Ni−P系合金薄膜抵抗体
に比較して、全てにおいて極めて良好な電気抵抗特性を
有することがわかる。しかし、これらの良好な電気抵抗
特性は他のNi−P系合金薄膜同様、皮膜構造が非晶質
であることにより説明できる。前述のイ,ロの組成領域
全てについて、X線回折(XRD)や電子線回折(TH
EED)による構造解析を行うと、500℃まで熱処理
しても非晶質状態が維持されていることがわかる。
From the above, it can be seen that the electroless Ni-Re-P alloy thin film resistor has extremely good electrical resistance characteristics in all respects compared to the conventional electroless Ni-P alloy thin film resistor. . However, these good electrical resistance characteristics can be explained by the fact that the film structure is amorphous like other Ni-P alloy thin films. X-ray diffraction (XRD) and electron beam diffraction (TH
Structural analysis by EED) shows that the amorphous state is maintained even after heat treatment up to 500°C.

【0013】例えば、無電解Ni−P合金薄膜では30
0℃、無電解Ni−W−P合金薄膜では400℃で非晶
質状態が失われるので、Reは非晶質状態を極めて安定
化する効果を有するといえる。これは先に述べたように
、ReはW、Mo等に比較してその共析量が極めて大き
く、これがその一因となっているのであろう。一方、無
電解Ni−Mo−P合金薄膜では適度に熱処理を施すこ
とによりNi−Re−P合金薄膜同様500℃までの熱
的安定性を有するが、この皮膜は一部意識的に結晶質層
を形成させることにより熱的安定化を図っているので、
結晶質部分が金属的な電気物性を示すので抵抗特性がや
や劣る(比抵抗が低く、TCRが高い)。
For example, in an electroless Ni-P alloy thin film, 30
Since an electroless Ni-W-P alloy thin film at 0°C loses its amorphous state at 400°C, it can be said that Re has the effect of extremely stabilizing the amorphous state. This is probably due to the fact that, as mentioned earlier, Re has an extremely large eutectoid amount compared to W, Mo, etc. On the other hand, the electroless Ni-Mo-P alloy thin film has thermal stability up to 500°C like the Ni-Re-P alloy thin film by applying appropriate heat treatment. Thermal stabilization is achieved by forming
Since the crystalline portion exhibits metallic electrical properties, the resistance characteristics are somewhat inferior (low specific resistance, high TCR).

【0014】本発明で対象とする無電解Ni−Re−P
合金薄膜抵抗体の好適なるRe含有量は5〜75重量%
、P含有量1〜14重量%である。しかし、不純物とし
て微量のCo、Cu、Cr、Fe等の金属元素が薄膜中
に共存しても支障はない。また、他の無電解Ni系薄膜
抵抗材料では、実際の使用において安定化のための熱処
理を施されていることを考慮すると、本発明による無電
解Ni−Re−P合金薄膜抵抗体においても、より精密
で、より高い熱的安定性を要求するために200〜50
0℃の温度で熱処理(例えば1時間程度)することが推
奨される。特に、Re含有量60重量%以上の抵抗体で
はこの熱処理は不可欠である。
Electroless Ni-Re-P targeted by the present invention
The preferred Re content of the alloy thin film resistor is 5 to 75% by weight.
, P content is 1 to 14% by weight. However, there is no problem even if trace amounts of metal elements such as Co, Cu, Cr, and Fe coexist in the thin film as impurities. Furthermore, considering that other electroless Ni-based thin film resistance materials are subjected to heat treatment for stabilization in actual use, the electroless Ni-Re-P alloy thin film resistor according to the present invention also has 200-50 for more precision and requiring higher thermal stability
It is recommended to perform heat treatment at a temperature of 0° C. (for example, for about 1 hour). In particular, this heat treatment is essential for resistors with a Re content of 60% by weight or more.

【0015】[0015]

【実施例】(実施例1)<Ni−45重量%Re−6重
量%P合金薄膜形成> 96%α−アルミナセラミックスを基板として用い、無
電解Ni−Re−P合金薄膜抵抗体を作製した。
[Example] (Example 1) <Formation of Ni-45wt% Re-6wt%P alloy thin film> An electroless Ni-Re-P alloy thin film resistor was produced using 96% α-alumina ceramics as a substrate. .

【0016】無電解Ni−Re−P合金薄膜抵抗体製造
工程は以下の通りである。 イ.脱脂…セラミックス基板を常温でエタノール中に浸
漬し、10分間超音波洗浄を施した。 ロ.活性化、水洗…SnCl2(1g/l)、36%H
Cl(1ml/l)水溶液に1分間浸漬(常温)した後
、脱イオン水洗を行った。 ハ.触媒化…PdCl2(0.1g/l)、36%HC
l(0.1ml/l)水溶液中に1分間浸漬(常温)し
た後、脱イオン水洗を行った。 ニ.反復処理…前記ロ、ハの処理を再度行った。 ホ.無電解めっき、水洗…前記処理後のセラミックス基
板を無電解Ni−Re−P合金めっき浴中に浸漬し、R
e含有量45重量%、P含有量6重量%、膜厚1.5μ
mのNi−Re−P合金皮膜を得た後、脱イオン水洗を
行い熱風にて乾燥した。めっき浴組成は以下に示す通り
である。なお、膜厚の調整は処理時間の選択によって行
われる。         NaH2PO2・H2O      
         0.10   mol/L    
    Na3C6H5O7・2H2O       
    0.40   mol/L        N
iSO4・6H2O                
0.075 mol/L        NH4ReO
4                      0.
005 mol/L *注:NaOH、H2SO4によりpHを9.0に調整
した。めっき浴温度は90℃とした。
The manufacturing process of the electroless Ni-Re-P alloy thin film resistor is as follows. stomach. Degreasing: The ceramic substrate was immersed in ethanol at room temperature and subjected to ultrasonic cleaning for 10 minutes. B. Activation, water washing...SnCl2 (1g/l), 36%H
After being immersed in a Cl (1 ml/l) aqueous solution for 1 minute (at room temperature), it was washed with deionized water. C. Catalysis...PdCl2 (0.1g/l), 36%HC
1 (0.1 ml/l) aqueous solution for 1 minute (at room temperature), and then washed with deionized water. D. Repetitive processing: The above-mentioned processes B and C were performed again. Ho. Electroless plating, water washing...The ceramic substrate after the above treatment is immersed in an electroless Ni-Re-P alloy plating bath, and R
E content 45% by weight, P content 6% by weight, film thickness 1.5μ
After obtaining a Ni-Re-P alloy film of m, it was washed with deionized water and dried with hot air. The plating bath composition is as shown below. Note that the film thickness is adjusted by selecting the processing time. NaH2PO2・H2O
0.10 mol/L
Na3C6H5O7・2H2O
0.40 mol/L N
iSO4・6H2O
0.075 mol/L NH4ReO
4 0.
005 mol/L *Note: pH was adjusted to 9.0 with NaOH and H2SO4. The plating bath temperature was 90°C.

【0017】抵抗特性の評価 イ.比抵抗値は4探針直流法により測定した。 ロ.TCRは冷凍器付恒温槽中において−60〜70℃
の温度範囲で温度に対する抵抗変化を測定し、その時の
温度−抵抗直線の傾きを25℃における抵抗値で除算し
て求めた。 ハ.加熱に対する皮膜の安定性は、真空熱処理炉にて2
00、300、400、500、600、700、80
0℃の各温度で1時間熱処理した後の皮膜について、イ
.ロで述べた比抵抗、TCRを測定することにより評価
した。
Evaluation of resistance characteristics a. The specific resistance value was measured by a four-probe direct current method. B. TCR is -60 to 70℃ in a constant temperature bath with a refrigerator.
The resistance change with respect to temperature was measured in the temperature range of , and the slope of the temperature-resistance line at that time was divided by the resistance value at 25°C. C. The stability of the film against heating is 2.
00, 300, 400, 500, 600, 700, 80
Regarding the film after heat treatment at each temperature of 0°C for 1 hour, a. The evaluation was made by measuring the specific resistance and TCR described in (b).

【0018】(実施例2)  Ni−60重量%Re−
3重量%P合金薄膜形成 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっき浴のNH4ReO4を0.01mol
/L とすることにより、Re含有量60重量%、P含
有量3重量%なる無電解Ni−Re−P合金薄膜抵抗体
を得た。また、抵抗特性の評価方法も実施例1と同様の
方法を用いた。加えて、500℃で1時間熱処理するこ
とにより十分に安定化させた皮膜を作製し、真空炉中で
加熱過程の抵抗変化を連続的に測定(昇温速度:10℃
/分)することにより、より実際的に熱的安定性を立証
した。
(Example 2) Ni-60% by weight Re-
Formation of 3 wt% P alloy thin film A sample was prepared basically in the same manner as in Example 1. However, 0.01 mol of NH4ReO4 in the electroless plating bath
/L, an electroless Ni-Re-P alloy thin film resistor having a Re content of 60% by weight and a P content of 3% by weight was obtained. Furthermore, the same method as in Example 1 was used for evaluating the resistance characteristics. In addition, a sufficiently stabilized film was prepared by heat treatment at 500°C for 1 hour, and the resistance change during the heating process was continuously measured in a vacuum furnace (heating rate: 10°C).
/min) to demonstrate thermal stability more practically.

【0019】(実施例3)  Ni−70重量%Re−
2重量%P合金薄膜形成 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっき浴のNH4ReO4を0.02mol
/L とすることにより、Re含有量70重量%、P含
有量2重量%なる無電解Ni−Re−P合金薄膜抵抗体
を得た。また、抵抗特性の評価方法も実施例1と同様の
方法を用いた。
(Example 3) Ni-70% by weight Re-
Formation of 2 wt% P alloy thin film A sample was prepared basically in the same manner as in Example 1. However, 0.02 mol of NH4ReO4 in the electroless plating bath
/L, an electroless Ni-Re-P alloy thin film resistor having a Re content of 70% by weight and a P content of 2% by weight was obtained. Furthermore, the same method as in Example 1 was used for evaluating the resistance characteristics.

【0020】(実施例4)  Ni−75重量%Re−
1重量%P合金薄膜形成 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっき浴のNH4ReO4を0.03mol
/L とすることにより、Re含有量75重量%、P含
有量1重量%なる無電解Ni−Re−P合金薄膜抵抗体
を得た。また、抵抗特性の評価方法も実施例1と同様の
方法を用いた。
(Example 4) Ni-75% by weight Re-
Formation of 1 wt % P alloy thin film A sample was prepared basically in the same manner as in Example 1. However, 0.03 mol of NH4ReO4 in the electroless plating bath
/L, an electroless Ni-Re-P alloy thin film resistor having a Re content of 75% by weight and a P content of 1% by weight was obtained. Furthermore, the same method as in Example 1 was used for evaluating the resistance characteristics.

【0021】(比較例1)  Ni−15重量%P合金
薄膜形成 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっきは以下に示す浴を用いて行い、P含有
量15重量%なる無電解Ni−P合金薄膜抵抗体を得た
。また、抵抗特性の評価方法は実施例1と同様の方法を
用いた。ただし、熱処理温度は300℃のみとした。         NaH2PO2・H2O      
         0.15   mol/L    
  (NH4)2SO4              
        0.50   mol/L     
   Na3C6H5O7・2H2O        
   0.20   mol/L        Ni
SO4・6H2O                0
.10   mol/L *注:NaOHによりpHを6.0に調整した。めっき
浴温度は90℃とした。
(Comparative Example 1) Formation of Ni-15% by weight P alloy thin film A sample was prepared basically in the same manner as in Example 1. However, electroless plating was performed using the bath shown below to obtain an electroless Ni--P alloy thin film resistor with a P content of 15% by weight. Furthermore, the same method as in Example 1 was used to evaluate the resistance characteristics. However, the heat treatment temperature was only 300°C. NaH2PO2・H2O
0.15 mol/L
(NH4)2SO4
0.50 mol/L
Na3C6H5O7・2H2O
0.20 mol/L Ni
SO4・6H2O 0
.. 10 mol/L *Note: pH was adjusted to 6.0 with NaOH. The plating bath temperature was 90°C.

【0022】(比較例2)  Ni−20重量W−6重
量%P合金薄膜形成 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっきは以下に示す浴を用いて行い、W含有
量20重量%、P含有量6重量%なる無電解Ni−W−
P合金薄膜抵抗体を得た。また、抵抗特性の評価方法は
実施例1と同様の方法を用いた。ただし、熱処理温度は
400℃のみとした。また、この皮膜を400℃にて1
時間熱処理することにより安定化させ、実施例2で行っ
た真空熱処理炉による連続昇温中の抵抗変化についても
測定した。         NaH2PO2・H2O      
         0.10   mol/L    
    Na3C6H5O7・2H2O       
    0.60   mol/L        N
iSO4・6H2O                
0.075 mol/L        Na2WO4
・2H2O               0.60 
  mol/L *注:NaOHによりpHを9.0に調整した。めっき
浴温度は90℃とした。
(Comparative Example 2) Formation of Ni-20wt W-6wt% P alloy thin film A sample was prepared basically in the same manner as in Example 1. However, the electroless plating was performed using the bath shown below, and the electroless Ni-W-
A P alloy thin film resistor was obtained. Furthermore, the same method as in Example 1 was used to evaluate the resistance characteristics. However, the heat treatment temperature was only 400°C. In addition, this film was heated to 400°C for 1
It was stabilized by heat treatment for a period of time, and the resistance change during continuous temperature rise in the vacuum heat treatment furnace performed in Example 2 was also measured. NaH2PO2・H2O
0.10 mol/L
Na3C6H5O7・2H2O
0.60 mol/L N
iSO4・6H2O
0.075 mol/L Na2WO4
・2H2O 0.60
mol/L *Note: pH was adjusted to 9.0 with NaOH. The plating bath temperature was 90°C.

【0023】(比較例3)  Ni−19重量%Mo−
1重量%P合金薄膜形成 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっきは以下に示す浴を用いて行い、Mo含
有量19重量%、P含有量1重量%なる無電解Ni−M
o−P合金薄膜抵抗体を得た。また、抵抗特性の評価方
法は実施例1と同様の方法を用いた。ただし、熱処理温
度は500℃のみとした。また、この皮膜を500℃に
て1時間熱処理することにより安定化させ、実施例2で
行った真空熱処理炉による連続昇温中の抵抗変化につい
ても測定した。         NaH2PO2・H2O      
        0.20  mol/L      
  Na3C6H5O7・2H2O         
 0.10  mol/L        C2H4O
3                        
0.20  mol/L        NiSO4・
6H2O               0.10  
mol/L        Na2MoO4・2H2O
            0.01  mol/L *注:NaOHによりpHを9.0に調整した。めっき
浴温度は90℃とした。
(Comparative Example 3) Ni-19% by weight Mo-
Formation of 1 wt % P alloy thin film A sample was prepared basically in the same manner as in Example 1. However, electroless plating was performed using the bath shown below, and electroless Ni-M with a Mo content of 19% by weight and a P content of 1% by weight was used.
An o-P alloy thin film resistor was obtained. Furthermore, the same method as in Example 1 was used to evaluate the resistance characteristics. However, the heat treatment temperature was only 500°C. Further, this film was stabilized by heat treatment at 500° C. for 1 hour, and the change in resistance during continuous temperature rise in the vacuum heat treatment furnace performed in Example 2 was also measured. NaH2PO2・H2O
0.20 mol/L
Na3C6H5O7・2H2O
0.10 mol/L C2H4O
3
0.20 mol/L NiSO4・
6H2O 0.10
mol/L Na2MoO4・2H2O
0.01 mol/L *Note: pH was adjusted to 9.0 with NaOH. The plating bath temperature was 90°C.

【0024】(試験結果)図1、図2に種々の温度で熱
処理後の実施例1〜4で述べた無電解Ni−Re−P合
金薄膜抵抗体の比抵抗値とTCRの変化を示す。図1の
比抵抗値の変化を見ると実施例1、2の皮膜(Re含有
量60重量%以下の皮膜)は熱処理温度が上昇するに従
い、徐々に比抵抗値が減少し、500℃を超えると、さ
らに大きく減少することがわかる。一方、実施例3、4
の皮膜(Re含有量60重量%を超える皮膜)では、め
っきしたままでは極めて大きな比抵抗を示すが、200
℃での熱処理で急激に減少し、その後500℃までは緩
やかに減少する。そして、500℃を超えると再び大き
く減少する。500℃以上での変化は図2のTCRの変
化を見るとより明らかである。実施例1、2の皮膜は熱
処理温度500℃まではほぼゼロに近い値を維持し、5
00℃を超えると急激に増加する。また、実施例3、4
の皮膜ではめっきしたままの状態では大きく負の値を取
るが、200〜500℃でほぼゼロ付近に安定し、50
0℃を超えると急激に増加する。
(Test Results) FIGS. 1 and 2 show changes in resistivity and TCR of the electroless Ni--Re--P alloy thin film resistors described in Examples 1 to 4 after heat treatment at various temperatures. Looking at the change in resistivity value in Figure 1, the resistivity value of the films of Examples 1 and 2 (films with a Re content of 60% by weight or less) gradually decreases as the heat treatment temperature increases, and exceeds 500°C. It can be seen that there is an even greater decrease. On the other hand, Examples 3 and 4
A film with a Re content of more than 60% by weight shows extremely high resistivity as plated, but
It decreases rapidly by heat treatment at ℃, and then gradually decreases up to 500℃. Then, when the temperature exceeds 500°C, it decreases significantly again. The changes at temperatures above 500°C are more obvious when looking at the changes in TCR shown in FIG. The films of Examples 1 and 2 maintained a value close to zero up to a heat treatment temperature of 500°C, and
It increases rapidly when the temperature exceeds 00°C. In addition, Examples 3 and 4
The film takes a large negative value in the as-plated state, but it stabilizes around zero at 200 to 500°C, and the value of 50
It increases rapidly when it exceeds 0°C.

【0025】以上の結果より、「課題を解決するための
手段および作用」において述べた次の事項が立証される
。 1)Re含有量60重量%以下の皮膜は常温から500
℃にかけて安定な抵抗特性を有する。 2)Re含有量60重量%を超える皮膜では、めっきし
たままでは不安定なため、200〜500℃での熱処理
が必要であるが、Re含有量60重量%以下の皮膜に比
べて高い比抵抗を有し、同様に500℃まで抵抗特性は
安定である。
[0025] From the above results, the following matters stated in "Means and effects for solving the problems" are verified. 1) Films with Re content of 60% by weight or less have a temperature of 500% from room temperature.
It has stable resistance characteristics over °C. 2) Films with a Re content of more than 60% by weight are unstable as plated and require heat treatment at 200 to 500°C, but have a higher specific resistance than films with a Re content of 60% by weight or less. Similarly, the resistance characteristics are stable up to 500°C.

【0026】次に、表2に各々の実施例、及び比較例に
おいて作製した皮膜のめっきしたままと、熱処理後の電
気抵抗特性(比抵抗、TCR)を比較する。表2で( 
 )内は熱処理後の値を示す。ここで、熱処理温度は各
々の皮膜の最大耐熱温度を採用した。すなわち、Ni−
Re−P合金については500℃、Ni−P合金につい
ては300℃、Ni−W−P合金については400℃、
Ni−Mo−P合金については500℃である。
Next, Table 2 compares the electrical resistance characteristics (specific resistance, TCR) of the coatings produced in each of the Examples and Comparative Examples as-plated and after heat treatment. In Table 2 (
) indicates the value after heat treatment. Here, the maximum heat-resistant temperature of each film was adopted as the heat treatment temperature. That is, Ni-
500°C for Re-P alloy, 300°C for Ni-P alloy, 400°C for Ni-W-P alloy,
For Ni-Mo-P alloy it is 500°C.

【0027】表2より、明らかに無電解Ni−Re−P
合金薄膜は高い比抵抗と低いTCRを有し、しかも高い
温度までそれらの抵抗特性が安定であることがわかる。 また、比較例で示した皮膜では、熱処理することにより
TCRの絶対値は増加するが、Ni−Re−P合金薄膜
では逆に減少しており、安定化のための熱処理効果がよ
り顕著であることが示されている。
From Table 2, it is clear that electroless Ni-Re-P
It can be seen that the alloy thin films have high specific resistance and low TCR, and their resistance characteristics are stable up to high temperatures. In addition, in the film shown in the comparative example, the absolute value of TCR increases by heat treatment, but on the contrary, it decreases in the Ni-Re-P alloy thin film, and the effect of heat treatment for stabilization is more remarkable. It has been shown that

【0028】[0028]

【表2】[Table 2]

【0029】表2 各種無電解Ni−P系合金薄膜の比
抵抗とTCR。熱処理後の値を(  )にて示す。さら
に、図3では実施例2(Ni−Re−P)、及び比較例
2(Ni−W−P)、比較例3(Ni−Mo−P)の皮
膜について、昇温に対する連続的な抵抗変化を示した。 これによれば、以上の比抵抗測定等からもわかるように
全温度領域において実施例2が高い比抵抗を維持し、し
かも500℃を超えるまでその抵抗値には殆ど変化がみ
られない。これに対し、比較例2では300〜400℃
付近に比抵抗値の僅かな振動がみられ、400℃を超え
ると急激に減少する。さらに、比較例3では500℃ま
で比抵抗の減少はみられないが、TCRが大きなことに
起因する連続的な比抵抗値の増大が認められる。
Table 2 Specific resistance and TCR of various electroless Ni-P alloy thin films. Values after heat treatment are shown in parentheses. Furthermore, FIG. 3 shows the continuous resistance change with respect to temperature increase for the films of Example 2 (Ni-Re-P), Comparative Example 2 (Ni-W-P), and Comparative Example 3 (Ni-Mo-P). showed that. According to this, as can be seen from the above specific resistance measurements, etc., Example 2 maintains a high specific resistance in the entire temperature range, and there is almost no change in the resistance value until the temperature exceeds 500°C. On the other hand, in Comparative Example 2, the temperature was 300 to 400°C.
A slight oscillation in the resistivity value is observed in the vicinity, and it decreases rapidly when the temperature exceeds 400°C. Furthermore, in Comparative Example 3, although no decrease in specific resistance is observed up to 500° C., a continuous increase in specific resistance value due to the large TCR is observed.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、無電解
Ni−Re−P合金薄膜抵抗体では従来の無電解Ni系
合金薄膜抵抗体に比較して、イ.約1.5〜2倍の比抵
抗値を有する、ロ.極めて低いTCRを有し、しかも熱
処理を施すことによりその絶対値はほぼゼロに近づく、
ハ.安定化のための熱処理を施すことにより、500℃
までの耐熱性を有する、という利点を得ることができる
。これらのことは、先に述べたように従来低抵抗用途に
限定されていた無電解めっき薄膜抵抗体の応用範囲を、
より高い抵抗領域、より精密さを要求される領域に広げ
るものである。
Effects of the Invention As is clear from the above description, the electroless Ni-Re-P alloy thin-film resistor has a higher level of performance compared to the conventional electroless Ni-based alloy thin-film resistor. B. has a specific resistance value of about 1.5 to 2 times. It has an extremely low TCR, and its absolute value approaches zero after heat treatment.
C. 500℃ by applying heat treatment for stabilization
It has the advantage of having heat resistance up to These factors have expanded the scope of application of electroless plated thin film resistors, which were previously limited to low resistance applications, as mentioned above.
This expands the range to higher resistance areas and areas where more precision is required.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明による無電解Ni−Re−P合金薄膜抵抗
体の熱的安定性を示すために、種々の温度で熱処理した
後の比抵抗の変化を示した図(黒塗り三角:実施例1、
△:実施例2、●:実施例3、○:実施例4)、図2は
同じく本発明による無電解Ni−Re−P合金薄膜を種
々の温度で熱処理した後のTCR変化を示した図(黒塗
り三角:実施例1、△:実施例2、●:実施例3、○:
実施例4)、図3は無電解Ni−Re−P合金薄膜(実
施例2)を最適温度(500℃1時間)で安定化熱処理
した皮膜の実際の熱的安定性を調べるために、無電解N
i−W−P合金薄膜(比較例2、400℃1時間熱処理
)と無電解Ni−Mo−P合金薄膜(比較例3、500
℃1時間熱処理)と比較しながら、真空加熱炉中にて連
続的に昇温した場合の比抵抗変化を示した図、である。
Figure 1 is a diagram showing the change in specific resistance after heat treatment at various temperatures in order to demonstrate the thermal stability of the electroless Ni-Re-P alloy thin film resistor according to the present invention (black triangles: examples). 1,
△: Example 2, ●: Example 3, ○: Example 4), FIG. 2 is a diagram showing TCR changes after heat treating the electroless Ni-Re-P alloy thin film according to the present invention at various temperatures. (Black triangle: Example 1, △: Example 2, ●: Example 3, ○:
Example 4), Figure 3 shows the electroless Ni-Re-P alloy thin film (Example 2) that was heat-treated for stabilization at the optimum temperature (500°C for 1 hour) to investigate the actual thermal stability of the film. Electrolytic N
i-W-P alloy thin film (Comparative Example 2, heat treated at 400°C for 1 hour) and electroless Ni-Mo-P alloy thin film (Comparative Example 3, 500°C
FIG. 2 is a diagram showing changes in specific resistance when the temperature is continuously raised in a vacuum heating furnace, in comparison with heat treatment (heat treatment at 1 hour at °C).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】無電解めっき法により基材上に形成された
、レニウム含有量5〜75重量%、りん含有量1〜14
重量%のNi−Re−P合金薄膜抵抗体。
Claim 1: Formed on a base material by electroless plating, rhenium content 5-75% by weight, phosphorus content 1-14%.
wt% Ni-Re-P alloy thin film resistor.
JP3062204A 1991-03-26 1991-03-26 Electroless Ni-Re-P alloy thin film resistor Expired - Fee Related JP2866486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3062204A JP2866486B2 (en) 1991-03-26 1991-03-26 Electroless Ni-Re-P alloy thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3062204A JP2866486B2 (en) 1991-03-26 1991-03-26 Electroless Ni-Re-P alloy thin film resistor

Publications (2)

Publication Number Publication Date
JPH04297001A true JPH04297001A (en) 1992-10-21
JP2866486B2 JP2866486B2 (en) 1999-03-08

Family

ID=13193385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3062204A Expired - Fee Related JP2866486B2 (en) 1991-03-26 1991-03-26 Electroless Ni-Re-P alloy thin film resistor

Country Status (1)

Country Link
JP (1) JP2866486B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1627098A1 (en) * 2003-05-09 2006-02-22 Basf Aktiengesellschaft Compositions for the currentless deposition of ternary materials for use in the semiconductor industry
CN101275228A (en) * 2007-03-29 2008-10-01 株式会社荏原制作所 Electroless plating bath and method for producing high-temperature apparatus member using the bath
US8784931B2 (en) 2001-05-28 2014-07-22 Waseda University ULSI wiring and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784931B2 (en) 2001-05-28 2014-07-22 Waseda University ULSI wiring and method of manufacturing the same
EP1627098A1 (en) * 2003-05-09 2006-02-22 Basf Aktiengesellschaft Compositions for the currentless deposition of ternary materials for use in the semiconductor industry
US7850770B2 (en) * 2003-05-09 2010-12-14 Basf Aktiengesellschaft Compositions for the currentless deposition of ternary materials for use in the semiconductor industry
US9062378B2 (en) 2003-05-09 2015-06-23 Basf Aktiengesellschaft Compositions for the currentless deposition of ternary materials for use in the semiconductor industry
CN101275228A (en) * 2007-03-29 2008-10-01 株式会社荏原制作所 Electroless plating bath and method for producing high-temperature apparatus member using the bath
EP1978128A2 (en) 2007-03-29 2008-10-08 Ebara Corporation Electroless plating bath and method for producing high-temperature apparatus member using the bath
US8012251B2 (en) 2007-03-29 2011-09-06 Ebara Corporation Electroless plating bath and method for producing high-temperature apparatus member using the bath

Also Published As

Publication number Publication date
JP2866486B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
US4298505A (en) Resistor composition and method of manufacture thereof
US3024522A (en) Rhenium bonded composite material and method
US3172074A (en) Electrical resistors
JP3976599B2 (en) Heat resistant Ti alloy material excellent in high temperature corrosion resistance and oxidation resistance and method for producing the same
US3132928A (en) Simultaneous brazing and corrosion protecting refractory metals
JPH04297001A (en) Electroless ni-re-p alloy thin-film resistor
JPH052940A (en) Material for electric contact and manufacture the same
EP1542505B1 (en) Metal based resistance heating element and method for preparation thereof
US1456274A (en) Process of rendering metal nonoxidizable and the metal
JPH02104647A (en) Heat treatment for ni-p alloy film
JPS6230887A (en) Composite aluminum material
US3427197A (en) Method for plating thin titanium films
Sytchenko et al. Structure and Properties of Ta–Si–N Coatings Produced by Pulsed Magnetron Sputtering
JP7243282B2 (en) FeNi ordered alloy, method for producing FeNi ordered alloy, and magnetic material containing FeNi ordered alloy
US3401057A (en) Electroless formation of electrical resistance films
Osaka et al. Effect of molybdenum codeposition on the thermal properties of electroless Ni-B alloy plating films.
JP2008091764A (en) Electronic component, and film capacitor
US3198610A (en) Thermally stabilized metal article and process of making it
JPS6381904A (en) Manufacture of resistance circuit board
JP2863710B2 (en) Manufacturing method of metal film resistor
KR20240054612A (en) Method for Preparing Biomimetic Hydrophilic Surface Structure, and Hydrophilic Surface Structure and Heat Exchanger Using Same
Iizuka et al. PREPARATION AND PROPERTIES OF HIGH RESISTIVITY ELECTROLESS NiP FILMS
JPH02173233A (en) Coppery material excellent in thermal conductivity and corrosion resistance, heat-exchanger fin material, and their production
JPH0520516B2 (en)
RU2242534C1 (en) Method of production of a current-conducting alloyed diamond-like nano-composite film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees