US3132928A - Simultaneous brazing and corrosion protecting refractory metals - Google Patents
Simultaneous brazing and corrosion protecting refractory metals Download PDFInfo
- Publication number
- US3132928A US3132928A US175852A US17585262A US3132928A US 3132928 A US3132928 A US 3132928A US 175852 A US175852 A US 175852A US 17585262 A US17585262 A US 17585262A US 3132928 A US3132928 A US 3132928A
- Authority
- US
- United States
- Prior art keywords
- rhodium
- base
- metal
- nickel
- article
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003870 refractory metal Substances 0.000 title claims description 23
- 230000007797 corrosion Effects 0.000 title claims description 13
- 238000005260 corrosion Methods 0.000 title claims description 13
- 238000005219 brazing Methods 0.000 title description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 16
- 229910052703 rhodium Inorganic materials 0.000 claims description 16
- 239000010948 rhodium Substances 0.000 claims description 16
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 14
- 230000003647 oxidation Effects 0.000 claims description 12
- 238000007254 oxidation reaction Methods 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 9
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 9
- 239000010953 base metal Substances 0.000 claims description 6
- 238000007747 plating Methods 0.000 claims description 6
- 230000001681 protective effect Effects 0.000 claims description 6
- 239000006104 solid solution Substances 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 238000009713 electroplating Methods 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 239000011733 molybdenum Substances 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 241000080590 Niso Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- ZODDGFAZWTZOSI-UHFFFAOYSA-N nitric acid;sulfuric acid Chemical compound O[N+]([O-])=O.OS(O)(=O)=O ZODDGFAZWTZOSI-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/001—Interlayers, transition pieces for metallurgical bonding of workpieces
- B23K35/005—Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a refractory metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/923—Physical dimension
- Y10S428/924—Composite
- Y10S428/926—Thickness of individual layer specified
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9335—Product by special process
- Y10S428/934—Electrical process
- Y10S428/935—Electroplating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9335—Product by special process
- Y10S428/939—Molten or fused coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9335—Product by special process
- Y10S428/941—Solid state alloying, e.g. diffusion, to disappearance of an original layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12812—Diverse refractory group metal-base components: alternative to or next to each other
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12875—Platinum group metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12944—Ni-base component
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electroplating Methods And Accessories (AREA)
Description
United States Patent 3,132,928 SIMULTANEOUS BRAZING AND CORROSION PROTECTING REFRACTORY METALS Donald D. Crooks, San Jose, and Robert E. Wallace, Los
Altos, Calif., assignors, by mesne assignments, to the United States of America as represented by the Secretary of the Navy No Drawing. Filed Feb. 26, 1962, Ser. No. 175,852
2 Claims. (Cl. 29-198) The present invention relates to the coating and brazing of shaped objects of refractory metals so as to render the objects resistant to corrosion at high temperatures.
In the recent past the various alloys of steel have sat isfied most structural needs. However, with the advent of rockets and missiles the temperatures involved that will have to be sustained by the metal structural members and parts has increased several fold.
The strength of a metal is directly related to its melting point. Therefore, the refractory metals would be a preferred material of construction in the rocket and missile field because of their high melting points. Refractory metals considered most promising are molybdenum (M.P. 2620 C.), tantalum (M.P.2996i50 C.) and tungsten (M.P. 3370 Q).
As with most materials, one will find that in order to take advantage of certain properties, one will have to compensate for other properties of the material.
These materials are subject to drastic corrosion or oxidation when exposed to oxidizing atmospheres at temperatures over 1400" F. It has been suggested that components for rocket and missile applications could be fabricated from these refractory metals if the external surfaces exposed to oxidation could be provided with a protective coating to exclude the oxidizing atmosphere.
Many different coatings have been applied to these metal articles in an attempt to prevent this high temperature oxidation. One in wide use is the silicide coating. Such a coating may be produced by vapor depositing a thin layer of silicon onto the hot surface of the transition metal or it can be formed by being painted or sprayed on, or by the sintered method. While such a coating has very good protective value at elevated temperatures, its brittleness may result in cracking when struck or deformed. In order to be of value, any protective coating must completely cover the surface. Any defects, such as a crack or pinhole makes the coating useless since the base metal will erode by oxidation at the point of defect.
Other suggested methods of protection for these refractory metals are the application of ceramic coatings and cladding. These latter methods are for limited application and have not found any general use.
Accordingly, it is an object of the present invention to provide a method of protectively coating refractory metals.
Another object is to provide a means of bonding together shaped objects of refractory metals.
Still another object of the invention is to provide a method of simultaneously protectively coating and bonding together shaped articles of refractory metals.
Yet another object is the provision of a novel corrosion resistant, brazing alloy for coating surfaces.
Other objects and many of the attendant advantages will be readily appreciated as the same becomes better understood by reference to the following description of the invention.
The refractory metal to be coated and/or brazed is first prepared for electroplating by suitable known methods. It is then plated with nickel followed by an electroplate of rhodium.
The plated metal object is then heated in a protective vacuum atmosphere to about 2500 F. The protective atmosphere can also be hydrogen or cracked ammonia "ice gas. The binary coating melts and fuses to the base refractory metal. The result is a high temperature corrosion and oxidation resistant integrally bonded coating. The integral bond is a result of the nickel simultaneously forming solid solution alloys with the refractory metal and rhodium electroplate. The solid solution forms mos-t readily when tantalium is the base metal being coated.
If desired, these coated refractory articles can be joined by placing them in close proximity or wiring them together and then heating to about 2500 F. in vacuum or other protective atmosphere. The adjoining electroplates will then fuse together resulting in the refractory metal shapes being brazed together. This process will coat and protect intricate and complex shapes as readily as simple configurations. The coated and brazed articles of this invention have been tested to 2800 F. in a dynamic oxidizing atmosphere and have shown excellent resistance to oxidation or corrosion.
The following is a more detailed description of an embodiment of the present invention. The refractory metal article to be protected in this example tantalum, is first degreased by being immersed in a suitable solvent such as acetone or carbon tetrachloride.
The tantalum article is then cleaned mechanically by abrasive means such as emery paper, steel wool, etc.
Then, the article is cleaned chemically by etching in an appropriate acid such as a solution of sulfuric acid nitric acid (4.5%), hydrofluoric acid (5%) containing 18.8 grams per liter of chromic oxide.
The tantalum article is then placed directly in a conventional acid-nickel strike bath for several minutes at a cathode current density of milliamperes per square centimeter. The specimen is then transferred directly without rinsing to a conventional Watts-type nickel plating solution where plating is continued at .5 to2 amperes per square decimeter to a thickness of about .0001 inch to .001 inch depending on desired final results.
The nickel coated tantalum specimen is then removed from this bath, rinsed and placed in a rhodium plating bath where rhodium is deposited at a current density of 7 amperes per square decimeter to a thickness of .0001 inch or less, again depending on desired final results. The coated article is removed and heat treated and/ or brazed as previously described.
The several solutions used are conventional and the composition thereof may be varied within the skill of the plating art. The solutions used in the example herein for the nickel bath consisted of an aqueous solution containing about 240 grams per liter of NiSO -6H O, about 45 grams per liter of NiCl -6H O and 30 grams per liter of H BO the remainder being water. The rhodium bath consisted of 162 grams per liter of the phosphate or sulfate of rhodium with an excess of acid of either sulfuric or phosphoric acids.
It should be understood that the foregoing disclosure relates only to a preferred embodiment of the invention and that numerous modifications may be made therein without departing from the spirit and the scope of the invention as set forth in the appended claims.
What is claimed is:
1. A composite article including a base of a refractory metal selected from the group consisting of tungsten, tantalum and molybdenum having a multiple layer metal surface coating fused to said base to provide high-temperature oxidation and corrosion resistance, said surface comprising rhodium integrally bonded to said base metal by solid solution alloys of base metal, nickel and rhodium, said integrally bonded surface being characterized by alloyed strata resulting from a plating of said base with thin coatings of nickel and rhodium and subjection of said article to heat treatment at about 2500 F whereby a fused integrally bonded surface is obtained on said base.
2. The method of protecting refractory metal selected from the group consisting of tungsten, tantalum and molybdenum articles against oxidation and corrosion at high temperatures including the steps of cleaning said metal articles, electroplating nickel thereon of a thickness of from about .0001 to .001 inch, thereafter electroplating rhodium up to about .0001 inch in thickness on the nickel surface, and heat-treating said plated article in a protective non-reactive environment at about 2500 P. whereby solid solution alloys of nickel with the refractory metal and rhodium are formed, thereby integrally bonding an oxidation and corrosion resistant coating on said refractory metal article.
References Cited in the file of this patent UNITED STATES PATENTS 2,698,913 Espersen Ian. 4, 1955 2,719,797 Rosenblatt et a1. Oct. 4, 1955 2,798,843 Slornin et a1. July 9, 1957 FOREIGN PATENTS 814,644 Great Britain June 10, 1959 OTHER REFERENCES Metal Industry, March 26, 1948, pp. 249, 250 and 254.
Claims (2)
1. A COMPOSITE ARTICLE INCLUDING A BASE OF A REFRACTORY METAL SELECTED FROM THE GROUP CONSISTING OF TUNGSTEN, TANTALUM AND MOLYBDENUM HAVING A MULTIPLE LAYER METAL SURFACE COATING FUSED TO SAID BASE TO PROVIDE HIGH-TEMPERATURE OXIDATION AND CORROSION RESISTANCE, SAID SURFACE COMPRISING RHODIUM INTEGRALLY BONDED TO SAID BASE METAL BY SOLID SOLUTION ALLOYS OF BASE METAL, NICKEL AND RHODIUM, SAID INTEGRALLY BONDED SURFACE BEING CHARACTERIZED BY ALLOYED STRATA RESULTING FROM A PLATING OF SAID BASE WITH THIN COATINGS OF KNICKEL AND RHODIUM AND SUBJECTION OF SAID ARTICLE TO HEAT TREATMENT AT ABOUT 2500*F. WHEREBY A FUSED INTEGRALLY BONDED SURFACE IS OBTAINED ON SAID BASE.
2. THE METHOD OF PROTECTING REFRACTORY METAL SELECTED FROM THE GROUP CONSISTING OF TUNGSTEN, TANTALUM AND MOLYBDENUM ARTICLES AGAINST OXIDATION AND CORROSION AT HIGH TEMPERATURES INCLUDING THE STEPS OF CLEANING SAID METAL ARTICLES, ELECTROPLATING NICKEL THEREON OF A THICKNESS OF FROM ABOUT .0001 TO .001 INCH, THEREAFTER ELECTROPLATING RHODIUM UP TO ABOUT .0001 INCH IN THICKNESS ON THE NICKEL SURFACE, AND HEAT-TREATING SAID PLATED ARTICLE IN A PROTECTIVE NON-REACTIVE ENVIRONMENT AT ABOUT 2500*F. WHEREBY SOLID SOLUTION ALLOYS OF NICKEL WITH THE REFRACTORY METAL AND RHODIUM ARE FORMED, THEREBY INTEGRALLY BONDING AN OXIDATION AND CORROSION RESISTANT COATING ON SAID REFRACTORY METAL ARTICLE.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US175852A US3132928A (en) | 1962-02-26 | 1962-02-26 | Simultaneous brazing and corrosion protecting refractory metals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US175852A US3132928A (en) | 1962-02-26 | 1962-02-26 | Simultaneous brazing and corrosion protecting refractory metals |
Publications (1)
Publication Number | Publication Date |
---|---|
US3132928A true US3132928A (en) | 1964-05-12 |
Family
ID=22641920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US175852A Expired - Lifetime US3132928A (en) | 1962-02-26 | 1962-02-26 | Simultaneous brazing and corrosion protecting refractory metals |
Country Status (1)
Country | Link |
---|---|
US (1) | US3132928A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3268423A (en) * | 1963-03-01 | 1966-08-23 | Udylite Corp | Process of electrodepositing a corrosion resistant nickel-chromium coating |
US3363306A (en) * | 1964-09-18 | 1968-01-16 | Trw Inc | Brazing methods for porous refractory metals |
US3386159A (en) * | 1964-05-04 | 1968-06-04 | Philips Corp | Method of forming a refractory metal-to-ceramic seal |
US3386158A (en) * | 1966-03-28 | 1968-06-04 | Alfred E. Milch | Method of forming a refractory metal-to-ceramic seal |
US3386160A (en) * | 1967-10-26 | 1968-06-04 | Philips Corp | Method of manufacturing a refractory metal-to-ceramic seal |
US3391446A (en) * | 1965-08-30 | 1968-07-09 | Atomic Energy Commission Usa | Aluminum brazing |
US3627650A (en) * | 1969-07-15 | 1971-12-14 | Atomic Energy Commission | Method for producing a chromium-tungsten coating on tungsten for protection against oxidation at elevated temperatures |
US4342577A (en) * | 1980-10-27 | 1982-08-03 | Owens-Corning Fiberglas Corporation | Method and apparatus for forming glass fibers |
US4348216A (en) * | 1980-10-27 | 1982-09-07 | Owens-Corning Fiberglas Corporation | Method and apparatus for forming glass fibers |
US4402718A (en) * | 1980-10-27 | 1983-09-06 | Owens-Corning Fiberglas Corporation | Method and apparatus for forming glass fibers |
US4402719A (en) * | 1980-10-27 | 1983-09-06 | Owens-Corning Fiberglas Corporation | Method and apparatus for forming glass fibers |
US4404009A (en) * | 1982-12-22 | 1983-09-13 | Owens-Corning Fiberglas Corporation | Method and apparatus for forming glass fibers |
US5110035A (en) * | 1990-02-01 | 1992-05-05 | Westinghouse Electric Corp. | Method for improving the solderability of corrosion resistant heat exchange tubing |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2698913A (en) * | 1951-11-29 | 1955-01-04 | Philips Corp | Cathode structure |
US2719797A (en) * | 1950-05-23 | 1955-10-04 | Baker & Co Inc | Platinizing tantalum |
US2798843A (en) * | 1953-10-29 | 1957-07-09 | Rohr Aircraft Corp | Plating and brazing titanium |
GB814644A (en) * | 1954-12-21 | 1959-06-10 | British Thomson Houston Co Ltd | Improvements relating to glass-to-metal seals |
-
1962
- 1962-02-26 US US175852A patent/US3132928A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2719797A (en) * | 1950-05-23 | 1955-10-04 | Baker & Co Inc | Platinizing tantalum |
US2698913A (en) * | 1951-11-29 | 1955-01-04 | Philips Corp | Cathode structure |
US2798843A (en) * | 1953-10-29 | 1957-07-09 | Rohr Aircraft Corp | Plating and brazing titanium |
GB814644A (en) * | 1954-12-21 | 1959-06-10 | British Thomson Houston Co Ltd | Improvements relating to glass-to-metal seals |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3268423A (en) * | 1963-03-01 | 1966-08-23 | Udylite Corp | Process of electrodepositing a corrosion resistant nickel-chromium coating |
US3268307A (en) * | 1963-03-01 | 1966-08-23 | Udylite Corp | Process of electrodepositing a corrosion resistant nickel-chromium coating and products thereof |
US3386159A (en) * | 1964-05-04 | 1968-06-04 | Philips Corp | Method of forming a refractory metal-to-ceramic seal |
US3363306A (en) * | 1964-09-18 | 1968-01-16 | Trw Inc | Brazing methods for porous refractory metals |
US3391446A (en) * | 1965-08-30 | 1968-07-09 | Atomic Energy Commission Usa | Aluminum brazing |
US3386158A (en) * | 1966-03-28 | 1968-06-04 | Alfred E. Milch | Method of forming a refractory metal-to-ceramic seal |
US3386160A (en) * | 1967-10-26 | 1968-06-04 | Philips Corp | Method of manufacturing a refractory metal-to-ceramic seal |
US3627650A (en) * | 1969-07-15 | 1971-12-14 | Atomic Energy Commission | Method for producing a chromium-tungsten coating on tungsten for protection against oxidation at elevated temperatures |
US4342577A (en) * | 1980-10-27 | 1982-08-03 | Owens-Corning Fiberglas Corporation | Method and apparatus for forming glass fibers |
US4348216A (en) * | 1980-10-27 | 1982-09-07 | Owens-Corning Fiberglas Corporation | Method and apparatus for forming glass fibers |
US4402718A (en) * | 1980-10-27 | 1983-09-06 | Owens-Corning Fiberglas Corporation | Method and apparatus for forming glass fibers |
US4402719A (en) * | 1980-10-27 | 1983-09-06 | Owens-Corning Fiberglas Corporation | Method and apparatus for forming glass fibers |
US4404009A (en) * | 1982-12-22 | 1983-09-13 | Owens-Corning Fiberglas Corporation | Method and apparatus for forming glass fibers |
US5110035A (en) * | 1990-02-01 | 1992-05-05 | Westinghouse Electric Corp. | Method for improving the solderability of corrosion resistant heat exchange tubing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3132928A (en) | Simultaneous brazing and corrosion protecting refractory metals | |
US2994124A (en) | Clad cermet body | |
US2682101A (en) | Oxidation protected tungsten and molybdenum bodies and method of producing same | |
US3129069A (en) | Oxidation-resistant turbine blades | |
JPS5983757A (en) | Formation of protective diffusion layer | |
US3741797A (en) | Low density high-strength boron on beryllium reinforcement filaments | |
US2917818A (en) | Aluminum coated steel having chromium in diffusion layer | |
US3024522A (en) | Rhenium bonded composite material and method | |
US3249462A (en) | Metal diffusion coating utilizing fluidized bed | |
US3620693A (en) | Ductile, high-temperature oxidation-resistant composites and processes for producing same | |
US3078554A (en) | Columbium base alloy article | |
US3072983A (en) | Vapor deposition of tungsten | |
US3269856A (en) | Coating for refractory metal | |
US2788290A (en) | Method of forming a protective coating on a molybdenum-base article | |
US3044156A (en) | Temperature resistant body | |
US3086886A (en) | Process of providing oxidizable refractory-metal bodies with a corrosion-resistant surface coating | |
US3741735A (en) | Coating molybdenum with pure gold | |
US3627561A (en) | Process for bonding platinum onto a base metal | |
US2894884A (en) | Method of applying nickel coatings on uranium | |
US2928168A (en) | Iron coated uranium and its production | |
US2805192A (en) | Plated refractory metals | |
US3029158A (en) | Processes of chemical nickel plating of amphoteric and like materials | |
US2857297A (en) | Process of coating molybdenum | |
US1746987A (en) | Protection of cuprous metals | |
US3019516A (en) | Method of forming a protective coating on molybdenum |