JP2866486B2 - Electroless Ni-Re-P alloy thin film resistor - Google Patents

Electroless Ni-Re-P alloy thin film resistor

Info

Publication number
JP2866486B2
JP2866486B2 JP3062204A JP6220491A JP2866486B2 JP 2866486 B2 JP2866486 B2 JP 2866486B2 JP 3062204 A JP3062204 A JP 3062204A JP 6220491 A JP6220491 A JP 6220491A JP 2866486 B2 JP2866486 B2 JP 2866486B2
Authority
JP
Japan
Prior art keywords
electroless
thin film
alloy thin
resistance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3062204A
Other languages
Japanese (ja)
Other versions
JPH04297001A (en
Inventor
哲彌 逢坂
純 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PAAKARAIJINGU KK
WASEDA DAIGAKU
Original Assignee
NIPPON PAAKARAIJINGU KK
WASEDA DAIGAKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PAAKARAIJINGU KK, WASEDA DAIGAKU filed Critical NIPPON PAAKARAIJINGU KK
Priority to JP3062204A priority Critical patent/JP2866486B2/en
Publication of JPH04297001A publication Critical patent/JPH04297001A/en
Application granted granted Critical
Publication of JP2866486B2 publication Critical patent/JP2866486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、金属・セラミックス・
合成樹脂等で形成された基材表面を覆う無電解Ni−R
e−P合金により作製された、極めて高い比抵抗と低い
温度抵抗係数(TCR)を有し、しかもこれらの電気抵
抗特性が極めて高温まで安定に維持する薄膜抵抗体に関
するものである。
The present invention relates to metal, ceramics,
Electroless Ni-R covering the surface of a substrate made of synthetic resin, etc.
The present invention relates to a thin-film resistor made of an e-P alloy, which has an extremely high specific resistance and a low temperature coefficient of resistance (TCR), and whose electric resistance characteristics are stably maintained at an extremely high temperature.

【0002】[0002]

【従来の技術】無電解めっき法により作製されたりん含
有量5〜15重量%のNi−P合金薄膜は、微結晶、な
いしはアモルファス層で形成されており、比較的高い比
抵抗と低い温度抵抗係数(以下TCRと称する)を有す
ることから、金属薄膜型の電気抵抗材料として断続通電
用部品(ディスクリート部品)やハイブリッドIC等に
利用されている。ただし、この良好な電気抵抗特性はN
i−P合金の微結晶構造、ないしはアモルファス構造に
より得られており、これらの構造は熱力学的に準安定状
態なので耐熱性に劣るという欠点を有する。これは、抵
抗材料自体が本質的に発熱部品であること、しかもその
製造工程、組み付け工程には必ずといってよいほど加熱
過程が存在することを考慮すると極めて重要な問題であ
る。
2. Description of the Related Art A Ni-P alloy thin film having a phosphorus content of 5 to 15% by weight produced by an electroless plating method is formed of a microcrystalline or amorphous layer, and has a relatively high specific resistance and a low temperature resistance. Since it has a coefficient (hereinafter referred to as TCR), it is used as a metal thin-film type electric resistance material for intermittent conduction parts (discrete parts), hybrid ICs, and the like. However, this good electric resistance characteristic is N
It is obtained by a microcrystalline structure or an amorphous structure of the i-P alloy, and these structures have a disadvantage that they are inferior in heat resistance because they are thermodynamically metastable. This is a very important problem in view of the fact that the resistance material itself is essentially a heat-generating component, and that the manufacturing process and the assembling process include a heating process which is almost always required.

【0003】この問題に対処する方法として、第3元素
としてW、Moなどの高融点金属をNi−P合金に共析
させることが検討されてきた。例えば、無電解Ni−1
3重量%P合金薄膜では比抵抗140μΩcm、TCR
118ppm/℃の特性を高々300℃までしか維持で
きないが、Wを共析させた無電解Ni−20重量%W−
6重量%P合金薄膜ではより高い比抵抗190μΩc
m、およびより低いTCR56ppm/℃を有し、しか
もこれらの特性を約400℃まで維持することができ
る。さらに、Moを共析させた無電解Ni−19重量%
Mo−1重量%P合金薄膜では、比抵抗150μΩc
m、TCR130ppm/℃の特性を約500℃まで維
持することができる(抵抗特性の絶対値はNi−W−P
合金より劣る)。なお、これらのデータの詳細について
は、「逢坂,小岩,川口; 表面技術, 40. 807 (1
989)」等の文献に記載されている。
As a method for addressing this problem, it has been studied to co-deposit a high melting point metal such as W or Mo as a third element in a Ni-P alloy. For example, electroless Ni-1
For a 3 wt% P alloy thin film, the specific resistance is 140 μΩcm, TCR
Although the characteristic of 118 ppm / ° C. can be maintained only up to 300 ° C., electroless Ni-20 wt% W-
6% by weight P alloy thin film has higher specific resistance 190μΩc
m, and a lower TCR of 56 ppm / ° C., while maintaining these properties up to about 400 ° C. Further, electroless Ni-19% by weight of eutectoid of Mo
Mo-1 wt% P alloy thin film has a specific resistance of 150 μΩc
m, the characteristic of TCR 130 ppm / ° C. can be maintained up to about 500 ° C. (The absolute value of the resistance characteristic is Ni-WP
Inferior to alloys). For details of these data, see “Osaka, Koiwa, Kawaguchi; Surface Technology, 40. 807 (1
989)).

【0004】ただし、これらの無電解めっき法により作
製された薄膜抵抗材料を、通常の金属薄膜型抵抗材料と
比較するとTCRがやや劣ることがわかる(表1)。さ
らに、一般に金属材料は薄膜化することにより比抵抗が
上昇し、TCRが減少することが知られているので(L.
I.Maissel and R.Glang; "Handbook of Thin FilmTechn
ology", p.18-6 (McGraw-Hill, 1970) 等)、表1に示
した金属抵抗材料が実際には真空蒸着やスパッタリング
などの乾式成膜法を用いて作製されていることを考慮す
ると、表1に示す以上の特性を発現することも可能であ
る。これに対し、無電解めっき法などの湿式成膜法は、
乾式成膜法に比較して、コスト・量産性において優れる
ものの、極薄膜領域での膜厚や物性が不安定であるため
に、薄膜化することにより抵抗特性の向上を期待するの
は困難である。従って、無電解めっき法による薄膜抵抗
材料は、その用途が比較的抵抗値の低い領域、TCRが
高くても許容される領域に限定されているのが現状であ
る。
[0004] However, it can be seen that the TCR of the thin-film resistance materials produced by these electroless plating methods is slightly inferior to that of ordinary metal thin-film resistance materials (Table 1). Further, it is generally known that when a metal material is thinned, the specific resistance increases and the TCR decreases (L.
I.Maissel and R.Glang; "Handbook of Thin FilmTechn
ology ", p.18-6 (McGraw-Hill, 1970)), taking into account that the metal resistive materials shown in Table 1 are actually manufactured using a dry film forming method such as vacuum evaporation or sputtering. Then, it is also possible to exhibit the characteristics described above in Table 1. On the other hand, the wet film forming method such as the electroless plating method,
Compared to the dry film formation method, it is superior in cost and mass productivity, but because the film thickness and physical properties in the ultra-thin film region are unstable, it is difficult to expect improvement of the resistance characteristics by thinning. is there. Therefore, at present, the use of the thin film resistance material by the electroless plating method is limited to a region having a relatively low resistance value and a region permitted even if the TCR is high.

【0005】[0005]

【表1】 [Table 1]

【0006】[0006]

【本発明が解決しようとする課題】しかるに、無電解め
っき法の低コストで、しかも量産性に優れるという長所
を活かしつつ、かつ高抵抗領域、高精密領域にその用途
を広げるためには以下に述べる特性を満足することが課
題となる。 イ.より比抵抗値の高い材料を開発すること。 ロ.より温度抵抗係数(TCR)の低い材料を開発する
こと。 ハ.これらの比抵抗値、TCRがより高い温度まで安定
に維持されること。
[Problems to be Solved by the Invention] However, in order to make use of the advantages of the low cost of the electroless plating method and excellent mass productivity, and to expand its application to a high resistance area and a high precision area, the following is required. The challenge is to satisfy the characteristics described. I. Develop materials with higher specific resistance. B. To develop a material with a lower temperature coefficient of resistance (TCR). C. These specific resistance values and TCR must be stably maintained up to higher temperatures.

【0007】[0007]

【課題を解決するための手段および作用】本発明はかか
る技術的背景の下に創案されたものであり、極めて高い
比抵抗と低いTCRを有し、しかもこれらの電気抵抗特
性が極めて高い温度まで安定に維持することが可能な無
電解Ni系合金薄膜抵抗材料の開発を目的としたもので
ある。そして、この目的はNi−P合金に対し、W・M
oと並ぶ高融点金属であるレニウム(以下Reと称す
る)を第3元素として共析させた無電解Ni−Re−P
合金を作製することにより達成される。
SUMMARY OF THE INVENTION The present invention has been made in view of the above technical background, and has an extremely high specific resistance and a low TCR, and yet has an electric resistance characteristic up to an extremely high temperature. An object of the present invention is to develop an electroless Ni-based alloy thin film resistance material that can be stably maintained. The purpose of this is to use W · M for Ni-P alloy.
Electroless Ni-Re-P in which rhenium (hereinafter referred to as Re), which is a refractory metal similar to o, is eutectoid as a third element.
This is achieved by making an alloy.

【0008】本発明者らは、無電解Ni−P合金に対す
るReの共析、並びにこれにより作製された無電解Ni
−Re−P合金薄膜の熱変化挙動に関する研究を行っ
た。Reの共析は従来の無電解めっき浴に対し、過レニ
ウム酸アンモニウムを添加することにより行ったが、め
っき浴を最適化することによりReについては0〜75
重量%、Pについては0〜16重量%の範囲で共析が可
能となった。これはWの最大共析量20重量%(I.Koiw
a, M.Usuda and T.Osaka; J.Electrochem.Soc., 135, 1
222 (1988)等)、Moの最大共析量22重量%(I.Koiwa,
M.Usuda,K. Yamada and T.Osaka; J.Electrochem.So
c., 135, 718 (1988) 等)と比較すると飛躍的な共析量
と言うことができる。以下、これらの無電解Ni−Re
−P合金薄膜の電気抵抗特性とそれらの加熱による変化
について概説する。
The present inventors have proposed the eutectoid deposition of Re on an electroless Ni—P alloy and the electroless Ni
A study on thermal change behavior of -Re-P alloy thin film was conducted. The eutectoid of Re was carried out by adding ammonium perrhenate to a conventional electroless plating bath.
With respect to weight% and P, eutectoid became possible in the range of 0 to 16 weight%. This means that the maximum eutectoid content of W is 20% by weight (I. Koiw
a, M. Usuda and T. Osaka; J. Electrochem. Soc., 135, 1
222 (1988)), the maximum eutectoid content of Mo was 22% by weight (I. Koiwa,
M.Usuda, K.Yamada and T.Osaka; J.Electrochem.So
c., 135, 718 (1988), etc.). Hereinafter, these electroless Ni-Re
The electrical resistance characteristics of the -P alloy thin films and their changes due to heating will be outlined.

【0009】無電解Ni−Re−P合金薄膜は、薄膜中
のRe含有量が大きければ大きいほど高い比抵抗を有す
るが、60重量%を境にその性質が大きく2つに分類さ
れる。イ.Re含有量60重量%以下の場合 Re含有量の増加とともに比抵抗は徐々に上昇し、例え
ばRe含有量45重量%のとき比抵抗は約150μΩc
mとなり、通常の無電解Ni−P系合金薄膜と同様の値
を示し、60重量%になると比抵抗は約350μΩcm
と極めて高い値を示す。また、TCRは負の値ではある
が、それぞれ−30〜−35ppm/℃と通常のNi−
P系合金に比較するとその絶対値は明らかに低い。ま
た、これらの皮膜に熱処理を施すと比抵抗値は温度の上
昇にともない徐々に減少するが、500℃までは通常の
Ni−P系合金より優れた値を示す。しかも、TCRは
むしろ熱処理を施した方が、その絶対値は低く、10〜
20ppm/℃と極めて良好な値を示す。従って、精密
用途に用いる場合や、高温で使用する場合は熱処理を施
すことが推奨される。
Although the electroless Ni-Re-P alloy thin film has a higher specific resistance as the Re content in the thin film is larger, its properties are roughly classified into two at 60% by weight. I. When the Re content is 60% by weight or less, the specific resistance gradually increases as the Re content increases. For example, when the Re content is 45% by weight, the specific resistance is about 150 μΩc.
m, the same value as that of a normal electroless Ni-P-based alloy thin film, and at 60% by weight, the specific resistance is about 350 μΩcm.
And an extremely high value. Further, although the TCR is a negative value, it is −30 to −35 ppm / ° C., respectively, which is a normal Ni−
Its absolute value is clearly lower than that of the P-based alloy. When these films are subjected to a heat treatment, the specific resistance gradually decreases with an increase in temperature, but shows a value superior to that of a normal Ni-P alloy up to 500 ° C. In addition, the absolute value of the TCR that has been subjected to heat treatment is lower,
It shows an extremely good value of 20 ppm / ° C. Therefore, it is recommended to perform heat treatment when used for precision applications or when used at high temperatures.

【0010】ロ.Re含有量60重量%を超える場合 この領域では薄膜中のRe含有量が増加すると、比抵抗
は指数関数的に増加し、最大約3600μΩcmにもな
る。通常の無電解めっき皮膜でこのような大きな比抵抗
を示す場合には、めっき時の内部応力による皮膜の割れ
や、酸化物の形成などが考えられるが、走査型電子顕微
鏡(SEM)やX線光電子分光法(XPS)などによる観
察によればこれらのような異常はみられなかった。現在
のところこの原因は不明であるが、めっき時に発生する
ガス等が吸着し、絶縁層を形成したものと考えられる。
事実、この領域の薄膜はTCRが−60〜−150pp
m/℃と大きく負の値を示し、半導体的な性質を示唆し
ている。しかも、この領域の皮膜の比抵抗値は高々10
0〜200℃での加熱で急激に400μΩcm程度まで
減少してしまうのでそのままでは使用できない。これに
対して200〜500℃で熱処理を施すことにより安定
化することができる。
B. When the Re content exceeds 60% by weight In this region, when the Re content in the thin film increases, the specific resistance increases exponentially, and reaches a maximum of about 3600 μΩcm. When such a large specific resistance is exhibited by a normal electroless plating film, cracking of the film or formation of an oxide due to internal stress at the time of plating may be considered, but a scanning electron microscope (SEM) or an X-ray Observations by photoelectron spectroscopy (XPS) and the like did not show any such abnormalities. Although the cause is unknown at present, it is considered that a gas or the like generated at the time of plating was adsorbed to form an insulating layer.
In fact, the thin film in this region has a TCR of -60 to -150 pp.
It shows a large negative value of m / ° C., suggesting semiconductor properties. Moreover, the specific resistance of the film in this region is at most 10
Heating at 0 to 200 ° C. sharply reduces it to about 400 μΩcm, so that it cannot be used as it is. On the other hand, it can be stabilized by performing a heat treatment at 200 to 500 ° C.

【0011】イ.の領域の皮膜と比較すると、同じ温度
で熱処理した場合の比抵抗は、ロ.の領域の方が大きな
値を示すので、高比抵抗でかつ高温まで安定であること
が必要な場合はロ.の領域の皮膜を熱処理して用いるべ
きである。TCRについてはイ.と同様、熱処理を施す
ことにより±20ppm/℃程度になり、極めて良好な
値を示す。
A. The specific resistance when heat-treated at the same temperature is lower than that of the film in the region of b. In the case where high specific resistance and stability up to high temperature are required, b. The film in the region should be heat treated and used. About TCR Similarly to the above, the temperature becomes about ± 20 ppm / ° C. by performing the heat treatment, which is an extremely good value.

【0012】以上のことより、無電解Ni−Re−P合
金薄膜抵抗体は従来の無電解Ni−P系合金薄膜抵抗体
に比較して、全てにおいて極めて良好な電気抵抗特性を
有することがわかる。しかし、これらの良好な電気抵抗
特性は他のNi−P系合金薄膜同様、皮膜構造が非晶質
であることにより説明できる。前述のイ,ロの組成領域
全てについて、X線回折(XRD)や電子線回折(TH
EED)による構造解析を行うと、500℃まで熱処理
しても非晶質状態が維持されていることがわかる。
From the above, it can be understood that the electroless Ni-Re-P alloy thin film resistor has extremely excellent electric resistance characteristics in all cases as compared with the conventional electroless Ni-P alloy thin film resistor. . However, these good electric resistance characteristics can be explained by the fact that the film structure is amorphous, like other Ni-P-based alloy thin films. X-ray diffraction (XRD) and electron beam diffraction (TH
A structural analysis by EED) shows that the amorphous state is maintained even after heat treatment to 500 ° C.

【0013】例えば、無電解Ni−P合金薄膜では30
0℃、無電解Ni−W−P合金薄膜では400℃で非晶
質状態が失われるので、Reは非晶質状態を極めて安定
化する効果を有するといえる。これは先に述べたよう
に、ReはW、Mo等に比較してその共析量が極めて大
きく、これがその一因となっているのであろう。一方、
無電解Ni−Mo−P合金薄膜では適度に熱処理を施す
ことによりNi−Re−P合金薄膜同様500℃までの
熱的安定性を有するが、この皮膜は一部意識的に結晶質
層を形成させることにより熱的安定化を図っているの
で、結晶質部分が金属的な電気物性を示すので抵抗特性
がやや劣る(比抵抗が低く、TCRが高い)。
For example, in the case of an electroless Ni—P alloy thin film, 30
Since the amorphous state is lost at 400 ° C. in the electroless Ni—WP alloy thin film at 0 ° C., Re can be said to have an effect of extremely stabilizing the amorphous state. This is because Re has an extremely large amount of eutectoid as compared with W, Mo, etc. as described above, which may be one of the reasons. on the other hand,
The electroless Ni-Mo-P alloy thin film has thermal stability up to 500 ° C like the Ni-Re-P alloy thin film by moderate heat treatment, but this film partially forms a crystalline layer consciously. By doing so, thermal stabilization is achieved, so that the crystalline portion exhibits metallic electrical properties, so that the resistance characteristics are slightly inferior (low specific resistance, high TCR).

【0014】本発明で対象とする無電解Ni−Re−P
合金薄膜抵抗体の好適なるRe含有量は5〜75重量
%、P含有量1〜14重量%である。しかし、不純物と
して微量のCo、Cu、Cr、Fe等の金属元素が薄膜
中に共存しても支障はない。また、他の無電解Ni系薄
膜抵抗材料では、実際の使用において安定化のための熱
処理を施されていることを考慮すると、本発明による無
電解Ni−Re−P合金薄膜抵抗体においても、より精
密で、より高い熱的安定性を要求するために200〜5
00℃の温度で熱処理(例えば1時間程度)することが
推奨される。特に、Re含有量60重量%以上の抵抗体
ではこの熱処理は不可欠である。
Electroless Ni-Re-P object of the present invention
The preferred Re content of the alloy thin film resistor is 5 to 75% by weight, and the P content is 1 to 14% by weight. However, there is no problem even if trace amounts of metal elements such as Co, Cu, Cr, and Fe coexist in the thin film as impurities. Further, considering that other electroless Ni-based thin-film resistance materials have been subjected to a heat treatment for stabilization in actual use, the electroless Ni-Re-P alloy thin-film resistor according to the present invention also has: 200-5 to demand more precise and higher thermal stability
It is recommended to heat-treat at a temperature of 00 ° C. (for example, about 1 hour). In particular, this heat treatment is indispensable for a resistor having a Re content of 60% by weight or more.

【0015】[0015]

【実施例】(実施例1)<Ni−45重量%Re−6重
量%P合金薄膜形成> 96%α−アルミナセラミックスを基板として用い、無
電解Ni−Re−P合金薄膜抵抗体を作製した。
EXAMPLES (Example 1) <Formation of Ni-45 wt% Re-6 wt% P alloy thin film> An electroless Ni-Re-P alloy thin film resistor was manufactured using 96% α-alumina ceramics as a substrate. .

【0016】無電解Ni−Re−P合金薄膜抵抗体製造
工程は以下の通りである。 イ.脱脂…セラミックス基板を常温でエタノール中に浸
漬し、10分間超音波洗浄を施した。 ロ.活性化、水洗…SnCl2(1g/l)、36%HC
l(1ml/l)水溶液に1分間浸漬(常温)した後、脱
イオン水洗を行った。 ハ.触媒化…PdCl2(0.1g/l)、36%HCl
(0.1ml/l)水溶液中に1分間浸漬(常温)した後、
脱イオン水洗を行った。 ニ.反復処理…前記ロ、ハの処理を再度行った。 ホ.無電解めっき、水洗…前記処理後のセラミックス基
板を無電解Ni−Re−P合金めっき浴中に浸漬し、R
e含有量45重量%、P含有量6重量%、膜厚1.5μ
mのNi−Re−P合金皮膜を得た後、脱イオン水洗を
行い熱風にて乾燥した。めっき浴組成は以下に示す通り
である。なお、膜厚の調整は処理時間の選択によって行
われる。 NaH2PO2・H2O 0.10 mol/L Na3657・2H2O 0.40 mol/L NiSO4・6H2O 0.075 mol/L NH4ReO4 0.005 mol/L *注:NaOH、H2SO4によりpHを9.0に調整し
た。めっき浴温度は90℃とした。
The steps of manufacturing the electroless Ni-Re-P alloy thin film resistor are as follows. I. Degreasing: The ceramic substrate was immersed in ethanol at room temperature and subjected to ultrasonic cleaning for 10 minutes. B. Activation, washing with water: SnCl 2 (1 g / l), 36% HC
After being immersed in a 1 (1 ml / l) aqueous solution for 1 minute (normal temperature), the substrate was washed with deionized water. C. Catalysis: PdCl 2 (0.1 g / l), 36% HCl
(0.1ml / l) After immersing in an aqueous solution for 1 minute (normal temperature),
Deionized water washing was performed. D. Repetitive processing: The processing of (b) and (c) was performed again. E. Electroless plating, water washing: The ceramic substrate after the above treatment is immersed in an electroless Ni-Re-P alloy plating bath,
e content 45% by weight, P content 6% by weight, film thickness 1.5μ
After obtaining a Ni-Re-P alloy film of m, the substrate was washed with deionized water and dried with hot air. The composition of the plating bath is as shown below. The adjustment of the film thickness is performed by selecting the processing time. NaH 2 PO 2 · H 2 O 0.10 mol / L Na 3 C 6 H 5 O 7 · 2H 2 O 0.40 mol / L NiSO 4 · 6H 2 O 0.075 mol / L NH 4 ReO 4 0. 005 mol / L * Note: The pH was adjusted to 9.0 with NaOH and H 2 SO 4 . The plating bath temperature was 90 ° C.

【0017】抵抗特性の評価 イ.比抵抗値は4探針直流法により測定した。 ロ.TCRは冷凍器付恒温槽中において−60〜70℃
の温度範囲で温度に対する抵抗変化を測定し、その時の
温度−抵抗直線の傾きを25℃における抵抗値で除算し
て求めた。 ハ.加熱に対する皮膜の安定性は、真空熱処理炉にて2
00、300、400、500、600、700、80
0℃の各温度で1時間熱処理した後の皮膜について、
イ.ロで述べた比抵抗、TCRを測定することにより評
価した。
Evaluation of resistance characteristics a. The specific resistance was measured by a four-probe DC method. B. TCR is -60 to 70 ° C in a thermostat with refrigerator
The change in resistance with respect to temperature was measured in the temperature range described above, and the slope of the temperature-resistance straight line at that time was divided by the resistance value at 25 ° C. C. The stability of the film to heating is 2 in a vacuum heat treatment furnace.
00, 300, 400, 500, 600, 700, 80
About the film after heat treatment at each temperature of 0 ° C. for 1 hour,
I. Evaluation was made by measuring the specific resistance and TCR described in (b).

【0018】(実施例2) Ni−60重量%Re−3
重量%P合金薄膜形成 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっき浴のNH4ReO4を0.01mol/
L とすることにより、Re含有量60重量%、P含有量
3重量%なる無電解Ni−Re−P合金薄膜抵抗体を得
た。また、抵抗特性の評価方法も実施例1と同様の方法
を用いた。加えて、500℃で1時間熱処理することに
より十分に安定化させた皮膜を作製し、真空炉中で加熱
過程の抵抗変化を連続的に測定(昇温速度:10℃/
分)することにより、より実際的に熱的安定性を立証し
た。
Example 2 Ni-60 wt% Re-3
Formation of a wt% P alloy thin film A sample was prepared basically in the same manner as in Example 1. However, the NH 4 ReO 4 of the electroless plating bath was 0.01 mol /
By setting to L, an electroless Ni-Re-P alloy thin film resistor having a Re content of 60% by weight and a P content of 3% by weight was obtained. In addition, the same method as in Example 1 was used for evaluating the resistance characteristics. In addition, a sufficiently stabilized film is produced by heat treatment at 500 ° C. for 1 hour, and the resistance change during the heating process is continuously measured in a vacuum furnace (temperature rise rate: 10 ° C. /
Min.) Proved the thermal stability more practically.

【0019】(実施例3) Ni−70重量%Re−2
重量%P合金薄膜形成 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっき浴のNH4ReO4を0.02mol/
L とすることにより、Re含有量70重量%、P含有量
2重量%なる無電解Ni−Re−P合金薄膜抵抗体を得
た。また、抵抗特性の評価方法も実施例1と同様の方法
を用いた。
(Example 3) Ni-70% by weight Re-2
Formation of a wt% P alloy thin film A sample was prepared basically in the same manner as in Example 1. However, the NH 4 ReO 4 of the electroless plating bath was 0.02 mol /
By setting to L, an electroless Ni-Re-P alloy thin film resistor having a Re content of 70% by weight and a P content of 2% by weight was obtained. In addition, the same method as in Example 1 was used for evaluating the resistance characteristics.

【0020】(実施例4) Ni−75重量%Re−1
重量%P合金薄膜形成 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっき浴のNH4ReO4を0.03mol/
L とすることにより、Re含有量75重量%、P含有量
1重量%なる無電解Ni−Re−P合金薄膜抵抗体を得
た。また、抵抗特性の評価方法も実施例1と同様の方法
を用いた。
Example 4 Ni-75 wt% Re-1
Formation of a wt% P alloy thin film A sample was prepared basically in the same manner as in Example 1. However, the NH 4 ReO 4 of the electroless plating bath was 0.03 mol /
By setting to L, an electroless Ni-Re-P alloy thin film resistor having a Re content of 75% by weight and a P content of 1% by weight was obtained. In addition, the same method as in Example 1 was used for evaluating the resistance characteristics.

【0021】(比較例1) Ni−15重量%P合金薄
膜形成 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっきは以下に示す浴を用いて行い、P含有
量15重量%なる無電解Ni−P合金薄膜抵抗体を得
た。また、抵抗特性の評価方法は実施例1と同様の方法
を用いた。ただし、熱処理温度は300℃のみとした。 NaH2PO2・H2O 0.15 mol/L (NH4)2SO4 0.50 mol/L Na3657・2H2O 0.20 mol/L NiSO4・6H2O 0.10 mol/L *注:NaOHによりpHを6.0に調整した。めっき
浴温度は90℃とした。
Comparative Example 1 Formation of Ni-15 wt% P alloy thin film A sample was prepared basically in the same manner as in Example 1. However, the electroless plating was performed using the following bath to obtain an electroless Ni-P alloy thin film resistor having a P content of 15% by weight. In addition, the same method as in Example 1 was used for evaluating the resistance characteristics. However, the heat treatment temperature was only 300 ° C. NaH 2 PO 2 · H 2 O 0.15 mol / L (NH 4) 2 SO 4 0.50 mol / L Na 3 C 6 H 5 O 7 · 2H 2 O 0.20 mol / L NiSO 4 · 6H 2 O 0.10 mol / L * Note: pH was adjusted to 6.0 with NaOH. The plating bath temperature was 90 ° C.

【0022】(比較例2) Ni−20重量W−6重量
%P合金薄膜形成 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっきは以下に示す浴を用いて行い、W含有
量20重量%、P含有量6重量%なる無電解Ni−W−
P合金薄膜抵抗体を得た。また、抵抗特性の評価方法は
実施例1と同様の方法を用いた。ただし、熱処理温度は
400℃のみとした。また、この皮膜を400℃にて1
時間熱処理することにより安定化させ、実施例2で行っ
た真空熱処理炉による連続昇温中の抵抗変化についても
測定した。 NaH2PO2・H2O 0.10 mol/L Na3657・2H2O 0.60 mol/L NiSO4・6H2O 0.075 mol/L Na2WO4・2H2O 0.60 mol/L *注:NaOHによりpHを9.0に調整した。めっき
浴温度は90℃とした。
Comparative Example 2 Formation of Ni-20 wt% W-6 wt% P alloy thin film A sample was prepared basically in the same manner as in Example 1. However, the electroless plating was performed using the bath shown below, and the electroless Ni—W— having a W content of 20% by weight and a P content of 6% by weight was used.
A P alloy thin film resistor was obtained. In addition, the same method as in Example 1 was used for evaluating the resistance characteristics. However, the heat treatment temperature was only 400 ° C. Further, this film was heated at 400 ° C. for 1 hour.
It was stabilized by heat treatment for a period of time, and the resistance change during continuous temperature increase by the vacuum heat treatment furnace performed in Example 2 was also measured. NaH 2 PO 2 · H 2 O 0.10 mol / L Na 3 C 6 H 5 O 7 · 2H 2 O 0.60 mol / L NiSO 4 · 6H 2 O 0.075 mol / L Na 2 WO 4 · 2H 2 O 0.60 mol / L * Note: The pH was adjusted to 9.0 with NaOH. The plating bath temperature was 90 ° C.

【0023】(比較例3) Ni−19重量%Mo−1
重量%P合金薄膜形成 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっきは以下に示す浴を用いて行い、Mo含
有量19重量%、P含有量1重量%なる無電解Ni−M
o−P合金薄膜抵抗体を得た。また、抵抗特性の評価方
法は実施例1と同様の方法を用いた。ただし、熱処理温
度は500℃のみとした。また、この皮膜を500℃に
て1時間熱処理することにより安定化させ、実施例2で
行った真空熱処理炉による連続昇温中の抵抗変化につい
ても測定した。 NaH2PO2・H2O 0.20 mol/L Na3657・2H2O 0.10 mol/L C243 0.20 mol/L NiSO4・6H2O 0.10 mol/L Na2MoO4・2H2O 0.01 mol/L *注:NaOHによりpHを9.0に調整した。めっき
浴温度は90℃とした。
Comparative Example 3 Ni-19 wt% Mo-1
Formation of a wt% P alloy thin film A sample was prepared basically in the same manner as in Example 1. However, the electroless plating was performed using the following bath, and the electroless Ni-M having a Mo content of 19% by weight and a P content of 1% by weight was used.
An o-P alloy thin film resistor was obtained. In addition, the same method as in Example 1 was used for evaluating the resistance characteristics. However, the heat treatment temperature was only 500 ° C. Further, this film was stabilized by heat treatment at 500 ° C. for 1 hour, and the resistance change during continuous temperature increase by the vacuum heat treatment furnace performed in Example 2 was also measured. NaH 2 PO 2 · H 2 O 0.20 mol / L Na 3 C 6 H 5 O 7 · 2H 2 O 0.10 mol / L C 2 H 4 O 3 0.20 mol / L NiSO 4 · 6H 2 O 0.10 mol / L Na 2 MoO 4 · 2H 2 O 0.01 mol / L * Note: the pH was adjusted to 9.0 by NaOH. The plating bath temperature was 90 ° C.

【0024】(試験結果)図1、図2に種々の温度で熱
処理後の実施例1〜4で述べた無電解Ni−Re−P合
金薄膜抵抗体の比抵抗値とTCRの変化を示す。図1の
比抵抗値の変化を見ると実施例1、2の皮膜(Re含有
量60重量%以下の皮膜)は熱処理温度が上昇するに従
い、徐々に比抵抗値が減少し、500℃を超えると、さ
らに大きく減少することがわかる。一方、実施例3、4
の皮膜(Re含有量60重量%を超える皮膜)では、め
っきしたままでは極めて大きな比抵抗を示すが、200
℃での熱処理で急激に減少し、その後500℃までは緩
やかに減少する。そして、500℃を超えると再び大き
く減少する。500℃以上での変化は図2のTCRの変
化を見るとより明らかである。実施例1、2の皮膜は熱
処理温度500℃まではほぼゼロに近い値を維持し、5
00℃を超えると急激に増加する。また、実施例3、4
の皮膜ではめっきしたままの状態では大きく負の値を取
るが、200〜500℃でほぼゼロ付近に安定し、50
0℃を超えると急激に増加する。
(Test Results) FIGS. 1 and 2 show the changes in the specific resistance and the TCR of the electroless Ni-Re-P alloy thin film resistors described in Examples 1 to 4 after heat treatment at various temperatures. Looking at the change in the specific resistance in FIG. 1, the coatings of Examples 1 and 2 (the coatings having a Re content of 60% by weight or less) gradually decrease in specific resistance as the heat treatment temperature increases, and exceed 500 ° C. It can be seen that it is further reduced. On the other hand, Examples 3 and 4
(A film having a Re content of more than 60% by weight) shows an extremely large specific resistance when plated,
It decreases sharply by heat treatment at ℃, and then gradually decreases to 500 ℃. Then, when the temperature exceeds 500 ° C., the temperature greatly decreases again. The change above 500 ° C. is more apparent from the TCR change in FIG. The coatings of Examples 1 and 2 maintain a value close to zero up to a heat treatment temperature of 500 ° C.
When the temperature exceeds 00 ° C., it rapidly increases. Examples 3 and 4
The film of (1) takes a large negative value in the as-plated state, but stabilizes to almost zero at 200 to 500 ° C.
When the temperature exceeds 0 ° C., it rapidly increases.

【0025】以上の結果より、「課題を解決するための
手段および作用」において述べた次の事項が立証され
る。 1)Re含有量60重量%以下の皮膜は常温から500
℃にかけて安定な抵抗特性を有する。 2)Re含有量60重量%を超える皮膜では、めっきし
たままでは不安定なため、200〜500℃での熱処理
が必要であるが、Re含有量60重量%以下の皮膜に比
べて高い比抵抗を有し、同様に500℃まで抵抗特性は
安定である。
From the above results, the following items described in "Means and Actions for Solving the Problems" are proved. 1) A film having a Re content of 60% by weight or less is from room temperature to 500%.
It has stable resistance characteristics up to ℃. 2) A film having a Re content of more than 60% by weight is unstable when plated, and therefore requires a heat treatment at 200 to 500 ° C., but has a higher specific resistance than a film having a Re content of 60% by weight or less. , And the resistance characteristics are similarly stable up to 500 ° C.

【0026】次に、表2に各々の実施例、及び比較例に
おいて作製した皮膜のめっきしたままと、熱処理後の電
気抵抗特性(比抵抗、TCR)を比較する。表2で(
)内は熱処理後の値を示す。ここで、熱処理温度は各
々の皮膜の最大耐熱温度を採用した。すなわち、Ni−
Re−P合金については500℃、Ni−P合金につい
ては300℃、Ni−W−P合金については400℃、
Ni−Mo−P合金については500℃である。
Next, Table 2 compares the electrical resistance characteristics (specific resistance, TCR) of the films prepared in each of the examples and comparative examples as they are after being plated and after the heat treatment. In Table 2 (
The values in parentheses indicate the values after heat treatment. Here, the maximum heat-resistant temperature of each film was adopted as the heat treatment temperature. That is, Ni-
500 ° C for Re-P alloy, 300 ° C for Ni-P alloy, 400 ° C for Ni-WP alloy,
The temperature is 500 ° C. for the Ni—Mo—P alloy.

【0027】表2より、明らかに無電解Ni−Re−P
合金薄膜は高い比抵抗と低いTCRを有し、しかも高い
温度までそれらの抵抗特性が安定であることがわかる。
また、比較例で示した皮膜では、熱処理することにより
TCRの絶対値は増加するが、Ni−Re−P合金薄膜
では逆に減少しており、安定化のための熱処理効果がよ
り顕著であることが示されている。
From Table 2, it is apparent that the electroless Ni-Re-P
It can be seen that the alloy thin films have high specific resistance and low TCR, and their resistance characteristics are stable up to high temperatures.
Further, in the film shown in the comparative example, the absolute value of TCR is increased by the heat treatment, but is decreased in the Ni-Re-P alloy thin film, and the heat treatment effect for stabilization is more remarkable. It has been shown.

【0028】[0028]

【表2】 [Table 2]

【0029】表2 各種無電解Ni−P系合金薄膜の比
抵抗とTCR。熱処理後の値を( )にて示す。さら
に、図3では実施例2(Ni−Re−P)、及び比較例
2(Ni−W−P)、比較例3(Ni−Mo−P)の皮
膜について、昇温に対する連続的な抵抗変化を示した。
これによれば、以上の比抵抗測定等からもわかるように
全温度領域において実施例2が高い比抵抗を維持し、し
かも500℃を超えるまでその抵抗値には殆ど変化がみ
られない。これに対し、比較例2では300〜400℃
付近に比抵抗値の僅かな振動がみられ、400℃を超え
ると急激に減少する。さらに、比較例3では500℃ま
で比抵抗の減少はみられないが、TCRが大きなことに
起因する連続的な比抵抗値の増大が認められる。
Table 2 Specific resistance and TCR of various electroless Ni-P alloy thin films. The value after heat treatment is shown in parentheses. Further, in FIG. 3, for the coatings of Example 2 (Ni-Re-P), Comparative Example 2 (Ni-WP), and Comparative Example 3 (Ni-Mo-P), a continuous resistance change with increasing temperature was performed. showed that.
According to this, as can be seen from the above-described specific resistance measurement and the like, Example 2 maintains a high specific resistance in the entire temperature range, and its resistance value hardly changes until the temperature exceeds 500 ° C. On the other hand, in Comparative Example 2, 300 to 400 ° C.
A slight oscillation of the specific resistance value is observed in the vicinity, and when the temperature exceeds 400 ° C., the value rapidly decreases. Further, in Comparative Example 3, although the specific resistance did not decrease until 500 ° C., a continuous increase in the specific resistance due to the large TCR was observed.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、無電解
Ni−Re−P合金薄膜抵抗体では従来の無電解Ni系
合金薄膜抵抗体に比較して、イ.約1.5〜2倍の比抵
抗値を有する、ロ.極めて低いTCRを有し、しかも熱
処理を施すことによりその絶対値はほぼゼロに近づく、
ハ.安定化のための熱処理を施すことにより、500℃
までの耐熱性を有する、という利点を得ることができ
る。これらのことは、先に述べたように従来低抵抗用途
に限定されていた無電解めっき薄膜抵抗体の応用範囲
を、より高い抵抗領域、より精密さを要求される領域に
広げるものである。
As is apparent from the above description, the electroless Ni-Re-P alloy thin film resistor has the following advantages as compared with the conventional electroless Ni-based alloy thin film resistor. Having a specific resistance of about 1.5 to 2 times; It has an extremely low TCR and its absolute value approaches almost zero by heat treatment.
C. 500 ° C by performing heat treatment for stabilization
This has the advantage of having heat resistance up to. These facts extend the application range of the electroless plated thin film resistor, which has been conventionally limited to low-resistance applications, to a higher resistance region and a region where higher precision is required, as described above.

【図面の簡単な説明】[Brief description of the drawings]

図1は本発明による無電解Ni−Re−P合金薄膜抵抗
体の熱的安定性を示すために、種々の温度で熱処理した
後の比抵抗の変化を示した図(黒塗り三角:実施例1、
△:実施例2、●:実施例3、○:実施例4)、図2は
同じく本発明による無電解Ni−Re−P合金薄膜を種
々の温度で熱処理した後のTCR変化を示した図(黒塗
り三角:実施例1、△:実施例2、●:実施例3、○:
実施例4)、図3は無電解Ni−Re−P合金薄膜(実
施例2)を最適温度(500℃1時間)で安定化熱処理
した皮膜の実際の熱的安定性を調べるために、無電解N
i−W−P合金薄膜(比較例2、400℃1時間熱処
理)と無電解Ni−Mo−P合金薄膜(比較例3、50
0℃1時間熱処理)と比較しながら、真空加熱炉中にて
連続的に昇温した場合の比抵抗変化を示した図、であ
る。
FIG. 1 is a diagram showing a change in specific resistance after heat treatment at various temperatures in order to show the thermal stability of an electroless Ni-Re-P alloy thin film resistor according to the present invention (solid triangles: Examples). 1,
Δ: Example 2, ●: Example 3, ○: Example 4), and FIG. 2 shows the TCR change after heat-treating the electroless Ni—Re—P alloy thin film according to the present invention at various temperatures. (Black triangle: Example 1, Δ: Example 2, ●: Example 3, ○:
Example 4), FIG. 3 shows the results of a test to determine the actual thermal stability of a film obtained by stabilizing and heat-treating an electroless Ni—Re—P alloy thin film (Example 2) at an optimum temperature (500 ° C. for 1 hour). Electrolysis N
i-WP alloy thin film (Comparative Example 2, heat treatment at 400 ° C. for 1 hour) and electroless Ni—Mo—P alloy thin film (Comparative Examples 3, 50)
FIG. 3 is a diagram showing a change in specific resistance when the temperature is continuously increased in a vacuum heating furnace, as compared with (heat treatment at 0 ° C. for 1 hour).

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01C 7/00 H01C 7/06──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01C 7/00 H01C 7/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】無電解めっき法により基材上に形成され
た、レニウム含有量5〜75重量%、りん含有量1〜1
4重量%のNi−Re−P合金薄膜抵抗体。
1. A rhenium content of 5 to 75% by weight and a phosphorus content of 1 to 1 formed on a substrate by an electroless plating method.
4% by weight of a Ni-Re-P alloy thin film resistor.
JP3062204A 1991-03-26 1991-03-26 Electroless Ni-Re-P alloy thin film resistor Expired - Fee Related JP2866486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3062204A JP2866486B2 (en) 1991-03-26 1991-03-26 Electroless Ni-Re-P alloy thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3062204A JP2866486B2 (en) 1991-03-26 1991-03-26 Electroless Ni-Re-P alloy thin film resistor

Publications (2)

Publication Number Publication Date
JPH04297001A JPH04297001A (en) 1992-10-21
JP2866486B2 true JP2866486B2 (en) 1999-03-08

Family

ID=13193385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3062204A Expired - Fee Related JP2866486B2 (en) 1991-03-26 1991-03-26 Electroless Ni-Re-P alloy thin film resistor

Country Status (1)

Country Link
JP (1) JP2866486B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126548A1 (en) 2001-05-28 2004-07-01 Waseda University ULSI wiring and method of manufacturing the same
EP1627098A1 (en) 2003-05-09 2006-02-22 Basf Aktiengesellschaft Compositions for the currentless deposition of ternary materials for use in the semiconductor industry
RU2008111820A (en) * 2007-03-29 2009-10-10 Ибара Корпорейшн (JP) ELECTROLYTE FOR DEPOSITING OF A GALVANIC COATING BY THE CHEMICAL RESTORATION METHOD AND METHOD FOR PRODUCING A HIGH-TEMPERATURE DEVICE ELEMENT USING SUCH ELECTROLYTE

Also Published As

Publication number Publication date
JPH04297001A (en) 1992-10-21

Similar Documents

Publication Publication Date Title
JP2003003292A (en) Coated metallic product
JPS5823952B2 (en) shot key barrier device
US6140583A (en) Lead member with multiple conductive layers and specific grain size
US3172074A (en) Electrical resistors
JP2866486B2 (en) Electroless Ni-Re-P alloy thin film resistor
US3132928A (en) Simultaneous brazing and corrosion protecting refractory metals
US4042382A (en) Temperature-stable non-magnetic alloy
CN110230029B (en) Preparation method of spinel-structured manganese-nickel oxide film
JP2001011612A (en) Target material, electrode material, and packaging parts
KR20220123449A (en) Nickel-gold alloy and method of forming same
KR100884360B1 (en) Nickel silicide producing method
Sytchenko et al. Structure and Properties of Ta–Si–N Coatings Produced by Pulsed Magnetron Sputtering
KR102054594B1 (en) Tungsten thin film with improved conductivity and manufacturing method thereof
Lohvynov et al. Structural-phase state and electrophysical properties of Ru thin films
JP2008091764A (en) Electronic component, and film capacitor
CN110983255B (en) A food containing L12Preparation method of Ni-based multilayer film of ordered phase
JP3031024B2 (en) Manufacturing method of chip-type ceramic electronic component
Osaka et al. Effect of molybdenum codeposition on the thermal properties of electroless Ni-B alloy plating films.
JP2001303242A (en) Manufacturing method of sputtering target
JP2863710B2 (en) Manufacturing method of metal film resistor
JPH02274376A (en) Soldering iron tip
JP2000054122A (en) Production of titanium-nickel shape memory alloy thin film by substrate heating
JPS5845163B2 (en) How to make resistors
CN114807859A (en) Platinum film with high resistance temperature coefficient and preparation method thereof
JPS62202753A (en) Thin film type thermal head

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees