JPH02173233A - Coppery material excellent in thermal conductivity and corrosion resistance, heat-exchanger fin material, and their production - Google Patents

Coppery material excellent in thermal conductivity and corrosion resistance, heat-exchanger fin material, and their production

Info

Publication number
JPH02173233A
JPH02173233A JP32769788A JP32769788A JPH02173233A JP H02173233 A JPH02173233 A JP H02173233A JP 32769788 A JP32769788 A JP 32769788A JP 32769788 A JP32769788 A JP 32769788A JP H02173233 A JPH02173233 A JP H02173233A
Authority
JP
Japan
Prior art keywords
smaller
alloy
element whose
diffusion coefficient
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32769788A
Other languages
Japanese (ja)
Inventor
Hideo Suda
須田 英男
Kenichi Komata
小又 憲一
Kadomasa Sato
佐藤 矩正
Sumio Susa
澄男 須佐
Katsuhiko Takada
高田 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Denso Corp
Original Assignee
Furukawa Electric Co Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, NipponDenso Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP32769788A priority Critical patent/JPH02173233A/en
Priority to US07/454,460 priority patent/US5063117A/en
Priority to AU47255/89A priority patent/AU620958B2/en
Priority to KR1019890019469A priority patent/KR900010028A/en
Priority to CA002006660A priority patent/CA2006660A1/en
Priority to DE68916631T priority patent/DE68916631T2/en
Priority to EP89123942A priority patent/EP0376248B1/en
Publication of JPH02173233A publication Critical patent/JPH02173233A/en
Priority to US07/737,430 priority patent/US5176812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To manufacture a coppery material excellent in thermal conductivity and corrosion resistance by coating the surface of Cu or Cu alloy with an alloy consisting of an element having a diffusion coefficient into Cu lower than that of Zn and Zn and then applying homogenizing treatment to the above. CONSTITUTION:A film of an alloy consisting of an element having a diffusion coefficient into Cu lower than that of Zn and Zn is formed on the surface of Cu or Cu alloy. As the above Cu alloy, the one consisting of 0.01-0.13wt.% of one or more elements among Mg, Zn, Sn, Cd, Ag, Ni, P, Zr, Cr, Pb, and Al and the balance Cu and having >=90% IACS electric conductivity is used. Further, as the element having a diffusion coefficient into Cu lower than that of Zn, one or more elements among Ni, Co, Sn, and Al are suitably used. After the formation of the above alloy film, homogenizing treatment is carried out, by which an inner diffusion layer consisting of Cu and Zn is formed on the surface layer of the above Cu or Cu alloy and also a surface-side diffusion layer consisting of Cu, Zn, and the element having a diffusion coefficient into Cu lower than that of Zn is formed on the surface side. By this method, the corrosion resistance of the coppery material can be improved and deterioration in thermal conductivity can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐応力腐食割れ性、耐脱亜鉛腐食t’1等の耐
食性に優れ、かつ熱伝導性の良好な銅系材料、熱交換器
用フィン材及びそれらの製造lj法に関するものである
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a copper-based material for use in heat exchangers, which has excellent corrosion resistance such as stress corrosion cracking resistance and dezincification corrosion resistance t'1, and has good thermal conductivity. This invention relates to fin materials and their manufacturing method.

〔従来の技術及び発明が解決しようとする課題〕一般に
純銅、タフピッチ銅、リン脱酸銅、黄銅等の銅系材料は
電気器機、711子器機、熱交換器等の多岐分野に於い
て広範囲に使用されているが、酸化、硫化等の表面腐食
を受は易いため、外観を阻害されるとともに、電気接続
性、゛口11付性等の実用1の特性において重大な影響
を及ぼされ易い欠点を有するものである。また自動車の
熱交換器に使用される場合は特に融雪剤等による塩害腐
食が近年問題とされており、この塩害腐食は熱交換器に
対して放熱特性を低ドさせ、さらに強度を劣化させる等
重大な影響を与えている。
[Prior art and problems to be solved by the invention] In general, copper-based materials such as pure copper, tough pitch copper, phosphorous-deoxidized copper, and brass are widely used in various fields such as electrical appliances, 711 slave devices, and heat exchangers. However, it is easily susceptible to surface corrosion such as oxidation and sulfidation, which impairs the appearance and has the disadvantage that it tends to have a serious effect on practical properties such as electrical connectivity and opening properties. It has the following. In addition, when used in automobile heat exchangers, salt corrosion caused by snow melting agents, etc. has become a problem in recent years, and this salt corrosion reduces the heat dissipation characteristics of the heat exchanger and further deteriorates its strength. It is having a significant impact.

また銅系材料は引張応力の作用した状態で特定の環境下
におくと応力腐食割れを起こすという欠点がある。この
応力腐食割れは腐食の一形態であり、銅系材料の中でも
買銅、リン脱酸銅は応力腐食割れを起し易く、特にアン
モニアの環境の下で顕著である。なお純銅でも応力腐食
割れを起こすことが多く経験されている。
Copper-based materials also have the disadvantage of causing stress corrosion cracking when placed in certain environments under tensile stress. This stress corrosion cracking is a form of corrosion, and among copper-based materials, purchased copper and phosphorus-deoxidized copper are susceptible to stress corrosion cracking, especially in an ammonia environment. Note that even pure copper often experiences stress corrosion cracking.

従って耐応力腐食割れ性を含め耐食性に優れた銅系材料
が望まれるわけであるが、この耐食性の改善は例えばC
u−Ni系耐食合金の如く第2.第3元素の添加による
材料そのものの合金化によっても可能であるがコスト増
等を招き経済的にも不利となる。
Therefore, copper-based materials with excellent corrosion resistance including stress corrosion cracking resistance are desired.
Second, like the u-Ni corrosion-resistant alloy. Although it is possible to alloy the material itself by adding a third element, this increases cost and is economically disadvantageous.

また半導体分野では高密度実装化に伴なう発熱量の増大
の為、材料の熱伝導性は重要な特性のひとつであり、高
伝熱性材料が要求されているが、これは放熱を目的とし
た熱交換器用フィン材に於いても同様である。銅はこの
要求を満たす高導電性という優れた特性をもつのである
が、前記耐食性を向上させる為の材料そのものの合金化
によっては熱伝導性の大巾な低下を招き、耐食性の面で
は優れるも高導電性を要求される材料としては不適なも
のとなってしまう。
In addition, in the semiconductor field, the thermal conductivity of materials is one of the important characteristics due to the increase in heat generation due to high-density packaging, and high heat conductive materials are required. The same applies to the heat exchanger fin material. Copper has the excellent property of high electrical conductivity that satisfies this requirement, but if the material itself is alloyed to improve its corrosion resistance, the thermal conductivity will be drastically reduced, and although it is excellent in terms of corrosion resistance, This makes it unsuitable as a material that requires high conductivity.

一方本来腐食は表面での現象であることから材料の表面
のみを改質することにすれば熱伝導性の低下を低くおさ
え、耐食性を向上させることが可能である。
On the other hand, since corrosion is originally a phenomenon on the surface, by modifying only the surface of the material, it is possible to suppress the decrease in thermal conductivity and improve corrosion resistance.

このような考えに基づき例えば自動車ラジェター用フィ
ン材としてはCu系材料の表面にZnの拡散層を形成し
、犠牲陽極的に内部の芯材を保護し、熱伝導性は芯材に
もたせた熱交換器用フィン材が提案されている。しかし
ながらこの場合は表面がCu−Zn合金、いわゆる黄銅
となるため応力腐食割れや黄銅特有の脱11[鉛腐食に
よりZnが消失し、長期間に渡ってZ nの犠牲陽極効
果を保持することができない問題がある。また表層に形
成されるZnの拡散層は熱伝導性との兼ね合いにより、
片側数μm程度に限定されているのでZnの拡散層の脱
亜鉛腐食が効果的に抑制防止できれば、更に耐食性に優
れた熱交換器用フィン材が期待でき、薄肉化も可能とな
る。
Based on this idea, for example, as a fin material for an automobile radiator, a Zn diffusion layer is formed on the surface of a Cu-based material to protect the internal core material as a sacrificial anode, and the thermal conductivity is determined by the heat imparted to the core material. Fin materials for exchangers have been proposed. However, in this case, the surface becomes a Cu-Zn alloy, so-called brass, which causes stress corrosion cracking and the desorption characteristic of brass (Zn disappears due to lead corrosion, making it difficult to maintain the sacrificial anode effect of Zn over a long period of time). There is a problem that cannot be done. In addition, the Zn diffusion layer formed on the surface layer has thermal conductivity.
Since the thickness is limited to about several micrometers on one side, if the dezincification corrosion of the Zn diffusion layer can be effectively suppressed and prevented, a fin material for heat exchangers with even better corrosion resistance can be expected, and it will also be possible to make the thickness thinner.

現在のところ、このような応力腐食割れや黄銅特有の脱
亜鉛腐食を抑制するためには、Cu−Zn拡散層中に耐
食性の改善に有効な第3元素を添加してZn拡散層自体
の高耐食化を図る方法がとられている。
At present, in order to suppress such stress corrosion cracking and dezincification corrosion peculiar to brass, it is necessary to add a third element that is effective in improving corrosion resistance to the Cu-Zn diffusion layer and increase the Zn diffusion layer itself. Methods are being taken to improve corrosion resistance.

しかし脱亜鉛腐食を抑制する元素は種々考えられるが、
これらの元素を銅に添加した時の熱伝導性の低下は一般
的に同量のZnを添加した時に比し著しく大きくなって
しまう。従ってこれらの元素を脱亜鉛腐食等を効果的に
抑制防止するに十分な量を拡散層全体に添加するとZn
のみの時に比し脱亜鉛腐食は抑制され、耐食性は向上す
るが熱伝導性の低下が大きくなってしまう。
However, various elements can be considered to suppress dezincification corrosion, but
Generally, when these elements are added to copper, the decrease in thermal conductivity is significantly greater than when the same amount of Zn is added. Therefore, if sufficient amounts of these elements are added to the entire diffusion layer to effectively suppress and prevent dezincification corrosion, Zn
Dezincification corrosion is suppressed and corrosion resistance is improved compared to the case where the dezincification process is only carried out, but the thermal conductivity is greatly reduced.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討した結果、銅系材料の表面
に形成したZ n拡散層の脱亜鉛腐食等を軽減し、Zn
拡散層中への第3元素の添加による熱伝導性の低下を少
なくした熱伝導性と耐食性に優れた銅系材料、熱交換器
用フィン材及びそれらの製造法を開発したものである。
In view of this, as a result of various studies, the present invention reduces dezincification corrosion of the Zn diffusion layer formed on the surface of copper-based materials, and
We have developed a copper-based material with excellent thermal conductivity and corrosion resistance that reduces the decrease in thermal conductivity due to the addition of a third element into the diffusion layer, a fin material for heat exchangers, and a method for manufacturing them.

即ち本発明銅系材料と熱交換器用フィン材はCu又はC
u合金の表層に、CuとZnからなる内側拡散層と、そ
の表面側にCuとZ nとCu中への拡散係数がZnよ
りも小さい元素からなる表面側拡散層を形成したことを
特徴とするものである。
That is, the copper-based material and heat exchanger fin material of the present invention are Cu or C.
It is characterized by forming an inner diffusion layer made of Cu and Zn on the surface layer of the u alloy, and a surface side diffusion layer made of Cu, Zn, and an element whose diffusion coefficient into Cu is smaller than that of Zn on the surface side. It is something to do.

また本発明の他の銅系材料と熱交換器用フィン材はMg
、Zn、Sn、Cd、Ag、Ni。
In addition, other copper-based materials and heat exchanger fin materials of the present invention include Mg
, Zn, Sn, Cd, Ag, Ni.

P、Zr、Cr、Pb、Alの中の1種又は2種以上を
合計で0.01〜0.13w1%を含み、残部Cuから
なる導電率90%IACS以上の耐熱銅条表面にCuと
Znからなる内側拡散層と、その表面側にCuとZnと
Cu中への拡散係数がZnよりも小さい元素からなる表
面側拡散層を形成したことを特徴とするものである。
The surface of the heat-resistant copper strip with an electrical conductivity of 90% IACS or higher is made of Cu, containing one or more of P, Zr, Cr, Pb, and Al in a total of 0.01 to 0.13 w1%, and the balance being Cu. It is characterized in that an inner diffusion layer made of Zn and a surface side diffusion layer made of Cu, Zn, and an element whose diffusion coefficient into Cu is smaller than that of Zn are formed on the surface side thereof.

またこれら銅系材料と熱交換器用フィン材の本発明製造
方法はCu又はCu合金の表面に、Cu中への拡散係数
がZnよりも小さい元素とZnからなる合金皮膜を形成
した後、加熱拡散処理を施してCu又はCu合金の表層
にCuとZnからなる内側拡散層と、その表面側にCu
とZnとCu中への拡散係数がZ nよりも小さい元素
からなる表面側拡散層を形成することを特徴とするもの
である。
In addition, the present invention's manufacturing method for these copper-based materials and heat exchanger fin materials involves forming an alloy film on the surface of Cu or a Cu alloy consisting of Zn and an element whose diffusion coefficient into Cu is smaller than that of Zn, and then heating and diffusing the film. After processing, an inner diffusion layer consisting of Cu and Zn is formed on the surface layer of Cu or Cu alloy, and a Cu layer is formed on the surface side of the inner diffusion layer.
The method is characterized in that a surface-side diffusion layer is formed of an element having a smaller diffusion coefficient into Zn and Cu than Zn.

さらに他の本発明製造方法はCu又はCu合金の表面に
、Cu中への拡散係数がZnよりも小さい元素とZnか
らなる合金皮膜を形成した後、加熱拡散処理を施してC
u又はCu合金の表層にCuとZnからなる内側拡散層
と、その表面側にCuとZnとCu中への拡散係数がZ
nよりも小さい元素からなる表面側拡散層を形成し、し
かる後圧延加工または伸線加工を施すことを特徴とする
ものである。
Still another manufacturing method of the present invention is to form an alloy film made of Zn and an element whose diffusion coefficient into Cu is smaller than that of Zn on the surface of Cu or a Cu alloy, and then perform a heating diffusion treatment to
There is an inner diffusion layer consisting of Cu and Zn on the surface layer of u or Cu alloy, and the diffusion coefficient of Cu and Zn into Cu is on the surface side.
The method is characterized in that a surface-side diffusion layer made of an element smaller than n is formed, and then rolling or wire drawing is performed.

また他の本発明製造方法はMg、Zn、Sn。In addition, other manufacturing methods of the present invention include Mg, Zn, and Sn.

Cd、Ag、Ni、P、Zr、Cr、Pb。Cd, Ag, Ni, P, Zr, Cr, Pb.

Alの中の1種又は2種以上を合計で0.01〜G、1
3wt%を含み、残部Cuからなる導電率90%八〇へ
以上の耐熱銅条表面にCu中への拡散係数がZnよりも
小さい元素とZ nからなる合金皮膜を形成した後、加
熱拡散処理を施してCu又はCu合金の表層にCuとZ
 nからなる内側拡散層と、その表面側にCuとZnと
Cu中への拡散係数がZ nよりも小さい元素からなる
表面側拡散層を形成することを特徴とするものである。
One or more types of Al in total from 0.01 to G, 1
After forming an alloy film consisting of an element whose diffusion coefficient into Cu is smaller than that of Zn and Zn on the surface of a heat-resistant copper strip with a conductivity of 90% or more and consisting of 3wt% and the balance Cu, heat diffusion treatment is performed. to add Cu and Z to the surface layer of Cu or Cu alloy.
The present invention is characterized in that an inner diffusion layer made of Zn and a surface side diffusion layer made of Cu, Zn, and an element whose diffusion coefficient into Cu is smaller than Zn are formed on the surface side thereof.

そしてさらに本発明の他の製造方法はMg。Furthermore, another manufacturing method of the present invention is Mg.

Zn、Sn、Cd、Ag、Ni、P、Zr。Zn, Sn, Cd, Ag, Ni, P, Zr.

Cr、Pb、Al(1)中77)l pJj又は2N以
上ヲ合計で0.01〜0.13wt%を含み、残部CI
Iからなる導電率90%IACS以上の耐熱銅条表面に
Cu中への拡散係数がZnよりも小さい元素とZnから
なる合金皮膜を形成した後、加熱拡散処理を施してCu
又はCu合金の表層にCuとZnからなる内側拡散層と
、その表面側にCuとZ nとCu中への拡散係数−h
< Z nよりも小さい元素からなる表面側拡散層を形
成し、しかる後圧延加工または伸線加工を施すことを特
徴とするものである。
Contains a total of 0.01 to 0.13 wt% of 77)l pJj or 2N or more in Cr, Pb, Al (1), and the remainder CI
After forming an alloy film consisting of Zn and an element whose diffusion coefficient into Cu is smaller than that of Zn on the surface of a heat-resistant copper strip with an electrical conductivity of 90% IACS or higher, a thermal diffusion treatment is performed to remove Cu.
Or an inner diffusion layer consisting of Cu and Zn on the surface layer of a Cu alloy, and a diffusion coefficient of Cu and Zn into Cu on the surface side -h
<Z A surface-side diffusion layer made of an element smaller than n is formed, and then rolling or wire drawing is performed.

そして上記いずれの場合もCu中への拡散係数がZ n
よりも小さい元素としてはNi、Co。
In any of the above cases, the diffusion coefficient into Cu is Z n
Ni and Co are smaller elements.

Sn、Alの何れか1種又は2種以上を用いるのは効果
的である。
It is effective to use one or more of Sn and Al.

〔作 用〕[For production]

本発明はCu又はCu合金の表面にCu中への拡散係数
がZ nよりも小さい元素(X)とZnとの耐食性に優
れた合金皮膜を形成した後、加熱拡散処理を施すことに
より、Cu中への拡散速度の差を利用し、表面側にCu
中への拡散速度がZnよりも小さいX元素を含有するC
u−Zn−X合金からなる表面側拡散層を形成し、更に
そのF層にCu−Zn合金からなる内側拡散層を形成し
たもので、表面脱亜鉛腐食を軽減し、かつ脱亜鉛腐食を
効果的に抑制防止するのに十分な量のX元素を添加する
ことによる導電率の低下を、X元素を拡散層全体に分布
させずに、表面側にとどめることにより低く抑えたもの
である。
In the present invention, after forming a highly corrosion-resistant alloy film of Zn and an element (X) whose diffusion coefficient into Cu is smaller than that of Zn on the surface of Cu or a Cu alloy, Cu Utilizing the difference in the diffusion rate inside, Cu is added to the surface side.
C containing element X whose diffusion rate into the interior is lower than that of Zn
A surface side diffusion layer made of a u-Zn-X alloy is formed, and an inner diffusion layer made of a Cu-Zn alloy is formed on the F layer, which reduces surface dezincification corrosion and improves dezincification corrosion. The reduction in conductivity caused by adding a sufficient amount of the X element to suppress and prevent the diffusion layer is suppressed by keeping the X element on the surface side without distributing it throughout the diffusion layer.

しかしてCu中への拡散速度がZnより遅いX元素とし
てNi、Co、Sn、Alの何れか1種又は2種以上を
用いたのは、約10wt%以上のNi、Coの鉄族を含
有するZn合金皮膜をホットデイツプ法により形成する
場合には約800℃以上の高温を要するため、工業上極
めて困難であり実際的ではないが、鉄族とZ nとはそ
の電位差にもかかわらず、電位的に卑であるZnが優先
析出する異常共析型合金メツキとして、電気メツキ法に
より比較的容易に鉄族とZnの合金メツキ皮膜が形成で
きるためである。
However, the use of one or more of Ni, Co, Sn, and Al as the X element whose diffusion rate into Cu is slower than that of Zn is because it contains about 10 wt% or more of the iron group of Ni and Co. When forming a Zn alloy film using the hot dip method, it requires a high temperature of approximately 800°C or higher, which is extremely difficult and impractical from an industrial perspective. This is because an alloy plating film of iron group and Zn can be formed relatively easily by electroplating as an anomalous eutectoid alloy plating in which Zn, which is relatively base, precipitates preferentially.

またSn、Alについては、Snの場合は電気メツキ法
によっても、ホットデイツプ法によってもZn−Sn合
金皮膜の形成が工業的にも可能であるためであり、Af
!の場合は電気メツキ法によってZn−A1合金メツキ
皮膜を形成することは困難であるがホットデイツプ法等
によれば比較的容易にZn−A1合金皮膜を形成するこ
とができるためである。
In addition, regarding Sn and Al, it is possible to form a Zn-Sn alloy film industrially by electroplating method or hot dip method in the case of Sn.
! In this case, it is difficult to form a Zn-A1 alloy plating film by electroplating, but it is relatively easy to form a Zn-A1 alloy film by hot dipping or the like.

またいずれの合金皮膜を形成する場合も上記方法以外に
溶射やPVDを用いることかできる。
Further, when forming any alloy film, thermal spraying or PVD can be used in addition to the above-mentioned method.

〔実施例〕〔Example〕

実施例(1) 高周波溶解炉を用いて、木炭で場面を覆いながら電気銅
を溶解し、これに所定の添加元素を加えて、均一な合金
溶湯を溶製し、第1表に示す組成の鋳塊を鋳造した。こ
の鋳塊表面を25−面前により除去した後、85Q’C
X1時間加熱し、熱間圧延により厚さ10mmに圧延し
た。これ等について更に冷間圧延と焼鈍を繰返して厚さ
0.035mmの素条とした。
Example (1) Using a high-frequency melting furnace, electrolytic copper is melted while covering the area with charcoal, and predetermined additive elements are added to the melt to produce a uniform molten alloy, which has the composition shown in Table 1. The ingot was cast. After removing this ingot surface by 25-face front, 85Q'C
It was heated for X1 hours and rolled to a thickness of 10 mm by hot rolling. These were further subjected to repeated cold rolling and annealing to obtain a strip having a thickness of 0.035 mm.

次に第2表に示す条件のメツキ浴(1)及び(2)を用
い、第1表に示すようにこれらの素条といずれかのメツ
キ浴とを組み合せて、厚さ1.2μmで第1表に示す組
成のZn−Ni又はZ n −S n合金メツキを施し
た後350℃×5分の加熱拡散処理を行なった条材(漱
1〜魔10)について耐熱硬さ及び導電率を測定し、ま
た腐食試験を行なって引張り強度の劣化率の測定及び外
観観察による脱亜鉛の程度の評価をした。
Next, using plating baths (1) and (2) under the conditions shown in Table 2, these strips were combined with one of the plating baths as shown in Table 1, and a plating bath was prepared with a thickness of 1.2 μm. The heat-resistant hardness and electrical conductivity of the strips (S1 1 to 10) were plated with Zn-Ni or Zn-Sn alloy with the composition shown in Table 1 and then subjected to heat diffusion treatment at 350°C for 5 minutes. In addition, corrosion tests were conducted to measure the rate of deterioration of tensile strength, and the degree of dezincing was evaluated by observing the appearance.

そしてこれらの結果を前記素条に対してメツキ浴(3)
により厚さ1.2μmの純Znメツキをし、350℃×
5分の加熱拡散処理を施した条材(Nα11〜k13)
に対して行なった上記測定の結果と共に第1表に示した
Then, apply these results to the substrate in a plating bath (3).
Pure Zn plating with a thickness of 1.2 μm was performed using
Strip material subjected to heat diffusion treatment for 5 minutes (Nα11 to k13)
The results are shown in Table 1 along with the results of the above measurements.

さらにZn−Ni合金メツキを絶し、350°C×30
分の加熱拡散処理を行なった本発明材について、拡散層
断面をEPMAにより線分析した結果の1例を第1図に
示した。
Furthermore, Zn-Ni alloy plating was eliminated, and the
FIG. 1 shows an example of the results of line analysis using EPMA of the cross section of the diffusion layer of the material of the present invention which has been subjected to the heat diffusion treatment for 30 minutes.

なお第1表中の耐熱硬さは350℃×5分の加熱拡散処
理した後のビッカース硬さ(Hv)を測定した結果であ
り、また腐食試験はIts 22371に基づき塩水噴
霧を1時間行なった後、温度70℃、湿度95%RHの
恒温恒湿槽中に23時間保持する操作を3θ回繰り返す
ことにより行なった。
The heat-resistant hardness in Table 1 is the result of measuring the Vickers hardness (Hv) after heating and diffusion treatment at 350°C for 5 minutes, and the corrosion test was conducted using salt water spray for 1 hour based on Its 22371. Thereafter, an operation of holding the sample in a constant temperature and humidity chamber at a temperature of 70° C. and a humidity of 95% RH for 23 hours was repeated 3θ times.

加工して厚さ0.065mmの素条を得た。It was processed to obtain a strip with a thickness of 0.065 mm.

これら素条の両面に第2表のメツキ浴(1)  もしく
は(2)を用いて片面厚さ2.4μmで第3表に示す組
成のZn−NiもしくはZn−8層合金メツキのいずれ
かによる被膜、またはホットデイツプ法により片面71
μmでZn−10%A1合金彼膜を形成した後、500
℃×1分間の加熱拡散処理を施し、しかる後圧延加工し
て厚さ0036mmの条材(N(114〜N(125)
を製造した。
Both sides of these strips were plated with either Zn-Ni or Zn-8 layer alloy plating with the composition shown in Table 3 using plating bath (1) or (2) shown in Table 2 to a thickness of 2.4 μm on one side. One side 71 by coating or hot dip method
After forming the Zn-10%A1 alloy film in μm, 500 μm
℃ x 1 minute, and then rolled to obtain a strip with a thickness of 0036 mm (N (114 ~ N (125)).
was manufactured.

これらについて耐熱硬さ及び導電率を測定し、前記腐食
試験と同様の試験を行なって引張り強度の劣化率の測定
及び外観観察による脱亜鉛の程度の評価をした。そして
これらの結果を素条に対して前記メツキ浴(3)にて片
面に厚さ2.4 μmの純Znをメツキした後450℃
×1分の加熱拡散処理を行ない、しかる後圧延加工して
得た厚さ0.036mの比較条材(岡26〜Nα28)
に対する腐食試験後の測定結果と共に第3表(J示した
The heat-resistant hardness and electrical conductivity of these were measured, and tests similar to the corrosion test described above were conducted to measure the deterioration rate of tensile strength and to evaluate the degree of dezincing by observing the appearance. These results were then applied to the substrate after plating pure Zn with a thickness of 2.4 μm on one side in the plating bath (3) at 450°C.
Comparison strips (Oka 26 to Nα28) with a thickness of 0.036 m obtained by heating and diffusion treatment for ×1 minute and then rolling.
The measurement results after the corrosion test are shown in Table 3 (J).

第1表より明らかな様に純Z nをメツキした比較条材
層11〜13は表面の脱亜鉛が顕著であり、かつ腐食に
よる強度劣化が著しい。これに対して本発明条材Nα1
〜Nα7は腐食試験後の脱亜鉛がわずかであり、強度劣
化が小さく耐食性が向上していることが+lIる。
As is clear from Table 1, the comparative strip layers 11 to 13 plated with pure Zn had significant surface dezincing and significant strength deterioration due to corrosion. On the other hand, the strip material Nα1 of the present invention
~Nα7 showed slight dezincing after the corrosion test, indicating that strength deterioration was small and corrosion resistance was improved.

さらに本発明条材Nα1〜Nn1では上記耐食性ととも
に耐熱性、導電率ともに優れているが、基材である素条
の化学成分が規定の範囲から外れる比較例Nα8〜Nα
10では耐熱性、導電率のいずれかが劣っていることが
判る。
Furthermore, although the strip materials Nα1 to Nn1 of the present invention are excellent in both heat resistance and electrical conductivity as well as the above-mentioned corrosion resistance, comparative examples Nα8 to Nα in which the chemical composition of the base material strip is outside the specified range.
It can be seen that the sample with a rating of 10 is inferior in either heat resistance or electrical conductivity.

また第1図から明らかなようにZn−Ni合金メツキを
施した本発明条材の表層に形成されているZ n拡散層
(a)は表面側のCu −Z n −Ni合金拡散層(
b) とその内側のCu −Z n合金拡散層(clの
2層からなっていることが判る。
Furthermore, as is clear from FIG. 1, the Zn diffusion layer (a) formed on the surface layer of the strip of the present invention plated with Zn-Ni alloy is similar to the Cu-Zn-Ni alloy diffusion layer (
It can be seen that it consists of two layers: b) and a Cu-Zn alloy diffusion layer (cl) inside it.

実施例(2) 実施例(1)で鋳造した鋳塊と同一組成である第3表に
示す組成の鋳塊を実施例(1)と同様に第3表より明ら
かな様に本発明条材Nα14〜22では耐食性とともに
耐熱性、導電率ともに優れているが、基材である素条の
化学成分が規定範囲から外れる比較条材魔23〜Nα2
5では耐熱性又は導電率のいずれかが劣っており、10
0%Z nメツキを施した比較条材漱2G〜Nα28は
いずれも耐食性の低下していることが判る。
Example (2) An ingot having the composition shown in Table 3, which has the same composition as the ingot cast in Example (1), was used as the strip material of the present invention as in Example (1), as is clear from Table 3. Nα14-22 has excellent corrosion resistance as well as heat resistance and electrical conductivity, but comparison strip materials Ma23-Nα2 have chemical components of the base material that are outside the specified range.
At 5, either heat resistance or conductivity is poor, and at 10
It can be seen that all of the comparison strips 2G to Nα28, which were subjected to 0% Zn plating, had decreased corrosion resistance.

実施例(3) 厚さ0.[135+nmのM g O,02v1%を含
有する耐熱銅条(導電率95.5%1^C8)に第2表
に示すメツキ浴を第4表に示すように適用して厚さ1.
2pmのZn−Ni、Zn−3n合金メツキを両面に施
した後、350℃×30分の加熱拡散処理を行なった本
発明条材について、実施例(1)と同様の腐食試験を行
ない、引張強度の劣化率を測定した。その結果を第2表
のメツキ浴(3)により厚さ1,2 μmの純Znをメ
ツキし、350℃×30分の加熱拡散処理を施した比較
条材と比較して第4表に示した。
Example (3) Thickness 0. [A plating bath shown in Table 2 was applied to a heat-resistant copper strip (conductivity 95.5% 1^C8) containing 1% M g O,02v of 135+ nm as shown in Table 4 to a thickness of 1.
The same corrosion test as in Example (1) was conducted on the strip of the present invention, which had been plated with 2 pm of Zn-Ni or Zn-3n alloy on both sides and then heated and diffused at 350°C for 30 minutes. The rate of strength deterioration was measured. The results are shown in Table 4 in comparison with a comparative strip material plated with 1.2 μm thick pure Zn using plating bath (3) in Table 2 and subjected to heat diffusion treatment at 350°C for 30 minutes. Ta.

第4表から明らかなように、純Z nをメツキした比較
条材魔31は腐食による強度劣化が斤しいのに対し、本
発明条材Nα29〜30は強度劣化が小さく、耐食性が
向上していることが判る。
As is clear from Table 4, the comparative strip material Ma31 plated with pure Zn has little strength deterioration due to corrosion, whereas the present invention strip materials Nα29 to 30 have little strength deterioration and improved corrosion resistance. I know that there is.

実施例(4) 次に厚さ0.065ffllTIのMg O,Q2wf
96を含む耐熱銅条(導電率95.5%IACS)に、
前記メツキ浴(1+および(2)を用い、両面に2.4
μmの厚さにZn−Ni合金、Zn−3n合金をメツキ
した後、500℃X1分間加熱拡故処理し、これを圧延
加工により厚さ0.036mmの本発明条材(Nt13
2、Nα33)とした。
Example (4) Next, MgO,Q2wf with a thickness of 0.065ffllTI
Heat-resistant copper strip (conductivity 95.5% IACS) containing 96,
Using the above plating bath (1+ and (2), 2.4
After plating Zn-Ni alloy or Zn-3n alloy to a thickness of μm, heat expansion treatment was performed at 500°C for 1 minute, and this was rolled to a thickness of 0.036 mm (Nt13
2, Nα33).

また厚さ0.065mmの前記耐熱銅条に、ホットデイ
ツプ法により厚さ4μmのZn−!0%Al合金皮膜を
形成した後、500℃×1分間加熱拡散処理し、これを
圧延加工により厚さ0.036mmの本発明条材(N1
134)とした。
Furthermore, Zn-! with a thickness of 4 μm was applied to the heat-resistant copper strip with a thickness of 0.065 mm by the hot dip method. After forming a 0% Al alloy film, it was heated and diffused at 500°C for 1 minute, and then rolled to form a strip of the present invention (N1) with a thickness of 0.036 mm.
134).

これ等について前記と同様の腐食試験を行なって引張強
度の劣化率を測定した。その結果を第2表のメツキ浴(
3)にて厚さ2.4μmの純Z nメツキを行なった後
、450”CX1分間の加熱拡散処理を行ない、しかる
後圧延加工により厚さ0.036mmとした比較条材(
Nα35)と比較して第5表に示した。
These were subjected to the same corrosion test as above to measure the deterioration rate of tensile strength. The results are shown in Table 2.
After performing pure Zn plating with a thickness of 2.4 μm in step 3), heat diffusion treatment was performed at 450”CX for 1 minute, and after that, a comparative strip material was rolled to a thickness of 0.036 mm (
A comparison with Nα35) is shown in Table 5.

第5表から明らかなように、純Znをメツキした後加熱
拡散と圧延加工を加えて得られた比較条材Nα35は脱
Znが著しく、強度劣化が大きいのに対し、本発明条材
Nα32〜34は脱亜鉛が少なく、強度劣化が小さいこ
とが判る。
As is clear from Table 5, the comparison strip Nα35, which was obtained by plating with pure Zn and then heating diffusion and rolling, had significant Zn removal and significant strength deterioration, whereas the present invention strip Nα32~ It can be seen that No. 34 has less dezincing and less strength deterioration.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、銅系熱交換器用フィン材や
その他制系材料の耐食性を効果的に改善すると共に熱伝
導性の低下を低くおさえることが可能となり、このよう
な銅系材料、熱交換器フィン材の薄肉軽微化を可能にす
る等工業上顕著な効果を奏するものである。
As described above, according to the present invention, it is possible to effectively improve the corrosion resistance of copper-based heat exchanger fin materials and other system control materials, and to suppress the decrease in thermal conductivity. This has significant industrial effects, such as making it possible to make heat exchanger fin materials thinner and lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明条材の拡散層断面におけるEPMAによ
る線分析の一例を示す線図である。 a・・・・・・・・Zn拡散層
FIG. 1 is a diagram showing an example of line analysis by EPMA in a cross section of a diffusion layer of a strip of the present invention. a...Zn diffusion layer

Claims (24)

【特許請求の範囲】[Claims] (1)Cu又はCu合金の表層に、CuとZnからなる
内側拡散層と、その表面側にCuとZnとCu中への拡
散係数がZnよりも小さい元素からなる表面側拡散層を
形成したことを特徴とする熱伝導性と耐食性に優れた銅
系材料。
(1) An inner diffusion layer made of Cu and Zn was formed on the surface layer of Cu or Cu alloy, and a surface side diffusion layer made of Cu, Zn, and an element whose diffusion coefficient into Cu is smaller than that of Zn was formed on the surface side. A copper-based material with excellent thermal conductivity and corrosion resistance.
(2)Cu中への拡散係数がZnよりも小さい元素とし
てNi、Co、Sn、Alの何れか1種又は2種以上を
用いる請求項(1)記載の熱伝導性と耐食性に優れた銅
系材料。
(2) Copper with excellent thermal conductivity and corrosion resistance according to claim (1), wherein one or more of Ni, Co, Sn, and Al is used as the element whose diffusion coefficient into Cu is smaller than that of Zn. system material.
(3)Cu又はCu合金の表面に、Cu中への拡散係数
がZnよりも小さい元素とZnからなる合金皮膜を形成
した後、加熱拡散処理を施してCu又はCu合金の表層
にCuとZnからなる内側拡散層と、その表面側にCu
とZnとCu中への拡散係数がZnよりも小さい元素か
らなる表面側拡散層を形成することを特徴とする熱伝導
性と耐食性に優れた銅系材料の製造方法。
(3) After forming an alloy film consisting of Zn and an element whose diffusion coefficient into Cu is smaller than that of Zn on the surface of Cu or Cu alloy, heat diffusion treatment is performed to infuse Cu and Zn onto the surface layer of Cu or Cu alloy. An inner diffusion layer consisting of Cu and Cu on the surface side.
A method for producing a copper-based material having excellent thermal conductivity and corrosion resistance, characterized by forming a surface-side diffusion layer consisting of an element having a smaller diffusion coefficient into Zn and Cu than Zn.
(4)Cu中への拡散係数がZnよりも小さい元素とし
てNi、Co、Sn、Alの何れか1種又は2種以上を
用いる請求項(3)記載の熱伝導性と耐食性に優れた銅
系材料の製造方法。
(4) Copper with excellent thermal conductivity and corrosion resistance according to claim (3), wherein one or more of Ni, Co, Sn, and Al is used as the element whose diffusion coefficient into Cu is smaller than that of Zn. Methods for manufacturing system materials.
(5)Cu又はCu合金の表面に、Cu中への拡散係数
がZnよりも小さい元素とZnからなる合金皮膜を形成
した後、加熱拡散処理を施してCu又はCu合金の表層
にCuとZnからなる内側拡散層と、その表面側にCu
とZnとCu中への拡散係数がZnよりも小さい元素か
らなる表面側拡散層を形成し、しかる後圧延加工または
伸線加工を施すことを特徴とする熱伝導性と耐食性に優
れた銅系材料の製造方法。
(5) After forming an alloy film consisting of Zn and an element whose diffusion coefficient into Cu is smaller than that of Zn on the surface of Cu or Cu alloy, heat diffusion treatment is performed to infuse Cu and Zn onto the surface layer of Cu or Cu alloy. An inner diffusion layer consisting of Cu and Cu on the surface side.
A copper-based material with excellent thermal conductivity and corrosion resistance, which is characterized by forming a surface-side diffusion layer consisting of an element whose diffusion coefficient into Zn and Cu is smaller than that of Zn, and then subjecting it to rolling or wire drawing. Method of manufacturing the material.
(6)Cu中への拡散係数がZnよりも小さい元素とし
てNi、Co、Sn、Alの何れか1種又は2種以上を
用いる請求項(5)記載の熱伝導性と耐食性に優れた銅
系材料の製造方法。
(6) Copper with excellent thermal conductivity and corrosion resistance according to claim (5), wherein one or more of Ni, Co, Sn, and Al is used as the element whose diffusion coefficient into Cu is smaller than that of Zn. Methods for manufacturing system materials.
(7)Cu又はCu合金の表層に、CuとZnからなる
内側拡散層と、その表面側にCuとZnとCu中への拡
散係数がZnよりも小さい元素からなる表面側拡散層を
形成したことを特徴とする熱交換器用フィン材。
(7) An inner diffusion layer made of Cu and Zn was formed on the surface layer of Cu or Cu alloy, and a surface side diffusion layer made of Cu, Zn, and an element whose diffusion coefficient into Cu is smaller than that of Zn was formed on the surface side. A fin material for heat exchangers characterized by:
(8)Cu中への拡散係数がZnよりも小さい元素とし
てNi、Co、Sn、Alの中れか1種又は2種以上を
用いる請求甲(7)記載の熱交換器用フィン材。
(8) The fin material for a heat exchanger according to claim A (7), in which one or more of Ni, Co, Sn, and Al is used as the element whose diffusion coefficient into Cu is smaller than that of Zn.
(9)Cu又はCu合金の表面に、Cu中への拡散係数
がZnよりも小さい元素とZnからなる合金皮膜を形成
した後、加熱拡散処理を施してCu又はCu合金の表層
にCuとZnからなる内側拡散層と、その表面側にCu
とZnとCu中への拡散係数がZnよりも小さい元素か
らなる表面側拡散層を形成することを特徴とする熱交換
器用フィン材の製造方法。
(9) After forming an alloy film consisting of Zn and an element whose diffusion coefficient into Cu is smaller than that of Zn on the surface of Cu or Cu alloy, heat diffusion treatment is performed to infuse Cu and Zn onto the surface layer of Cu or Cu alloy. An inner diffusion layer consisting of Cu and Cu on the surface side.
A method for manufacturing a fin material for a heat exchanger, characterized in that a surface side diffusion layer is formed of an element whose diffusion coefficient into Zn and Cu is smaller than that of Zn.
(10)Cu中への拡散係数がZnよりも小さい元素と
してNi、Co、Sn、Alの何れか1種又は2種以上
を用いる請求項(9)記載の熱交換器用フィン材の製造
方法。
(10) The method for producing a fin material for a heat exchanger according to (9), wherein one or more of Ni, Co, Sn, and Al is used as the element whose diffusion coefficient into Cu is smaller than that of Zn.
(11)Cu又はCu合金の表面に、Cu中への拡散係
数がZnよりも小さい元素とZnからなる合金皮膜を形
成した後、加熱拡散処理を施してCu又はCu合金の表
層にCuとZnからなる内側拡散層と、その表面側にC
uとZnとCu中への拡散係数がZnよりも小さい元素
からなる表面側拡散層を形成し、しかる後圧延加工を施
すことを特徴とする熱交換器用フィン材の製造方法。
(11) After forming an alloy film consisting of Zn and an element whose diffusion coefficient into Cu is smaller than that of Zn on the surface of Cu or Cu alloy, heat diffusion treatment is performed to infuse Cu and Zn onto the surface layer of Cu or Cu alloy. and an inner diffusion layer consisting of C on the surface side.
A method for manufacturing a fin material for a heat exchanger, comprising forming a surface-side diffusion layer consisting of elements having a diffusion coefficient smaller than that of Zn into u, Zn, and Cu, and then subjecting the layer to a rolling process.
(12)Cu中への拡散係数がZnよりも小さい元素と
してNi、Co、Sn、Alの何れか1種又は2種以上
を用いる請求項(11)記載の熱交換器用フィン材の製
造方法。
(12) The method for producing a fin material for a heat exchanger according to claim (11), wherein one or more of Ni, Co, Sn, and Al is used as the element whose diffusion coefficient into Cu is smaller than that of Zn.
(13)Mg、Zn、Sn、Cd、Ag、Ni、P、Z
r、Cr、Pb、Alの中の1種又は2種以上を合計で
0.01〜0.13wt%を含み、残部Cuからなる導
電率90%IACS以上の耐熱銅条表面にCuとZnか
らなる内側拡散層と、その表面側にCuとZnとCu中
への拡散係数がZnよりも小さい元素からなる表面側拡
散層を形成したことを特徴とする熱伝導性と耐食性に優
れた銅系材料。
(13) Mg, Zn, Sn, Cd, Ag, Ni, P, Z
A heat-resistant copper strip containing a total of 0.01 to 0.13 wt% of one or more of r, Cr, Pb, and Al, with the remainder being Cu and having an electrical conductivity of 90% IACS or higher. A copper-based material with excellent thermal conductivity and corrosion resistance, characterized by having an inner diffusion layer formed on the inner side diffusion layer, and a surface side diffusion layer made of Cu, Zn, and an element whose diffusion coefficient into Cu is smaller than that of Zn on the surface side. material.
(14)Cu中への拡散係数がZnよりも小さい元素と
してNi、Co、Sn、Alの何れか1種又は2種以上
を用いる請求項(13)記載の熱伝導性と耐食性に優れ
た銅系材料。
(14) The copper with excellent thermal conductivity and corrosion resistance according to claim (13), wherein one or more of Ni, Co, Sn, and Al is used as the element whose diffusion coefficient into Cu is smaller than that of Zn. system material.
(15)Mg、Zn、Sn、Cd、Ag、Ni、P、Z
r、Cr、Pb、Alの中の1種又は2種以上を合計で
0.01〜0.13wt%を含み、残部Cuからなる導
電率90%IACS以上の耐熱銅条表面にCu中への拡
散係数がZnよりも小さい元素とZnからなる合金皮膜
を形成した後、加熱拡散処理を施してCu又はCu合金
の表層にCuとZnからなる内側拡散層と、その表面側
にCuとZnとCu中への拡散係数がZnよりも小さい
元素からなる表面側拡散層を形成することを特徴とする
熱伝導性と耐食性に優れた銅系材料の製造方法。
(15) Mg, Zn, Sn, Cd, Ag, Ni, P, Z
The heat-resistant copper strip surface contains one or more of r, Cr, Pb, and Al in a total of 0.01 to 0.13 wt%, and the balance is Cu, and the conductivity is 90% IACS or higher. After forming an alloy film consisting of Zn and an element whose diffusion coefficient is smaller than that of Zn, a heating diffusion treatment is performed to form an inner diffusion layer consisting of Cu and Zn on the surface layer of Cu or Cu alloy, and an inner diffusion layer consisting of Cu and Zn on the surface side. A method for manufacturing a copper-based material having excellent thermal conductivity and corrosion resistance, which comprises forming a surface-side diffusion layer made of an element having a diffusion coefficient into Cu smaller than that of Zn.
(16)Cu中への拡散係数がZnよりも小さい元素と
してNi、Co、Sn、Alの何れか1種又は2種以上
を用いる請求項(15)記載の熱伝導性と耐食性に優れ
た銅系材料の製造方法。
(16) The copper with excellent thermal conductivity and corrosion resistance according to claim (15), wherein one or more of Ni, Co, Sn, and Al is used as the element whose diffusion coefficient into Cu is smaller than that of Zn. Methods for manufacturing system materials.
(17)Mg、Zn、Sn、Cd、Ag、Ni、P、Z
r、Cr、Pb、Alの中の1種又は2種以上を合計で
0.01〜0.13wt%を含み、残部Cuからなる導
電率90%IACS以上の耐熱銅条表面にCu中への拡
散係数がZnよりも小さい元素とZnからなる合金皮膜
を形成した後、加熱拡散処理を施してCu又はCu合金
の表層にCuとZnからなる内側拡散層と、その表面側
にCuとZnとCu中への拡散係数がZnよりも小さい
元素からなる表面側拡散層を形成し、しかる後圧延加工
または伸線加工を施することを特徴とする熱伝導性と耐
食性に優れ銅系材料の製造方法。
(17) Mg, Zn, Sn, Cd, Ag, Ni, P, Z
The heat-resistant copper strip surface contains one or more of r, Cr, Pb, and Al in a total of 0.01 to 0.13 wt%, and the balance is Cu, and the conductivity is 90% IACS or higher. After forming an alloy film consisting of Zn and an element whose diffusion coefficient is smaller than that of Zn, a heating diffusion treatment is performed to form an inner diffusion layer consisting of Cu and Zn on the surface layer of Cu or Cu alloy, and an inner diffusion layer consisting of Cu and Zn on the surface side. Production of a copper-based material with excellent thermal conductivity and corrosion resistance, characterized by forming a surface-side diffusion layer made of an element whose diffusion coefficient into Cu is smaller than that of Zn, and then subjecting it to rolling or wire drawing. Method.
(18)Cu中への拡散係数がZnよりも小さい元素と
してNi、Co、Sn、Alの何れか1種又は2種以上
を用いる請求項(17)記載の熱伝導性と耐食性に優れ
た銅系材料の製造方法。
(18) The copper with excellent thermal conductivity and corrosion resistance according to claim (17), wherein one or more of Ni, Co, Sn, and Al is used as the element whose diffusion coefficient into Cu is smaller than that of Zn. Methods for manufacturing system materials.
(19)Mg、Zn、Sn、Cd、Ag、Ni、P、Z
r、Cr、Pb、Alの中の1種又は2種以上を合計で
0.01〜0.13wt%を含み、残部Cuからなる導
電率90%IACS以上の耐熱銅条表面にCuとZnか
らなる内側拡散層と、その表面側にCuとZnとCu中
への拡散係数がZnよりも小さい元素からなる表面側拡
散層を形成したことを特徴とする熱交換器用フィン材。
(19) Mg, Zn, Sn, Cd, Ag, Ni, P, Z
A heat-resistant copper strip containing a total of 0.01 to 0.13 wt% of one or more of r, Cr, Pb, and Al, with the remainder being Cu and having an electrical conductivity of 90% IACS or higher. 1. A fin material for a heat exchanger, comprising: an inner diffusion layer; and a surface-side diffusion layer made of Cu, Zn, and an element whose diffusion coefficient into Cu is smaller than that of Zn.
(20)Cu中への拡散係数がZnよりも小さい元素と
してNi、Co、Sn、Alの何れか1種又は2種以上
を用いる請求項(19)記載の熱交換器用フィン材。
(20) The fin material for a heat exchanger according to claim (19), wherein one or more of Ni, Co, Sn, and Al is used as the element whose diffusion coefficient into Cu is smaller than that of Zn.
(21)Mg、Zn、Sn、Cd、Ag、Ni、P、Z
r、Cr、Pb、Alの中の1種又は2種以上を合計で
0.01〜0.13wt%を含み、残部Cuからなる導
電率90%IACS以上の耐熱銅条表面にCu中への拡
散係数がZnよりも小さい元素とZnからなる合金皮膜
を形成した後、加熱拡散処理を施してCu又はCu合金
の表層にCuとZnからなる内側拡散層と、その表面側
にCuとZnとCu中への拡散係数がZnよりも小さい
元素からなる表面側拡散層を形成することを特徴とする
熱交換器用フィン材の製造方法。
(21) Mg, Zn, Sn, Cd, Ag, Ni, P, Z
The heat-resistant copper strip surface contains one or more of r, Cr, Pb, and Al in a total of 0.01 to 0.13 wt%, and the balance is Cu, and the conductivity is 90% IACS or higher. After forming an alloy film consisting of Zn and an element whose diffusion coefficient is smaller than that of Zn, a heating diffusion treatment is performed to form an inner diffusion layer consisting of Cu and Zn on the surface layer of Cu or Cu alloy, and an inner diffusion layer consisting of Cu and Zn on the surface side. A method for manufacturing a fin material for a heat exchanger, characterized in that a surface-side diffusion layer is formed of an element whose diffusion coefficient into Cu is smaller than that of Zn.
(22)Cu中への拡散係数がZnよりも小さい元素と
してNi、Co、Sn、Alの何れか1種又は2種以上
を用いる請求項(21)記載の熱交換器用フィン材の製
造方法。
(22) The method for producing a fin material for a heat exchanger according to claim (21), wherein one or more of Ni, Co, Sn, and Al is used as the element whose diffusion coefficient into Cu is smaller than that of Zn.
(23)Mg、Zn、Sn、Cd、Ag、Ni、P、Z
r、Cr、Pb、Alの中の1種又は2種以上を合計で
0.01〜0.13wt%を含み、残部Cuからなる導
電率90%IACS以上の耐熱銅条表面にCu中への拡
散係数がZnよりも小さい元素とZnからなる合金皮膜
を形成した後、加熱拡散処理を施してCu又はCu合金
の表層にCuとZnからなる内側拡散層と、その表面側
にCuとZnとCu中への拡散係数がZnよりも小さい
元素からなる表面側拡散層を形成し、しかる後圧延加工
を施することを特徴とする熱交換器用フィン製造方法。
(23) Mg, Zn, Sn, Cd, Ag, Ni, P, Z
The heat-resistant copper strip surface contains one or more of r, Cr, Pb, and Al in a total of 0.01 to 0.13 wt%, and the balance is Cu, and the conductivity is 90% IACS or higher. After forming an alloy film consisting of Zn and an element whose diffusion coefficient is smaller than that of Zn, a heating diffusion treatment is performed to form an inner diffusion layer consisting of Cu and Zn on the surface layer of Cu or Cu alloy, and an inner diffusion layer consisting of Cu and Zn on the surface side. A method for manufacturing a fin for a heat exchanger, comprising forming a surface-side diffusion layer made of an element whose diffusion coefficient into Cu is smaller than that of Zn, and then subjecting it to rolling.
(24)Cu中への拡散係数がZnよりも小さい元素と
してNi、Co、Sn、Alの何れか1種又は2種以上
を用いる請求項(23)記載の熱交換器用フィン材の製
造方法。
(24) The method for producing a fin material for a heat exchanger according to claim (23), wherein one or more of Ni, Co, Sn, and Al is used as the element whose diffusion coefficient into Cu is smaller than that of Zn.
JP32769788A 1988-12-27 1988-12-27 Coppery material excellent in thermal conductivity and corrosion resistance, heat-exchanger fin material, and their production Pending JPH02173233A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP32769788A JPH02173233A (en) 1988-12-27 1988-12-27 Coppery material excellent in thermal conductivity and corrosion resistance, heat-exchanger fin material, and their production
US07/454,460 US5063117A (en) 1988-12-27 1989-12-21 Copper fin material for heat-exchanger and method of producing the same
AU47255/89A AU620958B2 (en) 1988-12-27 1989-12-22 Copper fin material for heat-exchanger and method of producing the same
KR1019890019469A KR900010028A (en) 1988-12-27 1989-12-26 Copper fin material for heat exchanger and manufacturing method thereof
CA002006660A CA2006660A1 (en) 1988-12-27 1989-12-27 Copper fin material for heat-exchanger and method of producing the same
DE68916631T DE68916631T2 (en) 1988-12-27 1989-12-27 Copper-based material for the cooling fins of a heat exchanger and process for its production.
EP89123942A EP0376248B1 (en) 1988-12-27 1989-12-27 Copper fin material for heat-exchanger and method of producing the same
US07/737,430 US5176812A (en) 1988-12-27 1991-07-29 Copper fin material for heat-exchanger and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32769788A JPH02173233A (en) 1988-12-27 1988-12-27 Coppery material excellent in thermal conductivity and corrosion resistance, heat-exchanger fin material, and their production

Publications (1)

Publication Number Publication Date
JPH02173233A true JPH02173233A (en) 1990-07-04

Family

ID=18201967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32769788A Pending JPH02173233A (en) 1988-12-27 1988-12-27 Coppery material excellent in thermal conductivity and corrosion resistance, heat-exchanger fin material, and their production

Country Status (1)

Country Link
JP (1) JPH02173233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370212C (en) * 2006-04-28 2008-02-20 沈阳铜兴产业有限公司 Cu-Sn-Cr-P alloy for ultra-thin water tank belt of automobile
JP2009106980A (en) * 2007-10-30 2009-05-21 Denso Corp Metallic material for brazing, brazing method and heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240361A (en) * 1985-08-13 1987-02-21 Furukawa Electric Co Ltd:The Production of corrosion resistant copper-base member
JPS62218796A (en) * 1986-03-20 1987-09-26 Nippon Denso Co Ltd Heat exchanger
JPS62284062A (en) * 1986-06-03 1987-12-09 Hitachi Cable Ltd Fin material for radiator and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240361A (en) * 1985-08-13 1987-02-21 Furukawa Electric Co Ltd:The Production of corrosion resistant copper-base member
JPS62218796A (en) * 1986-03-20 1987-09-26 Nippon Denso Co Ltd Heat exchanger
JPS62284062A (en) * 1986-06-03 1987-12-09 Hitachi Cable Ltd Fin material for radiator and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370212C (en) * 2006-04-28 2008-02-20 沈阳铜兴产业有限公司 Cu-Sn-Cr-P alloy for ultra-thin water tank belt of automobile
JP2009106980A (en) * 2007-10-30 2009-05-21 Denso Corp Metallic material for brazing, brazing method and heat exchanger

Similar Documents

Publication Publication Date Title
CN106795643A (en) The excellent connection member conductive material of resistance to micro- skimming wear
JPH04329891A (en) Tin plated copper alloy material and its production
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JP3748709B2 (en) Copper alloy sheet excellent in stress relaxation resistance and method for producing the same
EP0376248B1 (en) Copper fin material for heat-exchanger and method of producing the same
JP5897083B1 (en) Conductive material for connecting parts with excellent resistance to fine sliding wear
JP5897084B1 (en) Conductive material for connecting parts with excellent resistance to fine sliding wear
JPH07157893A (en) Sn plated wire for electrical contact point and production thereof
JPH02173233A (en) Coppery material excellent in thermal conductivity and corrosion resistance, heat-exchanger fin material, and their production
JPS60262950A (en) Manufacture of aluminized steel sheet having superior heat and corrosion resistance
JPH04165096A (en) Lead wire for electronic parts
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same
US5176812A (en) Copper fin material for heat-exchanger and method of producing the same
JPH01225781A (en) Tin or tin alloy-coated copper alloy material having excellent whisker resistance
JPS6219264B2 (en)
JP7537643B2 (en) Copper alloy material and method for producing the same
JPS61166956A (en) Manufacture of fin material for radiator
JPS60138061A (en) Formation of sacrificial anode layer on al member
JPH03104845A (en) Manufacture of high strength phosphor bronze having good bendability
JPH03100132A (en) Copper alloy for electrical and electronic parts
JPS59140342A (en) Copper alloy for lead frame
JPS59140338A (en) Copper alloy for lead frame
JPH02125830A (en) Cu-zn series alloy material having excellent stress corrosion cracking resistance and its manufacture
JPH0310035A (en) Copper alloy for electrical and electron ic parts
JPS59222541A (en) Fin material for radiator for car