JPH02125830A - Cu-zn series alloy material having excellent stress corrosion cracking resistance and its manufacture - Google Patents

Cu-zn series alloy material having excellent stress corrosion cracking resistance and its manufacture

Info

Publication number
JPH02125830A
JPH02125830A JP27734588A JP27734588A JPH02125830A JP H02125830 A JPH02125830 A JP H02125830A JP 27734588 A JP27734588 A JP 27734588A JP 27734588 A JP27734588 A JP 27734588A JP H02125830 A JPH02125830 A JP H02125830A
Authority
JP
Japan
Prior art keywords
alloy
corrosion cracking
stress corrosion
core material
series alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27734588A
Other languages
Japanese (ja)
Inventor
Kenichi Komata
小又 憲一
Kadomasa Sato
佐藤 矩正
Hideo Suda
須田 英男
Sumio Susa
澄男 須佐
Katsuhiko Takada
高田 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Denso Corp
Original Assignee
Furukawa Electric Co Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, NipponDenso Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP27734588A priority Critical patent/JPH02125830A/en
Publication of JPH02125830A publication Critical patent/JPH02125830A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To reduce the stress corrosion cracking sensitivity of the title alloy by forming the surface of a core material of a Cu-Zn series alloy with a diffusion layer having the Cu concn. higher than that of the core material. CONSTITUTION:The surface of a Cu-Zn series alloy sheet (core material)1 is formed with a diffusion layer 3 of Cu and Zn having the Cu concn. higher than that of the core material. In order to manufacture the material, the core material of the Cu-Zn series alloy is coated with Cu or a Cu alloy having the Cu concn. higher than that of the core material, which is thereafter subjected to thermal diffusion treatment to form a diffusion layer having high Cu concn. on the surface. In this way, the stress corrosion cracking sensitivity of the Cu-Zn series alloy can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐応力腐食割れ性に優れたCuZn系合金材料
とその製造方法に関し、特にCu−Zn系合金の優れた
加工性と機械的特性とを活し、応力腐食割れ感受性を大
巾に低減したものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a CuZn alloy material with excellent stress corrosion cracking resistance and a method for producing the same, and in particular to the excellent workability and mechanical properties of the Cu-Zn alloy. By taking advantage of this, the susceptibility to stress corrosion cracking is greatly reduced.

〔従来の技術〕[Conventional technology]

Znを20〜35w1%含む黄銅合金は高強度で加工性
が優れた低価格銅合金材料として知られており、各種端
子、コネクター、配線器具部品。
Brass alloy containing 20-35 w1% Zn is known as a low-cost copper alloy material with high strength and excellent workability, and is used in various terminals, connectors, and wiring equipment parts.

自動車ラジェーターや各種熱交換器等に広く使われてい
る。しかしながら黄銅合金は古くから知られているよう
に応力腐食割れ感受性が高く、応力腐食割れによる事故
が数多くみられ、信頼性や材料効率を追求する設計や用
途において大きな障害となっている。
Widely used in automobile radiators and various heat exchangers. However, as has been known for a long time, brass alloys are highly susceptible to stress corrosion cracking, and many accidents due to stress corrosion cracking have been observed, posing a major obstacle in designs and applications that pursue reliability and material efficiency.

応力腐食割れは材料に作用する応力と腐食環境の相互作
用による現象と考えられており、材料に作用する応力を
小さくするか、使用前に低温焼鈍により残留応力を除去
する方法が採用されている。また材料側からは各種の添
加元素による改善方法も提案されているが、環境条件に
見合って応力腐食割れ感受性の小さい材料、例えば純銅
系の材料の選択を余儀なくされる場合もある。またNi
やCu等の被覆層を形成し、腐食環境を遮断する方法も
提案され、一部で採用されている。
Stress corrosion cracking is thought to be a phenomenon caused by the interaction between the stress acting on the material and the corrosive environment, and methods are used to reduce the stress acting on the material or remove residual stress by low-temperature annealing before use. . In addition, from the material side, improvement methods using various additive elements have been proposed, but depending on the environmental conditions, it may be necessary to select a material with low stress corrosion cracking susceptibility, such as a pure copper-based material. Also Ni
A method of forming a coating layer of , Cu, etc. to block the corrosive environment has also been proposed and has been adopted in some cases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしこれ等の方法は、環境によっては応力腐食割れを
防止する効果が不十分な場合があり、黄銅の高強度を加
工性の優れた低価格材料という特徴を活した改善方法が
望まれている。
However, these methods may not be sufficiently effective in preventing stress corrosion cracking depending on the environment, and there is a need for an improvement method that takes advantage of the high strength of brass as well as its characteristics as a low-cost material with excellent workability. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、Cu−Zn系合金
の優れた加工性と機械的特性を活し、耐応力腐食割れ感
受性を大巾に低減した、耐応力腐食割れ性の優れたCu
−Zn系合金材料とその製造方法を開発したものである
In view of this, as a result of various studies, the present invention has developed a Cu-Zn alloy with excellent stress corrosion cracking resistance, which takes advantage of the excellent workability and mechanical properties of the Cu-Zn alloy and significantly reduces stress corrosion cracking susceptibility.
-A Zn-based alloy material and its manufacturing method have been developed.

即ち本発明材料は、Cu−Zn系合金からなる芯材の表
面に、芯材よりCu濃度の高い拡散層を形成したことを
特徴とするものである。
That is, the material of the present invention is characterized in that a diffusion layer having a higher Cu concentration than the core material is formed on the surface of the core material made of a Cu--Zn alloy.

また本発明製造方法は、Cu−Zn系合金を芯材とし、
その表面に芯材よりCu濃度の高いCu又はCu合金を
被覆した後、熱拡散処理を施し、表面に芯材よりCu濃
度の高い拡散層を形成することを特徴とするものである
Further, the manufacturing method of the present invention uses a Cu-Zn alloy as a core material,
The feature is that the surface is coated with Cu or a Cu alloy having a higher Cu concentration than the core material, and then thermal diffusion treatment is performed to form a diffusion layer on the surface that has a higher Cu concentration than the core material.

〔作 用〕[For production]

本発明は強度と加工性の優れたCu−Zn系合金、好ま
しくは20〜35w(%のZnを含有するα黄銅又は丹
銅を芯材とし、その表面に芯材よりCu濃度の高いCu
又はCu合金を被覆した後、熱拡散により表面に芯材よ
りCu濃度の高い拡散層を形成することにより、Cu−
Zn系合金の特徴を満し、なおかつCuの保護メツキの
みの場合以上に著しく応力腐食割れ感受性を低減したも
のである。熱拡散によるこのような作用の詳細なメカニ
ズムは明らかでないが、表層部が応力腐食割れ感受性の
低い低Zn濃度合金となると共に、被覆又は後加工によ
る表面欠陥が減少していることが寄与しているものと推
定される。
The present invention uses a Cu-Zn alloy with excellent strength and workability, preferably α-brass or red bronze containing 20 to 35% Zn, as a core material, and a Cu-Zn alloy with a higher Cu concentration than the core material on the surface.
Alternatively, after coating a Cu alloy, a diffusion layer with a higher Cu concentration than the core material is formed on the surface by thermal diffusion.
It satisfies the characteristics of Zn-based alloys, and has significantly reduced stress corrosion cracking susceptibility compared to the case of only Cu protective plating. The detailed mechanism of this effect due to thermal diffusion is not clear, but contributing factors include the fact that the surface layer is a low Zn-concentrated alloy with low stress corrosion cracking susceptibility, and that surface defects due to coating or post-processing are reduced. It is estimated that there are.

Cu−Zn系合金からなる芯材の表面に被覆するものと
しては、純Cu又は芯材よりCu濃度の高い銅合金が使
用できる。被覆方法としては湿式メツキ、溶射、蒸着、
クラッド等公知の方法が利用できるが、用途に合せて最
も効率的な方法を用いればよい。被覆層の厚さは5〜2
0μで充分効果が認められ、それ以上厚くしても効果は
飽和し、製造コストが上昇し、工業的には好ましくない
Pure Cu or a copper alloy having a higher Cu concentration than the core material can be used to coat the surface of the core material made of a Cu--Zn alloy. Coating methods include wet plating, thermal spraying, vapor deposition,
Although known methods such as cladding can be used, it is sufficient to use the most efficient method depending on the purpose. The thickness of the coating layer is 5-2
A sufficient effect is observed with a thickness of 0 μm, and even if the thickness is increased beyond that, the effect will be saturated and the manufacturing cost will increase, which is not desirable from an industrial perspective.

以下本発明を実施例について説明する。The present invention will be described below with reference to Examples.

〔実施例〕〔Example〕

高周波溶解炉により、Cu地金を5kg溶解し、木炭被
覆を施した後、所定のZn量を添加し、第1表に示す組
成のCu−Zn合金(Cu −20〜35wt%Zn)
を鋳造した。この鋳塊に圧延と焼鈍を繰返し施して厚さ
1mm、巾100mmの板材とした後、長さ60caに
切断し、Ar雰囲気中500℃で1時間焼鈍して軟質材
とした。その後第1図に示すように軟質材としたCu−
Zn合金板(1)の表面(両面)にCu t2)をメツ
キし、これを加熱拡散処理(350〜550℃、0.5
〜10時間)して第2図に示すようにCu−Z n合金
板(1)の表層にCuとZnの拡散層(3)を形成した
。これについて拡散層における表面のCu濃度とZn濃
度を測定すると共に、応力腐食試験を行なった。その結
果を第1表に示す。
After melting 5 kg of Cu metal in a high-frequency melting furnace and coating it with charcoal, a predetermined amount of Zn was added to form a Cu-Zn alloy (Cu -20 to 35 wt% Zn) with the composition shown in Table 1.
was cast. This ingot was repeatedly rolled and annealed to form a plate material with a thickness of 1 mm and a width of 100 mm, which was then cut into a length of 60 ca and annealed at 500° C. for 1 hour in an Ar atmosphere to obtain a soft material. After that, as shown in Fig. 1, Cu-
The surface (both sides) of the Zn alloy plate (1) is plated with Cut2), which is heated and diffused (350-550°C, 0.5
~10 hours) to form a Cu and Zn diffusion layer (3) on the surface layer of the Cu-Zn alloy plate (1) as shown in FIG. Regarding this, the surface Cu concentration and Zn concentration in the diffusion layer were measured, and a stress corrosion test was conducted. The results are shown in Table 1.

腐食割れ試験は、エリクセン試験機により直径66mm
φの円板を打抜いた後、高さ33mmのカップに絞り加
工して残留応力を18〜22kg/m (X線測定法に
より測定)として行なった。腐食環境は月S C830
6に準拠し、2 vo1%のNH3を101のデシケー
タ−内に入れてNH3ガスを発生させ、その中に前記カ
ップを入れ、カップに割れが発生するまでの日数を測定
した。
Corrosion cracking test was performed using an Erichsen tester with a diameter of 66 mm.
After punching out a disk of φ, it was drawn into a cup having a height of 33 mm, and the residual stress was set to 18 to 22 kg/m (measured by X-ray measurement method). The corrosive environment is Moon SC830
6, 2 vol% NH3 was put into a 101 desiccator to generate NH3 gas, the cup was placed therein, and the number of days until the cup cracked was measured.

尚比較のためCuメツキを施さないCuZn合金板とC
uメツキを施した後熱拡散処理を施さないCu−Zn合
金板について、同様の試験を行ない、その結果を第1表
に併記した。
For comparison, CuZn alloy plate without Cu plating and C
Similar tests were conducted on Cu-Zn alloy plates that were U-plated and then not subjected to heat diffusion treatment, and the results are also listed in Table 1.

第1表から明らかなように、本発明材料Nα1〜5は応
力腐食割れ感受性が大巾に減少し、耐応力腐食割れ性が
一段と向上することが判る。
As is clear from Table 1, it can be seen that the stress corrosion cracking susceptibility of the materials Nα1 to Nα5 of the present invention is greatly reduced, and the stress corrosion cracking resistance is further improved.

これに対し比較材料Nα6〜8は従来のCuZn合金の
応力腐食割れ感性で、すでに知られている如(、Z n
量の増加と共に応力腐食割れ感受性が高くなっている。
On the other hand, the comparative materials Nα6 to 8 are susceptible to stress corrosion cracking of conventional CuZn alloys, as is already known (, Z n
As the amount increases, the stress corrosion cracking susceptibility increases.

また比較材料Nα9は従来のCuメツキ材料(拡散処理
なし)で比較材料Nα7よりはやや応力腐食割れ感受性
が小さくなっているが、不十分であることが判る。
Comparative material Nα9 is a conventional Cu-plated material (without diffusion treatment) and has a slightly lower stress corrosion cracking susceptibility than comparative material Nα7, but it is found to be insufficient.

以上本発明材料として軟質材にCuメツキを施した後、
熱拡散処理を施した例について説明したが、これに限る
ものではなく、例えば硬質材にCuメツキを施し、その
後の焼鈍によって拡散させても同様の効果が得られる。
After applying Cu plating to the soft material as the material of the present invention,
Although an example in which thermal diffusion treatment is performed has been described, the present invention is not limited to this. For example, the same effect can be obtained by applying Cu plating to a hard material and then diffusing it by subsequent annealing.

また硬質材を得るためには、拡散処理後、所望の冷間加
工を加えればよい。
Further, in order to obtain a hard material, desired cold working may be performed after the diffusion treatment.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、Cu−Zn系合金の致命的
な欠点である応力腐食割れ感受性を大巾に小さくするこ
とが可能となり、各種の端子、コネクター、配線器具部
品、更には自動車用ラジェータのタンク材やコアプレー
ト祠に使用腰大巾な信頼性を向上することができる等、
工業上顕著な効果を奏するものである。
As described above, according to the present invention, it is possible to greatly reduce the stress corrosion cracking susceptibility, which is a fatal drawback of Cu-Zn alloys, and it is possible to significantly reduce the susceptibility to stress corrosion cracking, which is a fatal drawback of Cu-Zn alloys. Can be used for radiator tank materials and core plate shrines to improve reliability, etc.
This has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCu−Zn合金板のCuメツキ状態を示す断面
図、第2図はCuメツキ後の熱拡散状態を示す断面図で
ある。 (1)Cu−Zn合金板 (21Cuメツキ層 (3)Cu&Znの拡散層
FIG. 1 is a sectional view showing the Cu plating state of a Cu-Zn alloy plate, and FIG. 2 is a sectional view showing the thermal diffusion state after Cu plating. (1) Cu-Zn alloy plate (21Cu plating layer (3) Cu & Zn diffusion layer

Claims (2)

【特許請求の範囲】[Claims] (1)Cu−Zn系合金からなる芯材の表面に、芯材よ
りCu濃度の高い拡散層を形成したことを特徴とする耐
応力腐食割れ性の優れたCu−Zn系合金材料。
(1) A Cu-Zn alloy material with excellent stress corrosion cracking resistance, characterized in that a diffusion layer having a higher Cu concentration than the core material is formed on the surface of a core material made of a Cu-Zn alloy.
(2)Cu−Zn系合金を芯材とし、その表面に芯材よ
りCu濃度の高いCu又はCu合金を被覆した後、熱拡
散処理を施し、表面に芯材よりCu濃度の高い拡散層を
形成することを特徴とする耐応力腐食割れ性の優れたC
u−Zn系合金材料の製造方法。
(2) After using a Cu-Zn alloy as a core material and coating its surface with Cu or a Cu alloy that has a higher Cu concentration than the core material, heat diffusion treatment is performed to form a diffusion layer on the surface that has a higher Cu concentration than the core material. C with excellent stress corrosion cracking resistance characterized by the formation of
A method for producing a u-Zn alloy material.
JP27734588A 1988-11-04 1988-11-04 Cu-zn series alloy material having excellent stress corrosion cracking resistance and its manufacture Pending JPH02125830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27734588A JPH02125830A (en) 1988-11-04 1988-11-04 Cu-zn series alloy material having excellent stress corrosion cracking resistance and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27734588A JPH02125830A (en) 1988-11-04 1988-11-04 Cu-zn series alloy material having excellent stress corrosion cracking resistance and its manufacture

Publications (1)

Publication Number Publication Date
JPH02125830A true JPH02125830A (en) 1990-05-14

Family

ID=17582232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27734588A Pending JPH02125830A (en) 1988-11-04 1988-11-04 Cu-zn series alloy material having excellent stress corrosion cracking resistance and its manufacture

Country Status (1)

Country Link
JP (1) JPH02125830A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120297583A1 (en) * 2009-12-25 2012-11-29 Ykk Corporation Zipper Component and Slide Zipper, and Method for Producing Zipper Component
WO2021025071A1 (en) * 2019-08-06 2021-02-11 三菱マテリアル株式会社 Copper alloy sheet, copper alloy sheet with plating film, and methods for producing these

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120297583A1 (en) * 2009-12-25 2012-11-29 Ykk Corporation Zipper Component and Slide Zipper, and Method for Producing Zipper Component
WO2021025071A1 (en) * 2019-08-06 2021-02-11 三菱マテリアル株式会社 Copper alloy sheet, copper alloy sheet with plating film, and methods for producing these
US11926889B2 (en) 2019-08-06 2024-03-12 Mitsubishi Materials Corporation Copper alloy plate, copper alloy plate with plating film, and methods for producing these

Similar Documents

Publication Publication Date Title
US4434016A (en) Precipitation hardenable copper alloy and process
US5322575A (en) Process for production of copper base alloys and terminals using the same
KR20140050003A (en) Copper zinc alloy
US4799973A (en) Process for treating copper-nickel alloys for use in brazed assemblies and product
JP2521880B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH0368733A (en) Manufacture of copper alloy and copper alloy material for radiator plate
JPH02125830A (en) Cu-zn series alloy material having excellent stress corrosion cracking resistance and its manufacture
US4715910A (en) Low cost connector alloy
JPS6231060B2 (en)
JPH032341A (en) High strength and high conductivity copper alloy
US5387293A (en) Copper base alloys and terminals using the same
JPH0368732A (en) Manufacture of copper alloy and copper alloy material for radiator plate
US4871399A (en) Copper alloy for use as wiring harness terminal material and process for producing the same
JP4633380B2 (en) Manufacturing method of copper alloy sheet for conductive parts
JPH0266131A (en) High-strength and high-conductivity copper-base alloy
JP5155139B2 (en) Tin-coated electrical connector
JPH0368731A (en) Manufacture of copper alloy and copper alloy material for radiator plate
JPH0387326A (en) Manufacture of copper alloy and copper alloy material for radiator plate
JPS6160132B2 (en)
JP2895596B2 (en) Manufacturing method of brass material excellent in stress corrosion cracking resistance
JP2006161146A (en) TINNED STRIP OF Cu-Zn BASED ALLOY IN WHICH GENERATION OF WHISKER IS SUPPRESSED AND METHOD FOR PRODUCING THE SAME
JP2630608B2 (en) Manufacturing method of nickel-plated copper alloy strips for terminals and connectors
JPS59185752A (en) Copper alloy having superior stress corrosion cracking resistance
JPS644581B2 (en)
JPH1136028A (en) Lead frame for semiconductor device