JP2006161146A - TINNED STRIP OF Cu-Zn BASED ALLOY IN WHICH GENERATION OF WHISKER IS SUPPRESSED AND METHOD FOR PRODUCING THE SAME - Google Patents

TINNED STRIP OF Cu-Zn BASED ALLOY IN WHICH GENERATION OF WHISKER IS SUPPRESSED AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2006161146A
JP2006161146A JP2004358897A JP2004358897A JP2006161146A JP 2006161146 A JP2006161146 A JP 2006161146A JP 2004358897 A JP2004358897 A JP 2004358897A JP 2004358897 A JP2004358897 A JP 2004358897A JP 2006161146 A JP2006161146 A JP 2006161146A
Authority
JP
Japan
Prior art keywords
plating
concentration
mass
alloy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004358897A
Other languages
Japanese (ja)
Other versions
JP4570948B2 (en
Inventor
Chihiro Izumi
千尋 泉
Takatsugu Hatano
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Metal Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Metal Manufacturing Co Ltd filed Critical Nikko Metal Manufacturing Co Ltd
Priority to JP2004358897A priority Critical patent/JP4570948B2/en
Publication of JP2006161146A publication Critical patent/JP2006161146A/en
Application granted granted Critical
Publication of JP4570948B2 publication Critical patent/JP4570948B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflow tinned strip of a Cu-Zn based alloy in which the generation of whiskers is suppressed. <P>SOLUTION: In the tinned strip of a Cu-Zn based alloy in which the generation of whiskers is suppressed, a copper alloy comprising Zn of 20 to 40 mass% by the average concentration is used as a base material, and, from the surface to the base metal, plating films are composed in each layer of an Sn phase, an Sn-Cu alloy phase and a Cu phase, and the the concentration of Zn in the outermost surface layer of the Sn phase is 3 to 35 mass%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ウィスカーの発生が抑制されたCu−Zn系合金のSnめっき条及びその製造方法に関する。   The present invention relates to a Cu-Zn alloy Sn plating strip in which the generation of whiskers is suppressed, and a method for manufacturing the same.

JIS−C2600およびC2680等の黄銅に代表されるCu−Zn系合金は、りん青銅、ベリリウム銅、コルソン合金等と比較するとばね性が劣るものの、廉価なため、コネクタ用素材として広く使用されている。この場合、コネクタとして接触抵抗や熱安定性を得るために、Cu−Zn系合金条にSnめっきを施すことが多い。
Cu−Zn系合金のSnめっき条は、Snの優れたはんだ付け性、耐食性、電気接続性を生かし、主として民生用のコネクタ接点、自動車電装用ワイヤーハーネスをはじめとする端子、コネクタ等の様々な電気、電子部品に大量に使われている。
Cu-Zn alloys represented by brass such as JIS-C2600 and C2680 are widely used as connector materials because they are less expensive than phosphor bronze, beryllium copper, Corson alloy, etc., but are inexpensive. . In this case, in order to obtain contact resistance and thermal stability as a connector, the Cu—Zn alloy strip is often plated with Sn.
The Sn-plated strip of Cu-Zn alloy utilizes Sn's excellent solderability, corrosion resistance, and electrical connectivity, mainly for consumer connector contacts, various terminals such as automobile electrical wiring harnesses, connectors, etc. Used in large quantities in electrical and electronic parts.

Cu−Zn系合金のSnめっきでは、通常、Snめっきに先立ちCu下地めっきを施す。これは、Cu下地めっきを施さない或いは施してもCu下地めっき層が薄い場合、リフロー処理の際に、母材中のZnがSnめっき表面にZn濃化層を形成し、はんだ付け性が低下するためである。即ち、Cu下地層はZnの拡散を抑制する効果を持つからである。
特許文献1の実施例に示されるようにCu−Zn系合金のリフローSnめっきのCu下地めっきは0.5μm以上が施されていた。
特開平5−9785号公報(「0006」)
In Sn plating of a Cu—Zn alloy, Cu base plating is usually performed prior to Sn plating. This is because when the Cu undercoat is not applied or the Cu undercoat is thin, Zn in the base material forms a Zn enriched layer on the Sn plating surface during the reflow process, and solderability is reduced. It is to do. That is, the Cu underlayer has the effect of suppressing the diffusion of Zn.
As shown in the example of Patent Document 1, Cu underplating of reflow Sn plating of a Cu—Zn-based alloy was performed with a thickness of 0.5 μm or more.
JP-A-5-9785 ("0006")

Cu−Zn系合金のSnめっき条は、一般的に連続めっきラインにおいて、次の工程で製造される。Cu−Zn系合金条を、前処理として脱脂、酸洗した後に、電気めっき法により、Cu下地めっき層を形成した後、Snめっき層を形成する。電気めっき後のSnめっき条には、Snめっき層を溶融させるリフロー処理を施すことが多い。
また、Snめっき材を常温に放置すると、Snめっき表面からSnの単結晶が成長することが知られている。このSnの単結晶は、ウィスカーと呼ばれるものであり、電子部品内の回路の短絡を引き起こすことがある。ウィスカーは、電着時に生ずるSnめっき皮膜の内部応力が原因で発生する。したがって、リフロー処理でSnを溶融させ皮膜の内部応力を除去することは、ウィスカーの発生を抑制する手段として有効である。
A Sn-plated strip of Cu-Zn alloy is generally manufactured in the following process in a continuous plating line. After degreasing and pickling the Cu—Zn-based alloy strip as a pretreatment, a Cu undercoat layer is formed by electroplating, and then an Sn plating layer is formed. In many cases, the Sn plating strip after electroplating is subjected to a reflow treatment for melting the Sn plating layer.
Further, it is known that when a Sn plating material is left at room temperature, a single crystal of Sn grows from the Sn plating surface. This single crystal of Sn is called a whisker and may cause a short circuit of a circuit in the electronic component. Whisker is generated due to the internal stress of the Sn plating film generated during electrodeposition. Therefore, melting Sn by reflow treatment to remove the internal stress of the coating is effective as a means for suppressing the occurrence of whiskers.

これに対して、Snめっき材を電気、電子部品のコネクタ等に使用する場合、接点部ではめっき表面に局部的な応力が加わり、Snめっき皮膜内部には歪が発生するため、従来、耐ウィスカー性が良好とされてきたリフローSnめっき条であっても微小なウィスカーが発生することがある。近年、電子、電気部品の回路数増大により、回路に電気信号を供給するコネクタの多極化が進んでいる。このため端子間の間隔が狭くなり、従来は問題にならなかったような微小なウィスカーでも回路の短絡を引き起こす危険性が生じてきた。このような背景により、従来、耐ウィスカー性が良好とされてきたリフローSnめっき条に対し、さらなるウィスカーの制御が求められるようになった。
本発明の目的は、ウィスカーの発生が抑制されたCu−Zn系合金のリフローSnめっき条を提供することにある。
On the other hand, when the Sn plating material is used for a connector of an electric or electronic component, local stress is applied to the plating surface at the contact portion, and distortion is generated inside the Sn plating film. Even if the reflow Sn plating strip has been considered to have good properties, fine whiskers may occur. In recent years, with the increase in the number of electronic and electrical components, the number of connectors for supplying electrical signals to circuits has been increasing. For this reason, the space | interval between terminals narrows and the danger which causes the short circuit of a circuit has arisen even if it was a micro whisker which was not a problem conventionally. Due to such a background, further whisker control has been required for reflow Sn plating strips that have been considered to have good whisker resistance.
An object of the present invention is to provide a reflow Sn plating strip of a Cu—Zn alloy in which the generation of whiskers is suppressed.

本発明者等は、Cu−Zn系合金のリフローSnめっき条に対し、ウィスカー発生を抑制する方策を鋭意研究し、Snめっき表面にZnを濃化させるとウィスカーが抑制されることを知見した。しかし、上述したように、Snめっき表面にZnが濃化すると、はんだ付け性が低下する。そこで、本発明者等は、ウィスカー発生の抑制と良好なはんだ付け性が両立するZn濃化状態を探索し、これを見出すことに成功した。同時に、この適度なZn濃化状態を得るための製造条件として、母材表面の性状、Cu下地めっき厚、Snめっき厚、リフロー処理での加熱条件を明らかにすることができた。   The present inventors diligently studied a measure for suppressing the generation of whiskers with respect to the reflow Sn plating strip of the Cu—Zn alloy, and found that whisker is suppressed when Zn is concentrated on the Sn plating surface. However, as described above, when Zn is concentrated on the Sn plating surface, the solderability is deteriorated. Therefore, the present inventors have searched for and found a Zn-concentrated state in which suppression of whisker generation and good solderability are compatible. At the same time, it was possible to clarify the conditions of the base material surface, the Cu base plating thickness, the Sn plating thickness, and the heating conditions in the reflow process as the manufacturing conditions for obtaining this appropriate Zn enriched state.

即ち、本発明は以下のとおりである。
(1)平均濃度で20〜40質量%のZnを含有する銅合金を母材として、表面から母材にかけてSn相、Sn−Cu合金相、Cu相の各層でめっき皮膜が構成され、該Sn相の最表層のZn濃度が3〜35質量%であることを特徴とする、ウィスカー発生が抑制されたCu−Zn系合金のSnめっき条。
That is, the present invention is as follows.
(1) A copper alloy containing 20 to 40% by mass of Zn at an average concentration is used as a base material, and a plating film is composed of Sn phase, Sn—Cu alloy phase, and Cu phase layers from the surface to the base material. A Sn-plated strip of Cu-Zn alloy with suppressed whisker generation, wherein the Zn concentration of the outermost layer of the phase is 3 to 35 mass%.

(2)平均濃度で20〜40質量%のZnを含有する銅合金に対して、以下の処理を順次施すことを特徴とする、ウィスカー発生が抑制されたCu−Zn系合金のSnめっき条の製造方法、
a.母材の表面から深さ方向に0.1μmの位置でのZn濃度を、10〜40質量%に調整するための表層の除去
b.厚み0.1〜0.4μmのCu下地めっき
c.厚み0.5〜2.0μmのSnめっき
d.加熱時間t(秒)および加熱温度T(℃)を次式の範囲に調整することを特徴とするリフロー処理
t>5、T>250、T<−14t+670。
(2) A copper alloy containing 20 to 40% by mass of Zn at an average concentration is subjected to the following treatment in order, and the Sn-plated strip of Cu—Zn alloy with suppressed whisker generation Production method,
a. Removal of surface layer for adjusting Zn concentration at a position of 0.1 μm in the depth direction from the surface of the base material to 10 to 40% by mass b. Cu base plating with a thickness of 0.1 to 0.4 μm c. Sn plating with a thickness of 0.5 to 2.0 μm d. Reflow treatment characterized by adjusting the heating time t (seconds) and the heating temperature T (° C.) to the range of the following formula: t> 5, T> 250, T <−14t + 670.

本発明によれば、ウィスカーの発生が抑制された、Cu−Zn系合金のリフローSnめっき材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the reflow Sn plating material of a Cu-Zn type alloy by which generation | occurrence | production of the whisker was suppressed can be provided.

本発明について、以下詳細に説明する。
本発明のSnめっきが対象とする銅合金母材は20〜40質量%のZnを含有するCu−Zn系合金である。また、Zn以外の合金元素として、強度を改善する目的でSn、Ag、Pb、Fe、Ni、Mn、Si、Al、Tiから選択された1種以上の元素を合計で10質量%以下含有でき、この濃度範囲であれば本発明の効果は得られる。
The present invention will be described in detail below.
The copper alloy base material targeted by the Sn plating of the present invention is a Cu—Zn-based alloy containing 20 to 40% by mass of Zn. Further, as an alloy element other than Zn, it can contain a total of 10% by mass or less of one or more elements selected from Sn, Ag, Pb, Fe, Ni, Mn, Si, Al, and Ti for the purpose of improving the strength. In this concentration range, the effect of the present invention can be obtained.

(1)めっきの構造
本発明のSnめっきの基本的な構造は、従来のCu下地リフローSnめっきと同様、表面から母材にかけてSn相、Sn−Cu合金相、Cu相の各層で構成される。本発明の特徴は、Sn相の最表層に適度な濃度のZnを濃化させることにある。
Snめっき層に局部的な応力が負荷されると、めっき表面にウィスカーが発生する。Snめっき最表層のZnには、このウィスカー発生を抑制する作用がある。これは、ZnがSnめっき層の局部的に応力の高い場所に拡散、凝集することで、応力を緩和するためと推測される。
(1) Structure of plating The basic structure of Sn plating of the present invention is composed of layers of Sn phase, Sn—Cu alloy phase, and Cu phase from the surface to the base material, as in the case of conventional Cu underlayer reflow Sn plating. . A feature of the present invention is that Zn having an appropriate concentration is concentrated in the outermost surface layer of the Sn phase.
When local stress is applied to the Sn plating layer, whiskers are generated on the plating surface. Zn on the outermost surface of the Sn plating has an effect of suppressing the generation of whiskers. This is presumably because Zn diffuses and agglomerates in places with high stress locally in the Sn plating layer to relieve stress.

ZnのSnめっき層表面への濃化は、リフロー処理での加熱においてZnが拡散することによって生ずる。Snめっき最表層のZn濃度が3質量%未満では、ウィスカーの発生を抑制する効果が認められない。Snめっき最表層のZn濃度が35質量%を超えると、材料のはんだ付け性が著しく劣化するため好ましくない。したがって、Snめっき最表層のZn濃度は、3〜35質量%とする。より好ましいSnめっき最表層のZn濃度は、5〜15質量%である。ここで、Snめっき最表層のZn濃度とは、GDS(グロー放電発光分析)により分析した、表面から深さ方向に0.01μmの位置でのZn濃度である。
なお、本発明の効果は、Sn相最表層のZnを上記範囲に濃化させれば発揮されるので、リフロー後のSn相、Sn−Cu合金相、Cu相の厚みは、特に限定されない。同様に、電着時の厚みおよびリフロー条件によっては、Cu相の全てがSn−Cu合金相に変化する(Cu層が残留しない)こともあるが、本発明はCu相が残留しない状態をも含むものである。
Concentration of Zn on the surface of the Sn plating layer is caused by diffusion of Zn during heating in the reflow process. When the Zn concentration of the outermost layer of Sn plating is less than 3% by mass, the effect of suppressing the generation of whiskers is not recognized. If the Zn concentration of the outermost layer of Sn plating exceeds 35% by mass, the solderability of the material is significantly deteriorated, which is not preferable. Therefore, the Zn concentration of the outermost layer of Sn plating is 3 to 35% by mass. The Zn concentration of the outermost Sn plating outer layer is more preferably 5 to 15% by mass. Here, the Zn concentration of the outermost layer of Sn plating is the Zn concentration at a position of 0.01 μm in the depth direction from the surface, analyzed by GDS (glow discharge emission analysis).
In addition, since the effect of this invention is exhibited if Zn of Sn phase outermost layer is concentrated in the said range, the thickness of the Sn phase after reflow, Sn-Cu alloy phase, and Cu phase is not specifically limited. Similarly, depending on the thickness and reflow conditions during electrodeposition, all of the Cu phase may change to a Sn—Cu alloy phase (the Cu layer does not remain), but the present invention also has a state in which no Cu phase remains. Is included.

(1)製造方法
上記めっきの構造は、めっきを施す母材表層のZn濃度、Cu下地めっきの厚み、Snめっきの厚みおよびリフロー条件の4つを適正範囲に調整することにより得られる。
a.めっきを施す母材表層のZn濃度
Cu−Zn系合金を母材としSnめっきした材料では、加熱により母材中のZnがSnめっき層へ拡散する。後述するリフロー条件で加熱した場合、母材表層のZn濃度が10質量%未満であると、Snめっき最表層のZn濃度が3質量%よりも低くなり、母材表層のZn濃度が40質量%を超えると、Snめっき最表層のZn濃度が35質量%を超える。したがって、母材に用いる銅合金の表層のZn濃度を10〜40質量%に調整する必要がある。ここで、母材表層のZn濃度とは、GDSにより分析した、表面から深さ方向に0.1μmの位置でのZn濃度である。
(1) Manufacturing method The plating structure can be obtained by adjusting the Zn concentration of the surface layer of the base material to be plated, the thickness of the Cu base plating, the thickness of the Sn plating, and the reflow conditions within an appropriate range.
a. Zn concentration in surface layer of base material to be plated In a material plated with Sn using a Cu-Zn alloy as a base material, Zn in the base material diffuses into the Sn plating layer by heating. When heated under reflow conditions to be described later, if the Zn concentration of the base metal surface layer is less than 10% by mass, the Zn concentration of the outermost Sn plating layer is lower than 3% by mass, and the Zn concentration of the base metal surface layer is 40% by mass. When exceeding, Zn concentration of Sn plating outermost layer will exceed 35 mass%. Therefore, it is necessary to adjust the Zn concentration of the surface layer of the copper alloy used for the base material to 10 to 40% by mass. Here, the Zn concentration in the surface layer of the base material is the Zn concentration at a position of 0.1 μm in the depth direction from the surface, analyzed by GDS.

一方、母材であるCu−Zn系合金は、溶解・鋳造で製造したインゴットを必要に応じて熱間圧延した後、冷間圧延と焼鈍を繰り返して条に加工される。Cu−Zn系合金の焼鈍では、脱Zn現象が生じることが知られている。脱Zn現象とは、焼鈍においてCu−Zn系合金が高温に熱せられた際に、蒸気圧の低いZnが気相中に逃散しCu−Zn系合金表面のZn濃度が低下する現象である。したがって、Cu−Zn系合金表面のZn濃度を上記範囲に調整するためには、焼鈍で生じた脱Zn層を除去することが必要である。この除去方法としては、回転式バフを用いる機械研磨、腐食液を用いる化学研磨等がある。   On the other hand, a Cu—Zn-based alloy as a base material is processed into a strip by repeatedly performing cold rolling and annealing after hot rolling an ingot produced by melting and casting as necessary. It is known that the removal of Zn occurs when annealing Cu—Zn alloys. The Zn removal phenomenon is a phenomenon in which when the Cu—Zn alloy is heated to a high temperature during annealing, Zn having a low vapor pressure escapes into the gas phase and the Zn concentration on the surface of the Cu—Zn alloy decreases. Therefore, in order to adjust the Zn concentration on the surface of the Cu—Zn-based alloy to the above range, it is necessary to remove the Zn-free layer generated by annealing. As this removal method, there are mechanical polishing using a rotary buff, chemical polishing using a corrosive liquid, and the like.

本発明では、Snめっきに供される直前のCu−Zn系合金表面のZn濃度を、上記範囲に調整することが肝要であり、そのための手段や工程順序は特に限定されない。例えば、コネクタ用のCu−Zn系合金は、焼鈍後に冷間圧延を施した調質状態でSnめっきに供されることが多いが、この場合、脱Zn層除去の研磨は、冷間圧延前(焼鈍直後)に行っても良いし、冷間圧延後(めっき直前)に行っても良い。   In the present invention, it is important to adjust the Zn concentration on the surface of the Cu—Zn-based alloy immediately before being subjected to Sn plating to the above range, and means and process order for that purpose are not particularly limited. For example, a Cu—Zn-based alloy for connectors is often used for Sn plating in a tempered state after cold rolling after annealing. In this case, polishing for removing the Zn-free layer is performed before cold rolling. It may be performed (immediately after annealing) or after cold rolling (immediately before plating).

b.Cu下地めっき厚
Cu−Zn系合金にSnめっきする場合、母材からSnめっき層へのZnの拡散を抑制するため、Cuを下地めっきすることが一般的である。後述するリフロー条件で加熱した場合、Cu下地めっきの厚みが0.1μm未満であると、Snめっき層へのZnの拡散を十分に抑制することができず、Snめっき最表層のZn濃度が35質量%を超える。Cu下地めっきの厚みが0.4μmを超えると、Snめっき層へのZnの拡散が進行せず、Snめっき最表層のZn濃度が3質量%に満たない。したがって、Cu下地めっきの厚みは、0.1〜0.4μmとする。
b. Cu Underplating Thickness When Sn plating is applied to a Cu-Zn alloy, it is common to undercoat Cu to suppress the diffusion of Zn from the base material to the Sn plating layer. When heated under reflow conditions described later, if the thickness of the Cu undercoat is less than 0.1 μm, the diffusion of Zn into the Sn plating layer cannot be sufficiently suppressed, and the Zn concentration of the outermost surface of the Sn plating is 35. Exceeds mass%. When the thickness of the Cu base plating exceeds 0.4 μm, the diffusion of Zn into the Sn plating layer does not proceed, and the Zn concentration of the outermost layer of Sn plating is less than 3% by mass. Therefore, the thickness of the Cu base plating is 0.1 to 0.4 μm.

c.Snめっき厚
Snめっきの厚みが0.5μm未満では、後述するリフロー条件で加熱した場合、Snめっき最表層のZn濃度が35質量%を超え、はんだ付け性が劣化する。Snめっきの厚みが2.0μmを超えると、後述するリフロー条件で加熱した場合、Snめっき最表層のZn濃度が3質量%に満たない。したがって、Snめっきの厚みは0.5〜2.0μmとする。
c. Sn plating thickness When the thickness of Sn plating is less than 0.5 μm, when heated under reflow conditions described later, the Zn concentration of the outermost layer of Sn plating exceeds 35 mass%, and solderability deteriorates. When the thickness of the Sn plating exceeds 2.0 μm, the Zn concentration of the outermost layer of the Sn plating is less than 3% by mass when heated under reflow conditions described later. Therefore, the thickness of Sn plating shall be 0.5-2.0 micrometers.

d.リフロー条件
Snめっき最表層のZn濃度が本発明の範囲となるリフロー条件を以下に示す。加熱温度が250℃未満では、母材からSnめっき層へのZnの拡散が十分でなく、Snめっき最表層のZn濃度が3質量%に満たない。加熱温度が600℃を超えると、Znの拡散が著しくなるため、Snめっき最表層のZn濃度が35質量%を超えるばかりでなく、母材が再結晶し、軟化するため、材料に必要な機械的強度が得られない。したがって、リフロー処理での加熱温度は250〜600℃とする。
また、加熱時間が5秒未満では、Snめっき層が溶融されず、リフロー光沢がえられないだけでなく、Snめっき層へのZnの拡散が十分でなく、Snめっき最表面のZn濃度が3質量%に満たない。加熱時間が30秒を超えると、Znの拡散が著しくなるため、Snめっき最表面のZn濃度が35質量%を超える。したがって、リフロー処理での加熱時間は5〜30秒とする。
さらに、Snめっき層へのZnの拡散は、温度と時間の両因子の関係によって決定されるので、リフローの温度を、T<−14t+670の範囲に限定する。すなわち、リフロー処理条件は、図1の斜線の範囲である。ここで、Tは加熱温度(℃)、tは加熱時間(秒)を表す。
d. Reflow conditions The reflow conditions under which the Zn concentration of the outermost layer of Sn plating falls within the scope of the present invention are shown below. When the heating temperature is less than 250 ° C., Zn is not sufficiently diffused from the base material to the Sn plating layer, and the Zn concentration of the outermost layer of Sn plating is less than 3% by mass. When the heating temperature exceeds 600 ° C., the diffusion of Zn becomes remarkable, so that not only the Zn concentration of the outermost layer of Sn plating exceeds 35% by mass, but also the base material recrystallizes and softens. Strength cannot be obtained. Therefore, the heating temperature in the reflow process is set to 250 to 600 ° C.
In addition, when the heating time is less than 5 seconds, the Sn plating layer is not melted and reflow gloss is not obtained, and the Zn diffusion to the Sn plating layer is not sufficient, and the Zn concentration on the outermost surface of the Sn plating is 3 Less than mass%. When the heating time exceeds 30 seconds, the diffusion of Zn becomes remarkable, so that the Zn concentration on the outermost surface of the Sn plating exceeds 35% by mass. Therefore, the heating time in the reflow process is 5 to 30 seconds.
Furthermore, since the diffusion of Zn into the Sn plating layer is determined by the relationship between the temperature and time factors, the reflow temperature is limited to the range of T <−14t + 670. That is, the reflow processing condition is within the hatched range in FIG. Here, T represents the heating temperature (° C.), and t represents the heating time (seconds).

表1に示されるCu−Zn系合金(厚さ0.2mm)を供試材として用いた。表1にはGDSで分析した、表面から深さ方向に0.1μmの位置でのZn濃度も示してある。母材表層のGDS分析データの一例として、図2に発明例No.1および比較例No.11のチャートを示す。 A Cu—Zn alloy (thickness 0.2 mm) shown in Table 1 was used as a test material. Table 1 also shows the Zn concentration at a position of 0.1 μm in the depth direction from the surface, analyzed by GDS. As an example of the GDS analysis data of the base material surface layer, FIG. 1 and Comparative Example No. 1 11 charts are shown.

Figure 2006161146
Figure 2006161146

各供試材を脱脂、酸洗した後、表1に示す条件でめっきおよびリフロー処理した。表2、表3にめっき浴の組成を示す。CuおよびSnめっき厚みの調整は、電着時間を変えることで行った。 Each sample material was degreased and pickled, and then plated and reflowed under the conditions shown in Table 1. Tables 2 and 3 show the composition of the plating bath. Adjustment of Cu and Sn plating thickness was performed by changing the electrodeposition time.

Figure 2006161146
Figure 2006161146

Figure 2006161146
Figure 2006161146

リフロー後の供試材について、Snめっき最表層のZn濃度をGDSにより分析した。表1に、供試材のSnめっき表面から深さ方向に0.01μmの位置におけるZn濃度を示す。Snめっき表層のGDS分析データの一例として、図3に発明例No.1および比較例No.11のチャートを示す。   About the test material after reflow, the Zn density | concentration of Sn plating outermost layer was analyzed by GDS. Table 1 shows the Zn concentration at a position of 0.01 μm in the depth direction from the Sn plating surface of the test material. As an example of the GDS analysis data of the Sn plating surface layer, FIG. 1 and Comparative Example No. 1 11 charts are shown.

各供試材について、ウィスカーの長さおよびはんだ付け性を、次の方法で評価した。
(1)ウィスカー長さ
供試材表面に、直径が0.7mmの球状の圧子(ステンレス製)を150gの荷重で負荷したまま室温で7日間放置し、めっき表面の圧子接点部にウィスカーを発生させた。発生したウィスカーを電子顕微鏡で観察し、各供試材で最も長く成長したウィスカーの長さが、10μm以下の供試材は評価○とし、10μmを超えた材料は評価×とした。
About each test material, the length of the whisker and solderability were evaluated by the following method.
(1) Whisker length A spherical indenter (made of stainless steel) with a diameter of 0.7 mm is left on the surface of the test material with a load of 150 g for 7 days at room temperature, and whiskers are generated at the indenter contacts on the plating surface. I let you. The generated whisker was observed with an electron microscope. The length of the whisker that grew the longest in each specimen was 10 μm or less, and the specimen exceeding 10 μm was evaluated as “Good”.

(2)はんだ付け性
供試材を脱脂後、フラックスとして25質量%ロジン−75質量%エタノールを塗布し、はんだ付けを行った(はんだ組成:60質量%Sn−40質量%Pb)。はんだの付着面積が80%以上の場合を「良好」とし、付着面積が80%未満の場合を「不良」と評価した。
本発明例および比較例の評価結果を表4に示す。
(2) Solderability After degreasing the test material, 25 mass% rosin-75 mass% ethanol was applied as a flux and soldering was performed (solder composition: 60 mass% Sn-40 mass% Pb). The case where the adhesion area of the solder was 80% or more was evaluated as “good”, and the case where the adhesion area was less than 80% was evaluated as “bad”.
Table 4 shows the evaluation results of the inventive examples and the comparative examples.

Figure 2006161146
Figure 2006161146

本発明例No.1〜10は、いずれもSnめっき最表層のZn濃度が本発明の範囲内であるため、ウィスカーの長さが10μm以下であり、また良好なはんだ付け性を示した。
一方、比較例No.11は母材表層のZn濃度が低すぎるため、Snめっき最表層のZn濃度が本発明の範囲よりも低く、10μmを超えるウィスカーが発生した。比較例No.12は母材表層のZn濃度が高すぎるため、Snめっき最表層のZn濃度が本発明の範囲よりも高く、はんだ付け性が劣った。
Invention Example No. In Nos. 1 to 10, since the Zn concentration of the outermost layer of Sn plating is within the range of the present invention, the length of whiskers is 10 μm or less, and good solderability is exhibited.
On the other hand, Comparative Example No. In No. 11, since the Zn concentration of the surface layer of the base material was too low, the Zn concentration of the outermost layer of Sn plating was lower than the range of the present invention, and whiskers exceeding 10 μm were generated. Comparative Example No. In No. 12, since the Zn concentration of the surface layer of the base material was too high, the Zn concentration of the outermost layer of Sn plating was higher than the range of the present invention, and the solderability was inferior.

比較例No.13、14はCu下地めっきが薄すぎるため、Snめっき最表層のZn濃度が本発明の範囲よりも高く、はんだ付け性が劣った。比較例No.15、16はCu下地めっきが厚すぎるため、Snめっき最表層のZn濃度が本発明の範囲よりも低く、10μmを超えるウィスカーが発生した。   Comparative Example No. In Nos. 13 and 14, since the Cu base plating was too thin, the Zn concentration of the outermost layer of Sn plating was higher than the range of the present invention, and the solderability was inferior. Comparative Example No. In Nos. 15 and 16, since the Cu base plating was too thick, the Zn concentration of the outermost Sn plating layer was lower than the range of the present invention, and whiskers exceeding 10 μm were generated.

比較例No.17はSnめっきが薄すぎるため、Snめっき最表層のZn濃度が本発明の範囲よりも高く、はんだ付け性が劣った。比較例No.18はSnめっきが厚すぎるため、Snめっき最表層のZn濃度が本発明の範囲よりも低く、10μmを超えるウィスカーが発生した。   Comparative Example No. Since Sn plating of No. 17 was too thin, Zn density | concentration of Sn plating outermost layer was higher than the range of this invention, and solderability was inferior. Comparative Example No. In No. 18, since the Sn plating was too thick, the Zn concentration of the outermost layer of the Sn plating was lower than the range of the present invention, and whiskers exceeding 10 μm were generated.

比較例No.19はリフロー時間が短いため、Snめっき最表層のZn濃度が本発明の範囲よりも低く、10μmを超えるウィスカーが発生した。比較例No.20はリフロー時間が長すぎるため、Snめっき最表層のZn濃度が本発明の範囲よりも高く、はんだ付け性が劣った。比較例No.21はリフロー温度が低すぎるため、Snめっき最表層のZn濃度が本発明の範囲よりも低く、10μmを超えるウィスカーが発生した。比較例No.24はリフロー温度が高すぎるため、Snめっき最表層のZn濃度が本発明の範囲よりも高く、はんだ付け性が劣った。   Comparative Example No. Since No. 19 had a short reflow time, the Zn concentration of the outermost layer of Sn plating was lower than the range of the present invention, and whiskers exceeding 10 μm were generated. Comparative Example No. Since No. 20 had too long reflow time, Zn density | concentration of Sn plating outermost layer was higher than the range of this invention, and solderability was inferior. Comparative Example No. In No. 21, since the reflow temperature was too low, the Zn concentration in the outermost layer of Sn plating was lower than the range of the present invention, and whiskers exceeding 10 μm were generated. Comparative Example No. In No. 24, since the reflow temperature was too high, the Zn concentration of the outermost layer of Sn plating was higher than the range of the present invention, and the solderability was inferior.

また、比較例No.22、23は、T<−14t+670を満足しないため、Snめっき最表層のZn濃度が本発明の範囲よりも高く、はんだ付け性が劣った。   Comparative Example No. Since 22 and 23 do not satisfy T <−14t + 670, the Zn concentration of the outermost layer of Sn plating was higher than the range of the present invention, and the solderability was inferior.

リフロー処理条件(温度と時間)を表した図である。It is a figure showing reflow processing conditions (temperature and time). 発明例No.1、比較例No.11を母材の表面から深さ方向1μmまでのZn濃度をGDSで分析したチャートである。Invention Example No. 1, Comparative Example No. 11 is a chart in which the Zn concentration from the surface of the base material to the depth direction of 1 μm is analyzed by GDS. 発明例No.1、比較例No.11をSnめっき表面から深さ方向に0.02μmまでのZn濃度をGDSで分析したチャートである。Invention Example No. 1, Comparative Example No. 11 is a chart obtained by analyzing the Zn concentration from the Sn plating surface to 0.02 μm in the depth direction by GDS.

Claims (2)

平均濃度で20〜40質量%のZnを含有する銅合金を母材として、表面から母材にかけてSn相、Sn−Cu合金相、Cu相の各層でめっき皮膜が構成され、該Sn相の最表層のZn濃度が3〜35質量%であることを特徴とする、ウィスカー発生が抑制されたCu−Zn系合金のSnめっき条。 A copper alloy containing 20 to 40% by mass of Zn at an average concentration is used as a base material, and a plating film is composed of the Sn phase, Sn—Cu alloy phase, and Cu phase layers from the surface to the base material. A Sn plating strip of a Cu-Zn alloy with suppressed whisker generation, wherein the surface layer has a Zn concentration of 3 to 35 mass%. 平均濃度で20〜40質量%のZnを含有する銅合金に対して、以下の処理を順次施すことを特徴とする、ウィスカー発生が抑制されたCu−Zn系合金のSnめっき条の製造方法。
a.母材の表面から深さ方向に0.1μmの位置での平均Zn濃度を、10〜40質量%に調整するための表層の除去
b.厚み0.1〜0.4μmのCu下地めっき
c.厚み0.5〜2.0μmのSnめっき
d.加熱時間t(秒)および加熱温度T(℃)を次式の範囲に調整することを特徴とするリフロー処理
t>5、T>250、T<−14t+670

The manufacturing method of the Sn plating strip of the Cu-Zn type alloy in which the whisker generation | occurrence | production was suppressed characterized by performing the following processes sequentially with respect to the copper alloy containing 20-40 mass% Zn by average density | concentration.
a. Removal of surface layer for adjusting the average Zn concentration at a position of 0.1 μm in the depth direction from the surface of the base material to 10 to 40% by mass b. Cu base plating with a thickness of 0.1 to 0.4 μm c. Sn plating with a thickness of 0.5 to 2.0 μm d. Reflow treatment characterized by adjusting heating time t (seconds) and heating temperature T (° C.) to the range of the following equation: t> 5, T> 250, T <−14t + 670

JP2004358897A 2004-12-10 2004-12-10 Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same Expired - Fee Related JP4570948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004358897A JP4570948B2 (en) 2004-12-10 2004-12-10 Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004358897A JP4570948B2 (en) 2004-12-10 2004-12-10 Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006161146A true JP2006161146A (en) 2006-06-22
JP4570948B2 JP4570948B2 (en) 2010-10-27

Family

ID=36663491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004358897A Expired - Fee Related JP4570948B2 (en) 2004-12-10 2004-12-10 Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same

Country Status (1)

Country Link
JP (1) JP4570948B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248332A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Tin-plated strip and its production method
JP2009302562A (en) * 2006-10-17 2009-12-24 Hitachi Cable Ltd Conductor for flexible board, its production process and flexible board
US8907226B2 (en) 2008-03-11 2014-12-09 Hitachi Metals, Ltd. Conductor for flexible substrate and fabrication method of same, and flexible substrate using same
JP2018159125A (en) * 2017-03-22 2018-10-11 Dowaメタルテック株式会社 Sn PLATED MATERIAL AND PRODUCTION METHOD THEREOF

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317295A (en) * 2001-04-19 2002-10-31 Furukawa Electric Co Ltd:The REFLOW TREATED Sn ALLOY PLATING MATERIAL AND FIT TYPE CONNECTING TERMINAL USING THE SAME
JP2004232014A (en) * 2003-01-30 2004-08-19 Dowa Mining Co Ltd COPPER OR COPPER ALLOY MEMBER COATED WITH Sn AND MANUFACTURING METHOD THEREFOR
JP2004300524A (en) * 2003-03-31 2004-10-28 Dowa Mining Co Ltd Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317295A (en) * 2001-04-19 2002-10-31 Furukawa Electric Co Ltd:The REFLOW TREATED Sn ALLOY PLATING MATERIAL AND FIT TYPE CONNECTING TERMINAL USING THE SAME
JP2004232014A (en) * 2003-01-30 2004-08-19 Dowa Mining Co Ltd COPPER OR COPPER ALLOY MEMBER COATED WITH Sn AND MANUFACTURING METHOD THEREFOR
JP2004300524A (en) * 2003-03-31 2004-10-28 Dowa Mining Co Ltd Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302562A (en) * 2006-10-17 2009-12-24 Hitachi Cable Ltd Conductor for flexible board, its production process and flexible board
JP2008248332A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Tin-plated strip and its production method
US8907226B2 (en) 2008-03-11 2014-12-09 Hitachi Metals, Ltd. Conductor for flexible substrate and fabrication method of same, and flexible substrate using same
JP2018159125A (en) * 2017-03-22 2018-10-11 Dowaメタルテック株式会社 Sn PLATED MATERIAL AND PRODUCTION METHOD THEREOF

Also Published As

Publication number Publication date
JP4570948B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP3880877B2 (en) Plated copper or copper alloy and method for producing the same
KR102052879B1 (en) Conductive material for connection parts which has excellent minute slide wear resistance
JP4934785B2 (en) Sn-plated copper alloy material and manufacturing method thereof
JP2007063624A (en) Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance
JP4986499B2 (en) Method for producing Cu-Ni-Si alloy tin plating strip
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2009052076A (en) Conductive material for connecting component, and method for manufacturing the same
JP4916379B2 (en) Male terminal for PCB connector and manufacturing method thereof
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
JP5393739B2 (en) Cu-Ni-Si alloy tin plating strip
JP2008248332A (en) Tin-plated strip and its production method
JP2005226097A (en) Tinned copper alloy material for electrical/electronic component, and its production method
JP4987028B2 (en) Copper alloy tin plating material for printed circuit board terminals
JP4699252B2 (en) Titanium copper
JP5897083B1 (en) Conductive material for connecting parts with excellent resistance to fine sliding wear
JP5185759B2 (en) Conductive material and manufacturing method thereof
JP2005251762A (en) Tin coated electrical connector
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2007084921A (en) Cu-Zn-Sn BASED ALLOY TIN PLATED STRIP
JP2007051370A (en) Cu-zn-sn alloy strip excellent in heat-peeling resistance of sn plating and sn-plated strip made of the same
JP2004232049A (en) Cu PLATING TITANIUM COPPER
JP5897082B1 (en) Conductive material for connecting parts with excellent resistance to fine sliding wear
JP7315120B1 (en) Terminal material with plated film and copper sheet for terminal material
JP2009076473A (en) Tin coated electrical connector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4570948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20110104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees