JPS644581B2 - - Google Patents
Info
- Publication number
- JPS644581B2 JPS644581B2 JP28003885A JP28003885A JPS644581B2 JP S644581 B2 JPS644581 B2 JP S644581B2 JP 28003885 A JP28003885 A JP 28003885A JP 28003885 A JP28003885 A JP 28003885A JP S644581 B2 JPS644581 B2 JP S644581B2
- Authority
- JP
- Japan
- Prior art keywords
- strip
- copper
- metal
- coating
- diffusion layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010949 copper Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 229910052802 copper Inorganic materials 0.000 claims description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 11
- 238000009792 diffusion process Methods 0.000 claims description 9
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 description 14
- 238000005260 corrosion Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
[産業上の利用分野]
本発明は、ラジエータ用フイン材の製造方法に
関するものである。
[従来技術とその問題点]
従来ラジエータ用フイン材としては、SnやCd
入りの薄板が使われている。これはCu合金の高
い熱伝導性、良好な加工性、はんだ付性等を活か
したものである。
しかし、最近このフイン材の腐食によるラジエ
ータの機能低下、低寿命化が問題となつて来た。
これは海塩粒子による塩害の発生する海岸地帯、
凍結防止剤を散布する寒冷地において激しく発生
し、走行後2年程度で放熱特性が極端に低下し、
ラジエータが寿命となる場合がある。
調査したところによると、この腐食は、酸化皮
膜としてCu2Oを層状に形成して行くものであつ
た。
これに対処するため、酸化皮膜の密着性の良い
Cu合金あるいはCu2Oを形成しにくいCu合金が開
発されたが、いずれも合金化するため、フイン材
に要求される重要な特性の一つである熱伝導性を
極端にする等の難点があつた。
例えばCu―Ni合金は、この種の腐食には極め
て高い耐食性を有する合金であるが、熱伝導率が
純銅の1/10以下となり、また加工性も劣つてく
る。
従つて、熱伝導率が高く、かつ耐食性に優れた
フイン材の提供が望まれていた。
[発明の目的]
本発明の目的は、熱伝導率が高く、かつ耐食性
に優れたラジエータ用フイン材を得ることのでき
る方法を提供することにある。
[発明の概要]
本発明の要旨は、銅または銅合金からなる条材
の表面に銅以外の金属を被覆した後、その条材に
加熱処理と圧延加工を施す方法で、この加熱処理
と圧延加工は何れを先に施してもよい。
条材の表面に被覆する金属は、耐食性を向上さ
せることが必要であり、そのような金属として
は、Ni、Sn、Al、Zn、Pb、Si、Mn、Ti、Zr、
Cr、Ag等があげられるが、これらの中の少なく
とも1種もしくはそれらの中の1種または2種以
上を主体とする合金であつても差支えない。
このような金属を条材の表面に被覆する方法と
しては、電解、無電解によるメツキあるいは蒸
着、スパツタリング等を利用することによつて容
易に行うことができる。
このような金属が施された条材の加熱処理は、
当該金属の拡散層を形成させるためのもので、そ
の温度は500℃以上が望ましい。これは高温なほ
ど拡散が進み、所定の拡散層を短時間で効率的に
形成できるからである。
上限は銅または銅合金の融点以下であればよい
が、作業性を考慮すると、融点以下50℃までが望
ましいこの拡散層の厚さは、フイン材の最終製品
で片側0.1〜10μmであることが望ましい。
それは、0.1μm以下では期待し得る耐食性が得
られず、10μm以下では拡散層による熱伝導率の
低下が大きくなり、好ましくないからである。
[実施例]
以下、実施例について説明する。
実施例 1
幅600mm、厚さ0.8mm、長さ2000mの無酸素銅条
の表面に、10-3torrのアルゴンガス中でのスパツ
タリングにより純アルミニウムの薄膜を形成した
後、1〜2%のCOガスを含む還元性雰囲気の連
続焼鈍炉を用い、550℃で30秒間熱処理した。そ
の後、この銅条を0.5mmまで圧延し、試験に供し
た。
耐食性は、20mm×100mmの試料をJIS Z2371に
規定された条件で、塩水墳霧試験を30日間行い、
表面の腐食生成物を除去した後、試験片の重量を
測定し、試験前後の重量減を求めて評価した。
熱伝導率は、これに正相関をもつ導電率を測定
して評価した。また、試験片の180゜曲げにより、
表面の亀裂発生有無を観察し、材料表面の靭性を
評価した。
第1表に試験結果を示す。
[Industrial Field of Application] The present invention relates to a method of manufacturing a fin material for a radiator. [Conventional technology and its problems] Conventional fin materials for radiators include Sn and Cd.
A thin board is used. This takes advantage of the Cu alloy's high thermal conductivity, good workability, solderability, etc. However, recently, corrosion of this fin material has caused a problem of reduced functionality and shortened lifespan of radiators.
This is a coastal area where salt damage occurs due to sea salt particles.
This occurs intensely in cold regions where anti-freezing agents are sprayed, and the heat dissipation characteristics deteriorate dramatically after about two years of operation.
The radiator may reach the end of its life. According to the investigation, this corrosion resulted in the formation of a layer of Cu 2 O as an oxide film. To deal with this, the oxide film has good adhesion.
Cu alloys and Cu alloys that are difficult to form Cu 2 O have been developed, but because they are alloyed, they have the disadvantage of extreme thermal conductivity, which is one of the important properties required for fin materials. It was hot. For example, Cu--Ni alloy is an alloy that has extremely high corrosion resistance against this type of corrosion, but its thermal conductivity is less than 1/10 that of pure copper, and its workability is also poor. Therefore, it has been desired to provide a fin material that has high thermal conductivity and excellent corrosion resistance. [Object of the Invention] An object of the present invention is to provide a method by which a radiator fin material having high thermal conductivity and excellent corrosion resistance can be obtained. [Summary of the Invention] The gist of the present invention is a method in which the surface of a strip made of copper or copper alloy is coated with a metal other than copper, and then the strip is subjected to heat treatment and rolling. Any processing may be performed first. The metal coated on the surface of the strip must have improved corrosion resistance, and such metals include Ni, Sn, Al, Zn, Pb, Si, Mn, Ti, Zr,
Examples include Cr, Ag, etc., but at least one of these or an alloy mainly composed of one or more of them may be used. The surface of the strip can be easily coated with such a metal by electrolytic or electroless plating, vapor deposition, sputtering, or the like. Heat treatment of strips coated with such metals is
This is to form a diffusion layer of the metal, and the temperature is preferably 500°C or higher. This is because the higher the temperature, the more the diffusion progresses, and a predetermined diffusion layer can be formed efficiently in a short time. The upper limit should be below the melting point of the copper or copper alloy, but considering workability, the thickness of this diffusion layer is preferably 50°C below the melting point, and the thickness of the final fin material should be 0.1 to 10 μm on one side. desirable. This is because if the thickness is less than 0.1 μm, the expected corrosion resistance cannot be obtained, and if the thickness is less than 10 μm, the thermal conductivity will decrease significantly due to the diffusion layer, which is not preferable. [Example] Examples will be described below. Example 1 A thin film of pure aluminum was formed on the surface of an oxygen-free copper strip with a width of 600 mm, a thickness of 0.8 mm, and a length of 2000 m by sputtering in an argon gas of 10 -3 torr, and then a thin film of pure aluminum was formed using 1 to 2% CO2. Heat treatment was performed at 550°C for 30 seconds using a continuous annealing furnace in a reducing atmosphere containing gas. Thereafter, this copper strip was rolled to 0.5 mm and subjected to a test. Corrosion resistance was determined by performing a salt water fog test on a 20 mm x 100 mm sample for 30 days under the conditions specified in JIS Z2371.
After removing the corrosion products on the surface, the weight of the test piece was measured, and the weight loss before and after the test was determined and evaluated. Thermal conductivity was evaluated by measuring electrical conductivity, which has a positive correlation. In addition, by bending the test piece 180°,
The presence or absence of cracks on the surface was observed and the toughness of the material surface was evaluated. Table 1 shows the test results.
【表】
実施例 2
幅600mm、厚さ0.8mm、長さ2000mの無酸素銅条
の表面に、10-3torrのアルゴンガス中でのスパツ
タリングにより純亜鉛の薄い膜を形成した後、1
〜2%のCOガスを含む還元性雰囲気の続焼鈍炉
を用い、550℃で1分間熱処理した。
さらにこの銅条を0.5mmまで圧延して試験に供
した。
試験は、実施例1に示したと同様の方法で行つ
た。第2表に試験結果を示す。[Table] Example 2 After forming a thin film of pure zinc on the surface of an oxygen-free copper strip with a width of 600 mm, a thickness of 0.8 mm, and a length of 2000 m by sputtering in an argon gas of 10 -3 torr,
Heat treatment was performed at 550° C. for 1 minute using a subsequent annealing furnace in a reducing atmosphere containing ~2% CO gas. Furthermore, this copper strip was rolled to 0.5 mm and subjected to testing. The test was conducted in the same manner as described in Example 1. Table 2 shows the test results.
【表】【table】
【表】
いずれの実施例の場合も、本発明によるフイン
材は、耐食性、熱伝導性、靭性ともに優れ、ラジ
エータ用フイン材として適したものであることが
わかる。
[発明の効果]
以上から明らかなように、本発明によるフイン
材は表面にCu以外の金属の拡散層を設けたもの
であるから、ラジエータ用フイン材としての腐食
や放熱特性の低下が軽減され、ラジエータの長寿
命化を図ることができる。
また、本発明は、条材表面にCu以外の金属被
覆を施した後、あるいは被覆加熱後に圧延する方
法であるから、拡散層の厚さを正確に管理でき、
フイン材表面の耐食性に対するバラツキを小さく
することが可能となる。また、圧延により表面の
平滑度を向上させ得るので、耐食性向上と同時に
フインのコルゲート加工性も向上させることがで
きる。[Table] In all of the examples, it can be seen that the fin material according to the present invention has excellent corrosion resistance, thermal conductivity, and toughness, and is suitable as a fin material for a radiator. [Effects of the Invention] As is clear from the above, since the fin material according to the present invention has a diffusion layer of a metal other than Cu on the surface, corrosion and deterioration of heat dissipation characteristics when used as a radiator fin material are reduced. , it is possible to extend the life of the radiator. In addition, since the present invention is a method in which rolling is performed after coating the surface of the strip with a metal other than Cu or after heating the coating, the thickness of the diffusion layer can be accurately controlled.
It is possible to reduce variations in corrosion resistance on the surface of the fin material. Further, since the surface smoothness can be improved by rolling, the corrugating processability of the fins can be improved at the same time as the corrosion resistance is improved.
Claims (1)
の金属を被覆する工程と、銅以外の金属が施され
た条材を加熱処理する工程と、銅以外の金属が施
された条材を所定の板厚に圧延する工程とから成
ることを特徴とするラジエータ用フイン材の製造
方法。 2 加熱処理して条材の表面に被覆金属の拡散層
を形成した後、その条材を圧延加工する、前記第
1項記載の方法。 3 圧延加工した後条材を加熱処理して条材の表
面に被覆金属の拡散層を形成する、前記第1項記
載の方法。 4 不活性あるいは還元性の雰囲気中で加熱処理
する、前記第1項、第2項または第3項記載の方
法。 5 被覆金属が、Ni、Sn、Al、Zn、Pb、Si、
Mn、Ti、Zr、Cr、Agの中の少なくとも1種で
ある、前記第1項ないし第4項の何れかに記載の
方法。[Claims] 1. A step of coating the surface of a strip made of copper or a copper alloy with a metal other than copper, a step of heat-treating the strip coated with a metal other than copper, and a step of coating the surface of a strip made of copper or a copper alloy with a metal other than copper. 1. A method for producing a fin material for a radiator, comprising the step of rolling the applied strip material to a predetermined thickness. 2. The method according to item 1 above, wherein the strip is rolled after being heat-treated to form a diffusion layer of the coated metal on the surface of the strip. 3. The method according to item 1 above, wherein the strip is heat-treated after being rolled to form a diffusion layer of the coating metal on the surface of the strip. 4. The method according to the above item 1, 2 or 3, wherein the heat treatment is performed in an inert or reducing atmosphere. 5 The coating metal is Ni, Sn, Al, Zn, Pb, Si,
The method according to any one of items 1 to 4 above, wherein at least one of Mn, Ti, Zr, Cr, and Ag is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28003885A JPS61166956A (en) | 1985-12-12 | 1985-12-12 | Manufacture of fin material for radiator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28003885A JPS61166956A (en) | 1985-12-12 | 1985-12-12 | Manufacture of fin material for radiator |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP606685A Division JPS61166987A (en) | 1985-01-17 | 1985-01-17 | Fin material for radiator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61166956A JPS61166956A (en) | 1986-07-28 |
JPS644581B2 true JPS644581B2 (en) | 1989-01-26 |
Family
ID=17619429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28003885A Granted JPS61166956A (en) | 1985-12-12 | 1985-12-12 | Manufacture of fin material for radiator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61166956A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0352086U (en) * | 1989-02-17 | 1991-05-21 | ||
JPH0435881A (en) * | 1990-06-01 | 1992-02-06 | Toshin Kogyo:Yugen | Work method for plate |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103103589B (en) * | 2013-01-16 | 2015-06-10 | 南京工业大学 | Preparation method of manganese-copper alloy material |
CN104005062B (en) * | 2014-05-19 | 2017-02-15 | 南京工业大学 | Preparation method of aluminum-copper alloy material |
-
1985
- 1985-12-12 JP JP28003885A patent/JPS61166956A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0352086U (en) * | 1989-02-17 | 1991-05-21 | ||
JPH0435881A (en) * | 1990-06-01 | 1992-02-06 | Toshin Kogyo:Yugen | Work method for plate |
Also Published As
Publication number | Publication date |
---|---|
JPS61166956A (en) | 1986-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6173943B2 (en) | Copper alloy strip with surface coating layer with excellent heat resistance | |
TWI588274B (en) | A copper alloy sheet for a heat radiating component and a heat radiating component | |
CN106795643A (en) | The excellent connection member conductive material of resistance to micro- skimming wear | |
JP2593107B2 (en) | Manufacturing method of high strength and high conductivity copper base alloy | |
CN107429328A (en) | Heat dissipation element copper alloy plate and heat dissipation element | |
WO2016152648A1 (en) | Copper alloy sheet for heat dissipating component and heat dissipating component | |
JP6732840B2 (en) | Copper alloy plate for vapor chamber | |
JPS61166987A (en) | Fin material for radiator | |
JPH01272733A (en) | Lead frame material made of cu alloy for semiconductor device | |
JPS644581B2 (en) | ||
JPS6231059B2 (en) | ||
CN110592515B (en) | Hot-dip tinned copper material and manufacturing method thereof | |
GB2122650A (en) | Aluminium coated steel sheet and process for producing the same | |
KR100256370B1 (en) | The method for al coated sheet | |
JPS59222543A (en) | Copper alloy for lead frame | |
JPS59140338A (en) | Copper alloy for lead frame | |
JPS601557B2 (en) | Heat exchanger with excellent corrosion resistance of fins | |
JP2006183126A (en) | Highly corrosion resistant aluminum-manganese alloy, highly corrosion resistant metallic material and method for producing them | |
JPH04236735A (en) | Brass added with in, mg and p and having excellent corrosion resistance | |
JP3186304B2 (en) | Manufacturing method of Al and Al alloy heat exchanger tubing with zinc spray coating thin film with equal thickness and excellent adhesion | |
JPS59140342A (en) | Copper alloy for lead frame | |
JPH0565567A (en) | Fin of heat exchanger | |
JPH0598464A (en) | Lead frame material for tantalum capacitor and its manufacture | |
JPH05239615A (en) | Insulating material excellent in workability and its manufacture | |
JPH0380860B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |