JPH0380860B2 - - Google Patents

Info

Publication number
JPH0380860B2
JPH0380860B2 JP21214187A JP21214187A JPH0380860B2 JP H0380860 B2 JPH0380860 B2 JP H0380860B2 JP 21214187 A JP21214187 A JP 21214187A JP 21214187 A JP21214187 A JP 21214187A JP H0380860 B2 JPH0380860 B2 JP H0380860B2
Authority
JP
Japan
Prior art keywords
alloy
weight
heat resistance
copper
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21214187A
Other languages
Japanese (ja)
Other versions
JPS6455349A (en
Inventor
Keizo Kazama
Kazuhiko Takei
Iwao Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP21214187A priority Critical patent/JPS6455349A/en
Publication of JPS6455349A publication Critical patent/JPS6455349A/en
Publication of JPH0380860B2 publication Critical patent/JPH0380860B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は自動車のラジエータフイン用に好適な
銅合金、特に耐熱性並びに耐食性に優れたフイン
用銅合金に関するものである。 (従来の技術) 自動車のラジエータフインには耐食性、耐熱
性、熱伝導性、強度、加工性などに優れた金属材
料が要求されている。 このうち、耐食性は近年自動車の走行環境が大
気中の窒素酸化物、硫黄酸化物、塩素、塩素化合
物等の増加により、ラジエータフインの腐食に対
して厳しい条件下におかれているので、極めて重
要な性質である。 また、耐熱性はラジエータを組立て加工する際
に行なうラジエータチユーブへの半田付けをする
時の加熱によつて軟化しないように、強度の点も
合わせて考慮されなければならない性質であり、
重要である。そこで耐熱性としては350℃、5分
間の加熱後のビツカース硬度が100以上といつた
条件を満足する材料が好適とされる。 さらに、熱伝導性は近年における自動車の軽量
化の傾向に伴ない、フイン材の単位体積当りの放
熱性の向上が強く望まれてきているので、やはり
重要な性質である。 そのため、従来ラジエータフイン材としての合
金材料は銅に錫、燐、銀、カドミウム、亜鉛など
のいずれか1種又は2種以上を1%以下、若しく
は数%程度添加した合金が実用に供されたり、ま
た特公昭47−4228号公報、特公昭62−21061号公
報、或は特開昭61−266543号公報等に示すよう
な、この種合金材も提案されている。 (発明が解決しようとする問題点) しかしながら、上記構成のこれら合金材は、い
ずれも上記諸特性を同時に満足できるものではな
い。 本発明は、上記事情に基づいてなされたもの
で、現在ラジエータ用フイン材として最も広く使
用されている銅−錫合金よりも優れた耐食性を有
し、しかもフイン材の単位面積当りの放熱性の観
点から重要な性質である熱伝導性が前記銅合金の
それと同等若しくはそれ以上であり、かつフイン
材として要求される耐熱性をも充分に有している
ラジエータフイン用銅合金を提供しようとするも
のである。 (問題点を解決するための手段) このため、本発明者等は鋭意検討した結果、テ
ルルを0.005〜0.025重量%、亜鉛を0.1〜2.5重量
%、ニツケルを0.005〜0.5重量%、残部が実質的
に銅及び随伴不純物からなる銅合金がラジエータ
フイン用合金として極めて優れていることを見出
したものである。 (作用) 以上のように、本発明合金においてテルルの添
加量を0.005〜0.025重量%としたのは、テルルは
耐熱性を付与する役割を担うが、0.005重量%未
満では耐熱性が充分でなく、一方0.025重量%を
超えて含有させても耐熱性向上の効果が飽和する
ばかりでなく合金の加工性が悪くなるためであ
る。 次に、亜鉛の添加量を0.1〜2.5重量%としたの
は、0.1重量%未満では耐食性の向上が充分では
なく、一方2.5重量%を超えると合金の熱伝導性
が低下するためである。 また、ニツケルは亜鉛と相乗的に作用して耐食
性を向上させるが、その添加量を0.005〜0.5重量
%としたのは0.005重量%未満では耐食性の向上
が充分でなく、一方、0.5重量%を超えると、こ
の合金の熱伝導性が低下するためである。 なお、本発明合金を製造するに際して、亜鉛は
亜鉛単体として、テルル及びニツケルは銅との母
合金を用いて添加すればよく、また必要に応じて
脱酸剤として燐を0.01重量%以下添加してもよ
い。更に溶解及び鋳造作業の雰囲気は特に限定す
る必要がなく、大気溶解、真空溶解や還元、不活
性ガス等による雰囲気溶解など何れの方法を採用
しても良い。 (実施例) 以下本発明合金を実施例により説明する。 湯面を木炭粉末で覆いながら電気銅を黒鉛るつ
ぼで、高周波・大気溶解し、燐を銅−燐合金の形
で添加脱酸したのち、所望量のテルル、亜鉛、ニ
ツケルを単体及び銅とその合金の形で添加溶解し
鋳造した。得られた鋳塊(厚さ30mm、幅80mm、長
さ150mm)の組成は第1表のようであつた。 これらの鋳塊表面を片側2mmずつ面削した後、
厚さ26mmの板とし、これを加熱して900℃にて熱
間圧延し、続いて窒素雰囲気で400℃×1Hrの中
間焼鈍を1回途中に入れ、40%加工の冷間圧延に
て厚さ0.3mmの本発明合金板及び比較合金板を得
た。得られた板材から適宜板片を裁断して作製
し、熱伝導性、耐熱性、耐食性の測定に供した。 次に、熱伝導性の評価には、これと強い正相関
を有する導電率を測定することにより行なつた。
また、耐熱性の測定は得られた厚さ0.3mmの板材
から1辺20mmの正方形の板片を切り出し、浴温を
350℃に設定したNaNO2とNaNO3との重量比
1:1の塩浴炉中に5分間浸漬加熱した試料のビ
ツカース硬度Hvを測定することにより行なつた。
さらに耐食性の測定は得られた板材から幅25mm、
長さ90mmの試験片を切り出し、濃度5重量%、温
度35℃の食塩水を1時間噴霧し、次に温度50℃、
相対湿度80%で23時間保持することを1サイクル
として60サイクル(60日間)繰返すという腐食環
境下に置いた後、生成した腐食生成分を除去し、
重量減少を測定することにより行なつた。得られ
た結果を第1表に示す。 第1表から明らかなように、本発明合金は導電
率、耐熱性においてラジエータフイン用合金とし
て必要とされる特性を満足すると共に、従来材に
比べて耐食性は大きく向上している。なお比較例
中でNo.7は耐熱性が不足しており、No.9,10は耐
食性が不足しており、No.8は導電率が低下し、い
ずれも本発明合金に及ばない。
(Industrial Field of Application) The present invention relates to a copper alloy suitable for automobile radiator fins, particularly a copper alloy for fins having excellent heat resistance and corrosion resistance. (Prior Art) Metal materials with excellent corrosion resistance, heat resistance, thermal conductivity, strength, workability, etc. are required for automobile radiator fins. Among these, corrosion resistance is extremely important because in recent years, the driving environment of automobiles has become subject to severe conditions for corrosion of radiator fins due to an increase in nitrogen oxides, sulfur oxides, chlorine, chlorine compounds, etc. in the atmosphere. It is a characteristic. In addition, heat resistance is a property that must also be considered in terms of strength so that it does not soften due to the heat applied when soldering to the radiator tube when assembling and processing the radiator.
is important. Therefore, in terms of heat resistance, a material that satisfies the condition of having a Vickers hardness of 100 or more after heating at 350°C for 5 minutes is considered suitable. Furthermore, thermal conductivity is still an important property, as there has been a strong desire to improve the heat dissipation per unit volume of the fin material as the weight of automobiles has become lighter in recent years. For this reason, conventional alloy materials used as radiator fin materials have been put into practical use by adding 1% or less or several percent of one or more of tin, phosphorus, silver, cadmium, zinc, etc. to copper. In addition, alloy materials of this type have also been proposed, as shown in Japanese Patent Publication No. 47-4228, Japanese Patent Publication No. 62-21061, or Japanese Patent Application Laid-Open No. 61-266543. (Problems to be Solved by the Invention) However, none of these alloy materials having the above structure can simultaneously satisfy the above properties. The present invention has been made based on the above circumstances, and has superior corrosion resistance than the copper-tin alloy currently most widely used as a fin material for radiators, and has a low heat dissipation property per unit area of the fin material. An object of the present invention is to provide a copper alloy for radiator fins whose thermal conductivity, which is an important property, is equal to or higher than that of the copper alloy described above, and which also has sufficient heat resistance required as a fin material. It is something. (Means for solving the problem) Therefore, as a result of intensive study, the present inventors found that tellurium is 0.005 to 0.025% by weight, zinc is 0.1 to 2.5% by weight, nickel is 0.005 to 0.5% by weight, and the balance is substantially It has been discovered that a copper alloy consisting of copper and accompanying impurities is extremely excellent as an alloy for radiator fins. (Function) As described above, the reason why tellurium is added in an amount of 0.005 to 0.025% by weight in the alloy of the present invention is that tellurium plays a role in imparting heat resistance, but if it is less than 0.005% by weight, the heat resistance is insufficient. On the other hand, if the content exceeds 0.025% by weight, the effect of improving heat resistance will not only be saturated, but also the workability of the alloy will deteriorate. Next, the amount of zinc added is set to 0.1 to 2.5% by weight because if it is less than 0.1% by weight, the corrosion resistance will not be improved sufficiently, whereas if it exceeds 2.5% by weight, the thermal conductivity of the alloy will decrease. Furthermore, although nickel works synergistically with zinc to improve corrosion resistance, the reason why the amount added is 0.005 to 0.5% by weight is because if it is less than 0.005% by weight, the improvement in corrosion resistance is not sufficient. This is because, if it exceeds this amount, the thermal conductivity of this alloy will decrease. In producing the alloy of the present invention, zinc may be added as a simple substance, tellurium and nickel may be added as a master alloy with copper, and if necessary, 0.01% by weight or less of phosphorus may be added as a deoxidizing agent. It's okay. Furthermore, the atmosphere for melting and casting operations does not need to be particularly limited, and any method such as atmospheric melting, vacuum melting, reduction, atmospheric melting using an inert gas, etc. may be employed. (Example) The alloy of the present invention will be explained below with reference to Examples. While covering the hot water surface with charcoal powder, electrolytic copper is melted in a graphite crucible under high frequency and atmospheric conditions, and phosphorus is added and deoxidized in the form of a copper-phosphorus alloy. After that, desired amounts of tellurium, zinc, and nickel are dissolved alone and with copper. It was added, melted and cast in the form of an alloy. The composition of the obtained ingot (thickness: 30 mm, width: 80 mm, length: 150 mm) was as shown in Table 1. After cutting the surface of these ingots by 2mm on each side,
A plate with a thickness of 26 mm was heated and hot rolled at 900°C, then intermediate annealing was performed once at 400°C for 1 hour in a nitrogen atmosphere, and the thickness was reduced by cold rolling with a reduction of 40%. An alloy plate of the present invention and a comparative alloy plate with a diameter of 0.3 mm were obtained. Plate pieces were suitably cut from the obtained plate material and used for measurement of thermal conductivity, heat resistance, and corrosion resistance. Next, thermal conductivity was evaluated by measuring electrical conductivity, which has a strong positive correlation.
In addition, to measure the heat resistance, we cut out a square piece of 20 mm on a side from the obtained plate material with a thickness of 0.3 mm, and measured the bath temperature.
This was done by measuring the Vickers hardness Hv of a sample that was immersed and heated for 5 minutes in a salt bath furnace with a weight ratio of NaNO 2 and NaNO 3 of 1:1 set at 350°C.
Furthermore, the corrosion resistance was measured from the obtained plate material with a width of 25 mm.
A test piece with a length of 90 mm was cut out and sprayed with saline solution at a concentration of 5% by weight at a temperature of 35°C for 1 hour, and then at a temperature of 50°C.
After placing it in a corrosive environment where one cycle is 60 cycles (60 days) of holding at 80% relative humidity for 23 hours, the generated corrosion products are removed.
This was done by measuring weight loss. The results obtained are shown in Table 1. As is clear from Table 1, the alloy of the present invention satisfies the characteristics required as an alloy for radiator fins in terms of electrical conductivity and heat resistance, and has greatly improved corrosion resistance compared to conventional materials. Among the comparative examples, No. 7 lacks heat resistance, Nos. 9 and 10 lack corrosion resistance, and No. 8 has low conductivity, all of which are inferior to the present alloy.

【表】【table】

【表】 (発明の効果) 以上詳細に説明したように、本発明による合金
は熱伝導性、耐熱性、及び耐食性においてラジエ
ータフイン用合金として優れた性能を有するもの
である。
[Table] (Effects of the Invention) As explained in detail above, the alloy according to the present invention has excellent performance as an alloy for radiator fins in terms of thermal conductivity, heat resistance, and corrosion resistance.

【特許請求の範囲】[Claims]

1 Ni2.0〜12.0wt%を含み残部Cuからなる耐生
物汚損性銅合金を、金属、合成樹脂等の構造用部
材表面の一部又は全部に被覆したことを特徴とす
る耐生物汚損性構造用部品。 2 Ni2.0〜12.0wt%と、これにFe1.0wt%以下
とMn1.0wt%以下の範囲内で何れか1種又は両
種を含み残部Cuからなる耐生物汚損性銅合金を、
金属、合成樹脂等の構造用部材表面の一部又は全
部に被覆したことを特徴とする耐生物汚損性構造
用部品。
1. A biofouling-resistant structure characterized by coating part or all of the surface of a structural member such as metal or synthetic resin with a biofouling-resistant copper alloy containing 2.0 to 12.0 wt% Ni and the balance Cu. parts. 2. A biofouling-resistant copper alloy consisting of 2.0 to 12.0 wt% Ni, one or both of these within the range of 1.0 wt% or less Fe and 1.0 wt% or less Mn, and the balance being Cu,
A structural component resistant to biological fouling, characterized in that a part or all of the surface of a structural component made of metal, synthetic resin, etc. is coated.

JP21214187A 1987-08-26 1987-08-26 Copper alloy for radiator fin Granted JPS6455349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21214187A JPS6455349A (en) 1987-08-26 1987-08-26 Copper alloy for radiator fin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21214187A JPS6455349A (en) 1987-08-26 1987-08-26 Copper alloy for radiator fin

Publications (2)

Publication Number Publication Date
JPS6455349A JPS6455349A (en) 1989-03-02
JPH0380860B2 true JPH0380860B2 (en) 1991-12-26

Family

ID=16617570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21214187A Granted JPS6455349A (en) 1987-08-26 1987-08-26 Copper alloy for radiator fin

Country Status (1)

Country Link
JP (1) JPS6455349A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201048A (en) 2002-01-08 2003-07-15 Tokyo Kikai Seisakusho Ltd Splicing device

Also Published As

Publication number Publication date
JPS6455349A (en) 1989-03-02

Similar Documents

Publication Publication Date Title
JPS6248742B2 (en)
EP1250468B8 (en) Process of producing aluminum fin alloy
JPS5834537B2 (en) High-strength conductive copper alloy with good heat resistance
JPH06228684A (en) Connector for electric and electronic appliance made of cu alloy
JPS591653A (en) Copper alloy for fin of radiator
JPS6231059B2 (en)
JPS61272339A (en) Lead material for electronic parts excelled in repeated bendability and its production
JPS5823452B2 (en) Softening resistant copper alloy
JPH0380860B2 (en)
JPS6215619B2 (en)
JPS636619B2 (en)
JPS6219264B2 (en)
JPH01102297A (en) Aluminum alloy compound fin material for heat exchanger suitable for brazing and corrosion resistance
JPH0368731A (en) Manufacture of copper alloy and copper alloy material for radiator plate
JPH11343532A (en) Corrosion resistant and high strength aluminum alloy material, its production, tube for heat exchanger made of aluminum alloy and heat exchanger made of aluminum alloy
US2108050A (en) Alloys
JPH04246141A (en) Copper-base alloy for heat exchanger
JPH03107435A (en) Copper alloy for radiator fin
US2108049A (en) Nontarnish alloys
JPS60230949A (en) Material for quartz oscillator case
JPH029098B2 (en)
JPS59222541A (en) Fin material for radiator for car
JPH06264166A (en) Copper-base alloy excellent in corrosion resistance, machinability and workability
JPH01129940A (en) High heat-resistant and corrosion-resistant copper alloy
JPS6326185B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees