JPH029098B2 - - Google Patents

Info

Publication number
JPH029098B2
JPH029098B2 JP57047736A JP4773682A JPH029098B2 JP H029098 B2 JPH029098 B2 JP H029098B2 JP 57047736 A JP57047736 A JP 57047736A JP 4773682 A JP4773682 A JP 4773682A JP H029098 B2 JPH029098 B2 JP H029098B2
Authority
JP
Japan
Prior art keywords
alloy
heat exchanger
brazing
core material
structural member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57047736A
Other languages
Japanese (ja)
Other versions
JPS58164749A (en
Inventor
Ken Toma
Masanao Iida
Isao Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP4773682A priority Critical patent/JPS58164749A/en
Publication of JPS58164749A publication Critical patent/JPS58164749A/en
Publication of JPH029098B2 publication Critical patent/JPH029098B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、耐孔食性にすぐれた熱交換器構造
部材に関するものである。 従来、一般に、例えば自動車のラジエータや、
空調機器などに広く用いられているAl合金製熱
交換器は、いずれもAl合金の管材やフイン材、
さらにヘツダープレート材やカバー材などの構造
部材を組立てた状態で、真空ろう付けあるいはフ
ラツクスろう付けすることにより製造されてい
る。 しかし、例えばJIS3003で代表されるAl−Mn
合金の単板材で構成された管材は、熱交換器の製
造工程におけるろう付け工程で、高温加熱および
緩慢冷却の熱履歴を受けるために、実用時にこの
熱履歴が原因で著しい粒界腐食を伴う局部腐食が
しばしば発生し、これは貫通孔に発展して熱交換
器の寿命を短命化し、さらに腐食生成物(白粉)
による空気汚染の問題も生じるものであつた。 また、上記Al−Mn合金の単板材に代つて、こ
のAl−Mn合金を芯材とし、この芯材の片面また
は両面に、粒界腐食の発生を抑制する目的で、前
記芯材に比して電気化学的に卑であり、この結果
前記芯材に対して犠牲陽極効果をもつようになる
JIS7072で代表されるAl−Zn合金の皮材をクラツ
ドしてなる複合材で熱交換器構造部材を構成する
試みもなされたが、前記Al−Zn合金の皮材では、
苛酷な腐食環境下での腐食速度が比較的大きく、
かつしばしば局部腐食も生じるものであるため、
前記Al−Mn合金の芯材に粒界腐食が起るのを十
分に抑制することができないものであつた。 そこで、本発明者等は、上述のような観点か
ら、熱交換器の製造工程で、高温加熱および緩慢
冷却を伴なうろう付け処理などを受けても、実用
時に局部腐食の発生のない、すなわち耐孔食性に
すぐれた熱交換器構造部材を開発すべく研究を行
なつた結果、重量%で(以下%は重量%を示す)、 Mn:0.1〜0.6%、Si:0.1〜0.6%、Cu:0.1〜
0.5%、Zr:0.02〜0.2%、 を含有し、残りがAlと不可避不純物からなる組
成を有するAl合金の芯材の片面または両面に、 Mg:0.1〜1.2%、Zn:0.1〜1.5%、 を含有し、残りがAlと不可避不純物からなる組
成を有するAl合金の皮材をクラツドしてなる複
合材、あるいは上記芯材の片面に上記皮材を、他
の片面にAl−Si系合金のろう材をクラツドして
なるブレージングシートで熱交換器構造部材を構
成すると、上記のJIS3003のような1%以上の
Mnを含有する従来Al−Mn合金の芯材において
は、これが、例えばろう付け工程における600℃
前後の高温に保持されると含有Mnのほとんどが
素地に固溶し、一方Mnはこれより十分低い温度
ではごくわずかしか素地に固溶することができな
いので、冷却時に主として粒界にAlとMnからな
る化合物を析出することになり、この化合物の形
成に要するMnは粒界近傍の固溶Mnが補給され
ることから、粒界のごく近傍に粒内よりも固溶量
の低い相(Mn欠乏相)が連続して形成されるよ
うになり、この結果Mnの固溶量の高い粒内は前
記Mn欠乏相に比して電気化学的に貴になるの
で、腐食が生じて芯材に溶解が起るとMn欠乏相
が優先溶解し、粒界腐食となるのに対して、上記
の芯材では、Mn含有量が従来Al−Mn合金の芯
材に比して低い0.1〜0.6%であり、かつSiの含有
によつてMnの固溶および析出に対する変化量が
きわめて低くおさえられるようになるので、局部
腐食の発生が著しく抑制され、しかも上記皮材
は、すぐれた耐孔食性を有するばかりでなく、芯
材に比して電気化学的に卑であるため、芯材に対
する犠牲陽極効果によつてこれをよく防食するこ
とから、その実用に際して粒界腐食などの局部腐
食の発生がなく、この結果熱交換器は長期に亘つ
ての使用が可能となるという知見を得たのであ
る。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に熱交換器構造部材を構成する
複合材およびプレージングシートにおける芯材お
よび皮材の成分組成を上記の通りに限定した理由
を説明する。 A 芯材 (a) Mn Mn成分には、芯材中に不可避的に含有さ
れ、耐食性を低下させるFeと相互反応し、
これを不溶性のAl−Mn−Fe系化合物にする
ことによりFeによる耐食性劣化を低減する
ほか、芯材の高温強度を向上させ、もつて熱
交換器製造時のろう付け工程における熱変形
を著しく抑制し、さらに芯材を皮材に比して
電気化学的に貴にし、この結果として皮材に
よる犠牲陽極効果によつて芯材の防食がはか
られるようになる作用をもつが、その含有量
が0.1%未満では前記作用に所望の効果が得
られず、一方0.6%を越えて含有させると、
上記のようにろう付け処理などを施した場合
に、粒界のごく近傍に粒内よりもMn固溶量
の低い相(Mn欠乏相)が出現するようにな
つて粒界腐食が促進されるようになることか
ら、その含有量を0.1〜0.6%と定めた。 (b) Si Si成分には、Mnと結合してAl−Mn−Si
系化合物を形成し、この化合物は熱的に安定
したものであつて、高温強度を向上させるほ
か、高温を必要とする熱処理が施されても
Mnの結晶粒内への固溶およびこれよりの析
出を著しく抑制し、さらに芯材を電気化学的
に貴にする作用があるが、その含有量が0.1
%未満では前記作用に所望の効果が得られ
ず、一方0.6%を越えて含有させると、耐食
性が劣化するようになることから、その含有
量を0.1〜0.6%と定めた。 (c) CuおよびZr これらの両成分には、ともに芯材の強度を
向上させる作用があるほか、特にCuには、
芯材を電気化学的に貴にし、皮材による犠牲
陽極効果のより一層の促進をはかる作用があ
り、またZrには、微細なAl−Zr系化合物を
析出形成して芯材を構成するAl合金の再結
晶温度を上昇させ、これによつて形成される
再結晶粒は粗大化されるようになるので、例
えばプレージングシートとして用いた場合、
ろう材の芯材への侵入が著しく抑制されるよ
うになる作用があるが、その含有量がそれぞ
れCu:0.1%およびZr:0.02%未満では前記
作用に所望の向上効果が得られず、一方それ
ぞれCu:0.5%およびZr:0.20%を越えて含
有させると耐食性に低下傾向が現われるよう
になることから、その含有量を、それぞれ
Cu:0.1〜0.5%、Zr:0.02〜0.20%と定めた。 B 皮材 (a) Zn Zn成分には、皮材を芯材に比して電気化
学的に卑にすると共に、腐食形態を全面溶解
型にし、もつて芯材に対するすぐれた犠牲陽
極効果と、すぐれた耐孔食性を付与せしめる
作用があるが、その含有量が0.1%未満では
前記作用に所望の効果が得られず、一方1.5
%未満を越えて含有させると、犠牲陽極効果
が低下するようになるばかりでなく、腐食形
態が局部溶解型になつて耐孔食性の劣化を招
くようになることから、その含有量を0.1〜
1.5%と定めた。 (b) Mg Mg成分には、Znとの共存においてZnによ
つてもたらされる作用、すなわち犠牲陽極効
果と耐孔食性をより一段と向上促進させる作
用があるが、その含有量が0.1%未満では前
記作用に所望の向上効果が得られず、一方
1.2%を越えて含有させると、加工性が劣化
するようになつて複合材の製造が困難になる
ことから、その含有量を0.1〜1.2%と定め
た。 つぎに、この発明の熱交換器構造部材を実施例
により具体的に説明する。 実施例 通常の溶解鋳造法により、それぞれ第1表に示
される成分組成をもつた本発明芯材用Al合金A
〜H、従来芯材用Al合金、本発明皮材用Al合
金a、b、従来皮材用Al合金c、およびろう材
用Al合金を溶製し、鋳造して鋳塊とした。
The present invention relates to a heat exchanger structural member with excellent pitting corrosion resistance. Conventionally, in general, for example, automobile radiators,
Al alloy heat exchangers, which are widely used in air conditioning equipment, are made of aluminum alloy tubes, fins,
Furthermore, it is manufactured by vacuum brazing or flux brazing after assembling structural members such as header plate material and cover material. However, for example, Al-Mn represented by JIS3003
Tube materials made of alloy veneer material undergo a thermal history of high-temperature heating and slow cooling during the brazing process in the heat exchanger manufacturing process, and this thermal history causes significant intergranular corrosion during practical use. Localized corrosion often occurs, which develops into through-holes and shortens the life of the heat exchanger, as well as corrosion products (white powder).
There was also the problem of air pollution. In addition, this Al-Mn alloy is used as a core material in place of the Al-Mn alloy veneer material described above. is electrochemically base, resulting in a sacrificial anode effect on the core material.
Attempts have also been made to construct heat exchanger structural members using composite materials made by cladding Al-Zn alloy skin materials typified by JIS7072, but with the Al-Zn alloy skin material,
Corrosion rate is relatively high under severe corrosive environments.
Moreover, local corrosion often occurs, so
It was not possible to sufficiently suppress intergranular corrosion in the core material of the Al--Mn alloy. Therefore, from the above-mentioned viewpoint, the present inventors have developed a heat exchanger that will not cause local corrosion during practical use even if subjected to brazing treatment that involves high-temperature heating and slow cooling during the manufacturing process of the heat exchanger. In other words, as a result of research to develop heat exchanger structural members with excellent pitting corrosion resistance, we found that in weight percent (hereinafter % indicates weight percent), Mn: 0.1 to 0.6%, Si: 0.1 to 0.6%, Cu: 0.1~
Mg: 0.1-1.2%, Zn: 0.1-1.5%, Mg: 0.1-1.2%, Zn: 0.1-1.5%, A composite material made by cladding a skin material of an Al alloy with a composition containing Al and the remainder consisting of Al and unavoidable impurities, or a composite material made of a skin material of an Al alloy on one side of the core material and an Al-Si alloy on the other side. When a heat exchanger structural member is composed of a brazing sheet made of brazing filler metal, it is possible to
In conventional Al-Mn alloy core materials containing Mn, this
When kept at a high temperature, most of the Mn contained becomes a solid solution in the matrix, while at temperatures sufficiently lower than this, only a small amount of Mn can be dissolved in the matrix. The Mn required to form this compound is replenished by the solid solution Mn near the grain boundaries, so a phase with a lower amount of solid solution (Mn As a result, the interior of the grain with a high amount of solid solution of Mn becomes electrochemically noble compared to the Mn-deficient phase, which leads to corrosion and damage to the core material. When dissolution occurs, the Mn-deficient phase preferentially dissolves, resulting in intergranular corrosion.In contrast, the above core material has a Mn content of 0.1 to 0.6%, which is lower than that of conventional Al-Mn alloy core materials. In addition, the amount of change due to solid solution and precipitation of Mn is kept extremely low due to the inclusion of Si, so the occurrence of local corrosion is significantly suppressed, and the above-mentioned skin material has excellent pitting corrosion resistance. In addition, since it is electrochemically less noble than the core material, the sacrificial anode effect on the core material provides good corrosion protection, which prevents the occurrence of localized corrosion such as intergranular corrosion during practical use. As a result, they found that the heat exchanger can be used for a long period of time. This invention has been made based on the above knowledge, and the reason why the component compositions of the core material and skin material in the composite material and plating sheet constituting the heat exchanger structural member are limited as described above is explained below. explain. A Core material (a) Mn The Mn component interacts with Fe, which is unavoidably contained in the core material and reduces corrosion resistance.
By making this an insoluble Al-Mn-Fe-based compound, we not only reduce the deterioration of corrosion resistance caused by Fe, but also improve the high-temperature strength of the core material, which significantly suppresses thermal deformation during the brazing process during heat exchanger manufacturing. Furthermore, it has the effect of making the core material electrochemically more noble than the skin material, and as a result, the core material becomes corrosion-proof due to the sacrificial anode effect of the skin material, but its content If the content is less than 0.1%, the desired effect cannot be obtained, while if the content exceeds 0.6%,
When brazing treatment is performed as described above, a phase with a lower amount of Mn solid solution than inside the grains (Mn-deficient phase) appears in the vicinity of the grain boundaries, promoting intergranular corrosion. Therefore, the content was set at 0.1 to 0.6%. (b) Si The Si component contains Al−Mn−Si combined with Mn.
This compound is thermally stable and not only improves high-temperature strength but also resists heat treatment that requires high temperatures.
It has the effect of significantly suppressing the solid solution of Mn into the crystal grains and its precipitation, and further enriching the core material electrochemically, but its content is 0.1
If the content is less than 0.6%, the desired effect cannot be obtained, while if the content exceeds 0.6%, the corrosion resistance will deteriorate. Therefore, the content was set at 0.1 to 0.6%. (c) Cu and Zr Both of these components have the effect of improving the strength of the core material, and Cu in particular has the effect of improving the strength of the core material.
It has the effect of electrochemically ennobling the core material and further promoting the sacrificial anode effect of the skin material.Also, Zr has the effect of precipitating fine Al-Zr compounds to form Al, which constitutes the core material. By increasing the recrystallization temperature of the alloy, the recrystallized grains formed thereby become coarser, so when used as a plating sheet, for example,
It has the effect of significantly suppressing the penetration of the brazing filler metal into the core material, but if the content is less than 0.1% Cu and 0.02% Zr, the desired effect of improving the above effect cannot be obtained; If the content exceeds Cu: 0.5% and Zr: 0.20%, the corrosion resistance will tend to decrease, so the content should be adjusted accordingly.
Cu: 0.1 to 0.5%, Zr: 0.02 to 0.20%. B Skin material (a) Zn The Zn component makes the skin material electrochemically less noble than the core material, makes the corrosion mode completely soluble, and has an excellent sacrificial anode effect on the core material. It has the effect of imparting excellent pitting corrosion resistance, but if its content is less than 0.1%, the desired effect cannot be obtained;
If the content exceeds less than 0.1%, not only will the sacrificial anode effect deteriorate, but the corrosion will become a localized dissolution type, leading to deterioration of pitting corrosion resistance.
It was set at 1.5%. (b) Mg The Mg component has the effect brought about by Zn when it coexists with Zn, that is, the effect of further improving the sacrificial anode effect and pitting corrosion resistance, but if its content is less than 0.1%, the The desired effect of improving the action cannot be obtained, and on the other hand,
If the content exceeds 1.2%, processability deteriorates and it becomes difficult to manufacture composite materials, so the content was set at 0.1 to 1.2%. Next, the heat exchanger structural member of the present invention will be specifically explained using examples. Example Al alloy A for core material of the present invention having the component compositions shown in Table 1 by ordinary melting and casting method.
~H, conventional Al alloys for core materials, Al alloys a and b for skin materials of the present invention, conventional Al alloys for skin materials c, and Al alloys for brazing materials were melted and cast into ingots.

【表】 なお、これらの鋳塊は、第1表には表示を省略し
たが、いずれも不可避不純物として、Mn:0.01
%以下、Mg:0.01%以下、Cu:0.04%以下、
Zn:0.02%以下、Fe:0.35%以下、およびCr:
0.01%以下を含有するものであつた。 ついで、この結果得られた各種のAl合金鋳塊
に熱間圧延を施して、芯材用Al合金は板厚:8
mm、皮材用Al合金とろう材用Al合金は板厚:3
mmとし、さらに皮材用Al合金とろう材用Al合金
の熱延板には冷間加工を施して板厚:1mmとし
た。 つぎに上記の板厚:8mmの芯材用Al合金の熱
延板の一部に、上記の板厚:1mmの皮材用Al合
金の冷延板を、第2表に示される組合せにしたが
つて組合せ、熱間圧延にて両面クラツドし、引続
いて冷間圧延を施して、いずれも板厚:0.5mmと
することにより本発明熱交換器構造部材複合板
(以下本発明構造部材複合材という)1〜8およ
び従来熱交換器構造部材複合材(以下従来構造部
材複合材という)をそれぞれ製造した。 また、同様に上記の板厚:8mmの芯材用Al合
金の熱延板の一部に、上記の板厚:1mmの皮材用
Al合金とろう材用Al合金の冷延板を第2表に示
される組合せにしたがつて重ね合わせ、熱間圧延
にてクラツドし、引続いて冷間圧延にて板厚:
0.5mmとすることにより本発明熱交換器構造部材
ブレージングシート(以下本発明構造部材プレー
ジングシートという)1〜8および従来熱交換器
構造部材ブレージングシート(以下従来構造部材
ブレージングシートという)をそれぞれ製造し
た。 つぎに、この結果得られた各種の構造部材複合
材および構造部材ブレージングシートより、50mm
×80mm×0.5mmの寸法をもつた試験片を切出し、
この試験片を用いて、熱交換器の製造工程におけ
るろう付け処理に相当する条件、すなわち圧力:
10-4torrの真空中、あるいは10-1torrの窒素ガス
雰囲気中、温度:600℃に3分間保持後空冷の条
件で熱処理を施した状態で、10ppmのCu2+イオ
ン含有の温度:40℃の水道水中、およびそれぞれ
100ppmのCl-、So4 2-およびHCO3 -イオンと、
[Table] Although these ingots are not shown in Table 1, they all contain Mn: 0.01 as an unavoidable impurity.
% or less, Mg: 0.01% or less, Cu: 0.04% or less,
Zn: 0.02% or less, Fe: 0.35% or less, and Cr:
It contained 0.01% or less. Next, the various Al alloy ingots obtained as a result are hot rolled, and the Al alloy for the core material has a plate thickness of 8.
mm, plate thickness for Al alloy for skin material and Al alloy for brazing material: 3
The hot-rolled sheets of Al alloy for skin material and Al alloy for brazing material were cold-worked to have a thickness of 1 mm. Next, a part of the above hot-rolled Al alloy plate for the core material with a thickness of 8 mm and a cold-rolled plate of the Al alloy for the skin material with the plate thickness of 1 mm were combined as shown in Table 2. The heat exchanger structural member composite plate of the present invention (hereinafter referred to as the structural member composite plate of the present invention) is then assembled, clad on both sides by hot rolling, and then cold rolled to a thickness of 0.5 mm. 1 to 8 (hereinafter referred to as conventional structural member composite materials) and conventional heat exchanger structural member composite materials (hereinafter referred to as conventional structural member composite materials) were manufactured. Similarly, a part of the hot-rolled Al alloy plate for the core material with a thickness of 8 mm was added to the above plate for the skin material with a thickness of 1 mm.
Cold-rolled sheets of Al alloy and Al alloy for brazing metal are stacked together in the combinations shown in Table 2, cladded by hot rolling, and then cold-rolled to a thickness of:
By adjusting the thickness to 0.5 mm, heat exchanger structural member brazing sheets of the present invention (hereinafter referred to as the present invention structural member brazing sheets) 1 to 8 and conventional heat exchanger structural member brazing sheets (hereinafter referred to as conventional structural member brazing sheets) were manufactured, respectively. did. Next, from the various structural component composite materials and structural component brazing sheets obtained as a result, 50 mm
Cut out a test piece with dimensions of x80mm x 0.5mm,
Using this test piece, conditions equivalent to brazing treatment in the heat exchanger manufacturing process, namely pressure:
In a vacuum of 10 -4 torr or in a nitrogen gas atmosphere of 10 -1 torr, heat treated at 600°C for 3 minutes and air cooling, containing 10 ppm Cu 2+ ions at temperature: 40 °C in tap water, and respectively
with 100 ppm Cl - , So 4 2- and HCO 3 - ions;

【表】【table】

【表】 10ppmのCu2+イオンを含有する温度:40℃の水
溶液中に30日間浸漬の水道水浸漬試験および溶液
浸漬試験を行ない、孔食数と最大孔食深さを測定
した。なお、構造部材プレージングシートはろう
材側を塗料で絶縁して試験に供した。これらの結
果を第2表に示した。 第2表に示される結果から、本発明構造部材複
合材1〜8および本発明構造部材プレージングシ
ート1〜8においては、きわめて強い腐食性環境
下においても局部腐食の発生がなく、著しくすぐ
れた耐孔食性を示すのに対して、従来構造部材複
合材および従来構造部材プレージングシートにお
いては、局部腐食の発生が著しいことが明らかで
ある。 上述のように、この発明の熱交換器構造部材
は、これを構成する複合材およびブレージングシ
ートがきわめてすぐれた耐孔食性を有しているの
で、これによつて製造された熱交換器は、著しく
苛酷な腐食環境にさらされた場合にも、これを構
成する構造部材に孔食や粒界腐食の発生がないこ
とから、著しく長期に亘つての使用が可能となる
など工業上有用な特性を有するのである。
[Table] A tap water immersion test and a solution immersion test were conducted for 30 days in an aqueous solution containing 10 ppm Cu 2+ ions at a temperature of 40°C, and the number of pitting corrosion and maximum pitting depth were measured. Note that the structural member plating sheet was subjected to the test with the brazing material side insulated with paint. These results are shown in Table 2. From the results shown in Table 2, it can be seen that the structural member composite materials 1 to 8 of the present invention and the structural member plating sheets 1 to 8 of the present invention did not cause local corrosion even in extremely corrosive environments. It is clear that while the conventional structural member composite material and the conventional structural member plating sheet exhibit pitting corrosion resistance, the occurrence of localized corrosion is significant. As mentioned above, in the heat exchanger structural member of the present invention, the composite material and brazing sheet that constitute it have extremely excellent pitting corrosion resistance, so a heat exchanger manufactured using the same has excellent pitting corrosion resistance. Even when exposed to extremely harsh corrosive environments, there is no pitting corrosion or intergranular corrosion in the structural members that make up the product, making it possible to use it for an extremely long period of time, making it an industrially useful property. It has.

Claims (1)

【特許請求の範囲】 1 Mn:0.1〜0.6%、Si:0.1〜0.6%、Cu:0.1
〜0.5%、Zr:0.02〜0.2%、 を含有し、残りがAlと不可避不純物からなる組
成を有するAl合金の芯材の片面または両面に、 Mg:0.1〜1.2%、Zn:0.1〜1.5%、 を含有し、残りがAlと不可避不純物からなる組
成(以上重量%)を有するAl合金の皮材をクラ
ツドしてなる複合材で構成したことを特徴とする
耐孔食性にすぐれた熱交換器構造部材。 2 Mn:0.1〜0.6%、Si:0.1〜0.6%、Cu:0.1
〜0.5%、Zr:0.02〜0.2%、 を含有し、残りがAlと不可避不純物からなる組
成を有するAl合金の芯材の片面に、 Mg:0.1〜1.2%、Zn:0.1〜1.5%、 を含有し、残りがAlと不可避不純物からなる組
成(以上重量%)を有するAl合金の皮材を、ま
た他の片面にAl−Si系合金のろう材をクラツド
してなるブレージングシートで構成したことを特
徴とする耐孔食性にすぐれた熱交換器構造部材。
[Claims] 1 Mn: 0.1 to 0.6%, Si: 0.1 to 0.6%, Cu: 0.1
~0.5%, Zr: 0.02~0.2%, and the rest consisting of Al and unavoidable impurities. A heat exchanger with excellent pitting corrosion resistance, characterized in that it is made of a composite material made of a clad Al alloy skin material having a composition (by weight %) containing: , and the remainder consisting of Al and unavoidable impurities. Structural members. 2 Mn: 0.1-0.6%, Si: 0.1-0.6%, Cu: 0.1
Mg: 0.1-1.2%, Zn: 0.1-1.5%, on one side of an Al alloy core material with a composition of ~0.5%, Zr: 0.02-0.2%, and the rest consisting of Al and unavoidable impurities. It consists of a brazing sheet made of an Al alloy skin material with a composition (by weight %) of Al and unavoidable impurities, and a brazing sheet made of an Al-Si alloy brazing material on one side. A heat exchanger structural member with excellent pitting corrosion resistance.
JP4773682A 1982-03-25 1982-03-25 Composite al alloy material with superior pitting corrosion resistance Granted JPS58164749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4773682A JPS58164749A (en) 1982-03-25 1982-03-25 Composite al alloy material with superior pitting corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4773682A JPS58164749A (en) 1982-03-25 1982-03-25 Composite al alloy material with superior pitting corrosion resistance

Publications (2)

Publication Number Publication Date
JPS58164749A JPS58164749A (en) 1983-09-29
JPH029098B2 true JPH029098B2 (en) 1990-02-28

Family

ID=12783623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4773682A Granted JPS58164749A (en) 1982-03-25 1982-03-25 Composite al alloy material with superior pitting corrosion resistance

Country Status (1)

Country Link
JP (1) JPS58164749A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194144A (en) * 1984-10-23 1986-08-28 Furukawa Alum Co Ltd Pitting resistance aluminum alloy
JP2608890B2 (en) * 1987-06-02 1997-05-14 三菱アルミニウム株式会社 Radiator tanker material with excellent crevice corrosion resistance
JP2564190B2 (en) * 1988-09-12 1996-12-18 株式会社神戸製鋼所 Aluminum alloy composite for brazing
CN109536789A (en) * 2018-12-29 2019-03-29 安徽鑫发铝业有限公司 A kind of ultra-thin hollow high-speed rail aluminum profile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150310A (en) * 1978-05-19 1979-11-26 Furukawa Aluminium Pitting and corrosion resistant aluminum clad material for vacuum brazing
JPS575840A (en) * 1980-06-12 1982-01-12 Mitsubishi Alum Co Ltd Aluminum alloy brazing sheet having excellent pitting- corrosion resistance and high strength

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150310A (en) * 1978-05-19 1979-11-26 Furukawa Aluminium Pitting and corrosion resistant aluminum clad material for vacuum brazing
JPS575840A (en) * 1980-06-12 1982-01-12 Mitsubishi Alum Co Ltd Aluminum alloy brazing sheet having excellent pitting- corrosion resistance and high strength

Also Published As

Publication number Publication date
JPS58164749A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
JPS6248742B2 (en)
JPS6245301B2 (en)
JPH11241136A (en) High corrosion resistant aluminum alloy, clad material thereof, and its production
JPH029098B2 (en)
JPH07179973A (en) Al alloy brazing sheet for vacuum brazing for structural member for heat exchanger, excellent in corrosion resistance
JPH02129333A (en) Aluminum brazing sheet for heat exchanger
JPH0333770B2 (en)
JPH0210212B2 (en)
JP3863595B2 (en) Aluminum alloy brazing sheet
JPH01102297A (en) Aluminum alloy compound fin material for heat exchanger suitable for brazing and corrosion resistance
JPH0210213B2 (en)
JPS6358217B2 (en)
JPS6319583B2 (en)
JPS6323260B2 (en)
JPH0219180B2 (en)
JPH01159343A (en) Al alloy clad fin material for heat exchanger having superior brazability and corrosion resistance
JPH0210216B2 (en)
JPH0931614A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger
JPH0463276B2 (en)
JP2607245B2 (en) High strength aluminum alloy composite thin fin material with excellent sacrificial anode effect for heat exchangers
JPS6261099B2 (en)
JPH029100B2 (en)
JPH0473080B2 (en)
JPH07290271A (en) Al alloy brazing for vacuum brazing excellent in pitting corrosion resistance
JPH0352549B2 (en)