JPH0210213B2 - - Google Patents

Info

Publication number
JPH0210213B2
JPH0210213B2 JP57230410A JP23041082A JPH0210213B2 JP H0210213 B2 JPH0210213 B2 JP H0210213B2 JP 57230410 A JP57230410 A JP 57230410A JP 23041082 A JP23041082 A JP 23041082A JP H0210213 B2 JPH0210213 B2 JP H0210213B2
Authority
JP
Japan
Prior art keywords
heat exchanger
alloy
thermal conductivity
exchanger fin
sag resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57230410A
Other languages
Japanese (ja)
Other versions
JPS59116353A (en
Inventor
Ken Toma
Masanao Iida
Kensho Takahashi
Isao Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP23041082A priority Critical patent/JPS59116353A/en
Publication of JPS59116353A publication Critical patent/JPS59116353A/en
Publication of JPH0210213B2 publication Critical patent/JPH0210213B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた高温耐サグ性、犠牲陽極
効果、および熱伝導性を有する熱交換器フイン材
に関するものである。 従来、一般に、例えば自動車のラジエータや、
空調機器などにはAl合金製熱交換器が広く使用
されている。 この熱交換器は、通常、Al合金の板材の片面
または両面にAl−Si系合金のろう材をクラツド
してなるブレージングシート、あるいはAl合金
の板材で構成されたフイン材を、Al合金の板材、
あるいはAl合金の板材の表面側にAl−Si系合金
のろう材をクラツドしてなるブレージングシート
から成形された管材に、真空中、不活性ガス中、
あるいはフラツクスを用いた大気中、580〜620℃
の温度で、ろう付けすることによつて製造されて
いる。 したがつて、熱交換器フイン材には、ろう付け
時におけるろう材の溶融温度以上の高温加熱に対
して変形しない十分な高温耐サグ性、ろう付け後
に良好な熱交換性能を発揮する高い熱伝導性、さ
らに管材をよく防食し、これに貫通孔にまで発展
する孔食を発生させないようにするための犠牲陽
極効果を具備することが要求されるが、従来提案
されている各種の熱交換器フイン材は、いずれも
これらの高温耐サグ性、熱伝導性、および犠牲陽
極効果のうちの少なくともいずれかの特性に劣る
のが現状である。 そこで、本発明者等は、上述のような観点か
ら、高温耐サグ性、熱伝導性、および犠牲陽極効
果を具備した熱交換器フイン材を開発すべく研究
を行なつた結果、重量%で(以下%は重量%を示
す)、 Si:0.1〜0.8%、Zr:0.02〜0.2%、を含有し、
さらに必要に応じて、 Cr:0.05〜0.3%、Cu:0.05〜0.7%、のうち1
種または2種、 を含有し、残りがAlと不可避不純物からなる組
成を有するAl合金の芯材の両面に、 Zn:0.3〜2%、 を含有し、残りがAlと不可避不純物からなる組
成を有するAl合金の皮材をクラツドしてなる3
層複合板で熱交換器フイン材を構成すると、この
結果の熱交換器フイン材においては、上記芯材に
よつてすぐれた高温耐サグ性および熱伝導性が確
保され、一方上記芯材に比して電気化学的に卑な
上記皮材によつてすぐれた犠牲陽極効果が確保さ
れることから、ろう付け時における変形がなく、
かつろう付け後にはすぐれた熱伝導性および犠牲
陽極効果を発揮し、もつて熱交換器の著しく長期
に亘る使用を可能にするという知見を得たのであ
る。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に3層複合板を構成する芯材お
よび皮材の成分組成、並びに皮材の層厚を上記の
通りに限定した理由を説明する。 A 芯 材 (a) SiおよびZr これらの成分は、Alと結合して素地中に
微細にして均一に分散析出するAl−Zr−Si
化合物を形成し、このAl−Zr−Si化合物に
は芯材の再結晶温度を上昇させる作用がある
ので、ろう付け加熱時に再結晶粒が粗大化す
るようになり、この粗大再結晶粒によつてろ
う付け時に変形が発生しないすぐれた高温耐
サグ性が確保され、さらに前記Al−Zr−Si
化合物はAl素地のもつすぐれた熱伝導性を
阻害しない性質をもつので、すぐれた熱伝導
性も保持されるようになるが、その含有量
が、それぞれSi:0.1%未満およびZr:0.02
%未満では所望の高温耐サグ性を確保するこ
とができず、一方Si:0.8%およびZr:0.2%
をそれぞれ越えて含有させると、前記Al−
Zr−Si化合物の量が多くなりすぎて熱伝導性
に低下傾向が現われるようになることから、
その含有量を、それぞれSi:0.1〜0.8%、
Zr:0.02〜0.2%と定めた。 (b) Cr Cr成分には、Al結合してAl−Cr化合物を
形成し、素地中に微細均一に分散析出して、
特に上記のAl−Zr−Si化合物との共存にお
いて、再結晶粒の粗大化を一段と促進し、も
つて芯材の高温耐サグ性をより一層向上させ
る作用があるので、必要に応じて含有される
が、その含有量が0.05%未満では所望の高温
耐サグ性向上効果が得られず、一方その含有
量が0.3%を越えると、熱伝導性が低下する
ようになることから、その含有量を0.05〜
0.3%と定めた。 (c) Cu Cu成分には、素地に固溶して、芯材の強
度を向上させる作用があるので、特に高強度
が要求される場合に必要に応じて含有される
が、その含有量が0.05%未満では所望の強度
向上効果が得られず、一方その含有量が0.7
%を越えると、再結晶粒の粗大化が阻害さ
れ、高温耐サグ性が劣化するようになること
から、その含有量を0.05〜0.7%と定めた。 B 皮 材 (a) Zn Zn成分には、皮材を電気化学的に卑にし、
もつて十分な犠牲陽極効果を発揮して管材を
よく防食する作用があるが、その含有量が
0.3%未満では所望の犠牲陽極効果を確保す
ることができず、一方2%を越えて含有させ
ると、皮材が電気化学的に卑になり過ぎてし
まい、フイン材としての犠牲陽極効果が促進
され過ぎて、フイン材自体の腐食量が増大す
るようになるばかりでなく、特に真空ろう付
けに際して、Znの蒸発量が多くなつて炉汚
染の原因となることから、その含有量を0.3
〜2%と定めた。 つぎに、この発明の熱交換器フイン材を実施例
により具体的に説明する。 通常の溶解鋳造法により、それぞれ第1表に示
される成分組成をもつた本発明芯材用Al合金1
〜13、従来フイン材用Al合金1′,2′、本発明皮材
用Al合金a〜c、管材用Al合金、および管材の
ろう材用Al合金を溶製し、鋳造して鋳塊とした。 ついで、この結果得られた各種のAl合金鋳塊
に熱間圧延を施して板厚:8mmの熱延板とし、さ
らに従来フイン材用Al合金1′,2′、本発明皮材用
Al合金a〜c、および管材のろう材用Al合金に
は冷間圧延を施して板厚:1mmの冷延板とし、引
続いて上記板厚:8mmの本発明芯材用Al合金1
〜13の熱延板の両面に、上記板厚:1mmの本発明
皮材用Al合金a,bの冷延板を
The present invention relates to a heat exchanger fin material having excellent high-temperature sag resistance, sacrificial anode effect, and thermal conductivity. Conventionally, in general, for example, automobile radiators,
Al alloy heat exchangers are widely used in air conditioning equipment and other equipment. This heat exchanger usually uses a brazing sheet made by cladding an Al-Si alloy brazing material on one or both sides of an Al alloy plate, or a fin material made of an Al alloy plate, and a fin material made of an Al alloy plate. ,
Alternatively, a pipe material formed from a brazing sheet made by cladding an Al-Si alloy brazing filler metal on the surface side of an Al alloy plate material in a vacuum or inert gas.
Or in the atmosphere using flux at 580-620℃
It is manufactured by brazing at a temperature of . Therefore, the heat exchanger fin material must have sufficient high-temperature sag resistance so as not to deform when heated to a temperature higher than the melting temperature of the filler metal during brazing, and a high heat fin material that exhibits good heat exchange performance after brazing. It is required to have good conductivity, as well as a sacrificial anode effect to protect the pipe material from corrosion and prevent pitting corrosion from developing into through holes. Currently, all of the vessel fin materials are inferior in at least one of the following properties: high-temperature sag resistance, thermal conductivity, and sacrificial anode effect. Therefore, from the above-mentioned viewpoints, the present inventors conducted research to develop a heat exchanger fin material that has high-temperature sag resistance, thermal conductivity, and sacrificial anode effect. (hereinafter % indicates weight %), contains Si: 0.1 to 0.8%, Zr: 0.02 to 0.2%,
Furthermore, if necessary, 1 of Cr: 0.05-0.3%, Cu: 0.05-0.7%
Zn: 0.3 to 2% on both sides of an Al alloy core material having a composition of Zn: 0.3 to 2%, and the remainder consisting of Al and unavoidable impurities. It is made by cladding the skin material of Al alloy with
When the heat exchanger fin material is composed of a layered composite board, the resulting heat exchanger fin material has excellent high temperature sag resistance and thermal conductivity due to the core material, while being superior to the core material. Since the electrochemically base material mentioned above ensures an excellent sacrificial anode effect, there is no deformation during brazing.
It was discovered that after brazing, it exhibits excellent thermal conductivity and sacrificial anode effect, making it possible to use the heat exchanger for an extremely long period of time. This invention has been made based on the above knowledge, and the reason why the composition of the core material and skin material constituting the three-layer composite board and the layer thickness of the skin material are limited as described above will be explained below. do. A Core material (a) Si and Zr These components are Al-Zr-Si, which combines with Al and is finely dispersed and precipitated in the substrate.
This Al-Zr-Si compound has the effect of increasing the recrystallization temperature of the core material, so the recrystallized grains become coarser during brazing heating, and these coarse recrystallized grains Excellent high-temperature sag resistance that does not cause deformation during brazing is ensured, and the Al-Zr-Si
The compound has the property of not inhibiting the excellent thermal conductivity of the Al substrate, so it maintains excellent thermal conductivity, but the content is less than 0.1% for Si and 0.02% for Zr, respectively.
%, it is not possible to secure the desired high temperature sag resistance, while Si: 0.8% and Zr: 0.2%
If the Al-
As the amount of Zr-Si compound becomes too large, the thermal conductivity tends to decrease.
The content is Si: 0.1~0.8%, respectively.
Zr: Set at 0.02 to 0.2%. (b) Cr The Cr component is bonded with Al to form an Al-Cr compound, which is dispersed and precipitated finely and uniformly in the substrate.
In particular, in coexistence with the above Al-Zr-Si compound, it has the effect of further promoting the coarsening of recrystallized grains and further improving the high-temperature sag resistance of the core material, so it may be included as necessary. However, if the content is less than 0.05%, the desired effect of improving high temperature sag resistance cannot be obtained, while if the content exceeds 0.3%, the thermal conductivity will decrease. from 0.05
It was set at 0.3%. (c) Cu The Cu component has the effect of improving the strength of the core material by forming a solid solution in the base material, so it is included as necessary when particularly high strength is required. If the content is less than 0.05%, the desired strength improvement effect cannot be obtained;
%, coarsening of recrystallized grains is inhibited and high-temperature sag resistance deteriorates, so the content was set at 0.05 to 0.7%. B Skin material (a) Zn The Zn component is made by electrochemically making the skin material less
However, the sacrificial anode has a sufficient effect and protects the pipe material from corrosion, but its content is
If the content is less than 0.3%, the desired sacrificial anode effect cannot be ensured, while if the content exceeds 2%, the skin material becomes electrochemically too base, promoting the sacrificial anode effect as a fin material. If too much Zn is used, not only will the amount of corrosion of the fin material itself increase, but also the amount of evaporation of Zn will increase, causing furnace contamination, especially during vacuum brazing, so the content should be reduced to 0.3
It was set at ~2%. Next, the heat exchanger fin material of the present invention will be specifically explained using examples. Al alloy 1 for core materials of the present invention having the compositions shown in Table 1 is produced by ordinary melting and casting method.
~13. Conventional Al alloys 1' and 2' for fin materials, Al alloys a to c for skin materials of the present invention, Al alloys for pipe materials, and Al alloys for brazing material for pipe materials are melted and cast to form ingots. did. The various Al alloy ingots obtained as a result were then hot-rolled to form hot-rolled sheets with a thickness of 8 mm, and the Al alloys 1' and 2' for conventional fin materials and Al alloys 1' and 2' for skin materials of the present invention were then hot rolled.
The Al alloys a to c and the Al alloy for the brazing material of the pipe material are cold rolled to form a cold rolled plate with a thickness of 1 mm, and then the Al alloy 1 for the core material of the present invention with a thickness of 8 mm is applied.
Cold-rolled plates of Al alloys a and b for skin materials of the present invention having a thickness of 1 mm were placed on both sides of the hot-rolled plates of ~13.

【表】【table】

【表】【table】

【表】【table】

【表】 それぞれ重ね合わせ、熱間圧延にてクラツドして
板厚:2mmとし、さらにこれと、前記板厚:1mm
の従来フイン材用Al合金の冷延板に2℃/minの
昇温速度で加熱して温度:370℃に2時間保持の
中間焼鈍をはさみながら冷間圧延を繰り返し行な
い、最終冷間圧延率を30%とすることによつて3
層複合板からなる板厚:0.16mmを有する本発明熱
交換器フイン材1〜39(皮材の層厚:各0.016mm)
および単層板の従来熱交換器フイン材1,2をそ
れぞれ製造した。また、板厚:8mmの管材用Al
合金の熱延板の片面には、上記板厚:1mmの管材
のろう材用Al合金を重ね合わせ、熱間圧延にて
板厚:2mmとし、さらに続いて上記条件の中間焼
鈍を行ないながら冷間圧延を施してブレージング
シートとしてなる板厚:0.4mmの管材を製造した。 つぎに、この結果得られた本発明熱交換器フイ
ン材1〜39および従来熱交換器フイン材1,2に
ついて、高温耐サグ性試験、電導性試験、および
犠牲陽極試験をそれぞれ行なつた。 まず、高温耐サグ性試験では、幅:30mm×長
さ:140mmの寸法をもつた試験片を切出し、この
試験片を、その長さの30mmがステンレス鋼台板か
ら水平に突き出るように固定し、この状態で、1
気圧の窒素ガス雰囲気中、温度:620℃に5分間
加熱保持後の試験片の下方へ垂下直(試験片先端
部の降下高さ)を測定した。 また、電導性試験では、上記高温耐サグ性試験
後に試験片の電導度を測定した。 さらに、犠牲陽極試験では、上記高温耐サグ性
試験後の試験片を用い、この試験片を1規定の食
塩水中に浸漬し、試験片に局部溶解が発生したと
きの電位(孔食電位)を飽和カロメル電極を基準
として測定した。また、さらに、犠牲陽極試験で
は、上記本発明熱交換器フイン材1〜39および従
来熱交換器フイン材1,2のそれぞれから幅:30
mm×長さ:50mmの試験片を、一方上記管材からは
幅:40mm×長さ:50mmの寸法をもつた試験片を切
出し、前記管材試験片をろう材面を上に水平に置
き、この上面中央部に長さ方向にそつて上記本発
明熱交換器フイン材1〜39および従来熱交換器フ
イン材1,2の試験片をそれぞれ垂直に立設し、
この状態で1気圧の窒素ガス雰囲気中、温度:
620℃に5分間加熱して、これら両試験片をろう
付けし、ついで1ppmのCu++イオンを含有する温
度:40℃の水道水中に30日間浸漬の水道水浸試
験、並びに30日間のCASS試験を行ない、それぞ
れ管材用Al合金複合シートの表面に発生した孔
食数および最大孔食深さを測定した。これらの結
果を第2表に示した。 第2表に示される結果から、本発明熱交換器フ
イン材1〜39は、いずれも従来熱交換器フイン材
1,2と同等のすぐれた高温耐サグ性および熱伝
導性を有し、かつこれより一段とすぐれた犠牲陽
極効果を有し、これらの特性をすべて兼ね備えて
いることが明らかである。 上述のように、この発明の熱交換器フイン材
は、すぐれた高温耐サグ性、熱伝導性、および犠
牲陽極効果を具備するので、熱交換器の製造上お
よび実用上きわめてすぐれた性能を発揮し、熱交
換器の著しく長期に亘つての使用を可能とするの
である。
[Table] Lay them on top of each other and clad them by hot rolling to give a plate thickness of 2 mm, and then add this to the above plate thickness of 1 mm.
A cold-rolled sheet of conventional Al alloy for fin material was heated at a heating rate of 2°C/min and cold-rolled repeatedly with intermediate annealing at 370°C for 2 hours to obtain the final cold rolling rate. 3 by setting it to 30%
Heat exchanger fin materials 1 to 39 of the present invention having a thickness of 0.16 mm consisting of layered composite plates (layer thickness of skin material: 0.016 mm each)
and conventional heat exchanger fin materials 1 and 2 of single-layer plates were manufactured, respectively. In addition, plate thickness: 8mm Al for pipe material
On one side of the hot-rolled alloy plate, the above-mentioned plate thickness: 1 mm of Al alloy for pipe material for brazing material was superimposed, hot-rolled to a plate thickness of 2 mm, and then cooled while performing intermediate annealing under the above-mentioned conditions. A tube material with a thickness of 0.4 mm was produced by inter-rolling and used as a brazing sheet. Next, the resulting heat exchanger fin materials 1 to 39 of the present invention and conventional heat exchanger fin materials 1 and 2 were subjected to a high temperature sag resistance test, an electrical conductivity test, and a sacrificial anode test, respectively. First, in the high temperature sag resistance test, a test piece with dimensions of 30 mm width x 140 mm length was cut out, and this test piece was fixed so that 30 mm of the length protruded horizontally from the stainless steel base plate. , in this state, 1
After heating and holding the test piece at 620° C. for 5 minutes in a nitrogen gas atmosphere at atmospheric pressure, the downward vertical direction (height of drop of the tip of the test piece) was measured. In the conductivity test, the conductivity of the test piece was measured after the high temperature sag resistance test. Furthermore, in the sacrificial anode test, the test piece after the high-temperature sag resistance test was immersed in 1N saline solution, and the potential (pitting corrosion potential) when local dissolution occurred in the test piece was measured. Measurements were made using a saturated calomel electrode as a reference. Furthermore, in the sacrificial anode test, width: 30
A test piece with dimensions of mm x length: 50 mm was cut out from the above pipe material, and a test piece with dimensions of width: 40 mm x length: 50 mm was cut out from the above pipe material, and the pipe material test piece was placed horizontally with the brazing metal side up. The test pieces of the heat exchanger fin materials 1 to 39 of the present invention and the conventional heat exchanger fin materials 1 and 2 were vertically erected along the length direction at the center of the upper surface,
In this state, in a nitrogen gas atmosphere of 1 atm, temperature:
Both specimens were brazed by heating to 620°C for 5 minutes and then immersed in tap water at 40°C for 30 days, as well as CASS for 30 days. A test was conducted to measure the number of pitting corrosion and the maximum pitting depth that occurred on the surface of each Al alloy composite sheet for pipe material. These results are shown in Table 2. From the results shown in Table 2, heat exchanger fin materials 1 to 39 of the present invention all have excellent high-temperature sag resistance and thermal conductivity equivalent to conventional heat exchanger fin materials 1 and 2, and It is clear that it has a much better sacrificial anode effect and has all of these characteristics. As mentioned above, the heat exchanger fin material of the present invention has excellent high-temperature sag resistance, thermal conductivity, and sacrificial anode effect, so it exhibits extremely excellent performance in the manufacturing and practical use of heat exchangers. This allows the heat exchanger to be used for an extremely long period of time.

Claims (1)

【特許請求の範囲】 1 Si:0.1〜0.8%、Zr:0.02〜0.2%、を含有
し、残りがAlと不可避不純物からなる組成を有
するAl合金の芯材の両面に、 Zn:0.3〜2%、 を含有し、残りがAlと不可避不純物からなる組
成(以上重量%)を有するAl合金の皮材をクラ
ツドしてなる3層複合板で構成したことを特徴と
する高温耐サグ性、犠牲陽極効果、および熱伝導
性にすぐれた熱交換器フイン材。 2 Si:0.1〜0.8%、Zr:0.02〜0.2%、を含有
し、さらに、 Cr:0.05〜0.3%、 を含有し、残りがAlと不可避不純物からなる組
成を有するAl合金の芯材の両面に、 Zn:0.3〜2%、 を含有し、残りがAlと不可避不純物からなる組
成(以上重量%)を有するAl合金の皮材をクラ
ツドしてなる3層複合板で構成したことを特徴と
する高温耐サグ性、犠牲陽極効果、および熱伝導
性にすぐれた熱交換器フイン材。 3 Si:0.1〜0.8%、Zr:0.02〜0.2%、を含有
し、さらに、 Cu:0.05〜0.7%、 を含有し、残りがAlと不可避不純物からなる組
成を有するAl合金の芯材の両面に、 Zn:0.3〜2%、 を含有し、残りがAlと不可避不純物からなる組
成(以上重量%)を有するAl合金の皮材をクラ
ツドしてなる3層複合板で構成したことを特徴と
する高温耐サグ性、犠牲陽極効果、および熱伝導
性にすぐれた熱交換器フイン材。 4 Si:0.1〜0.8%、Zr:0.02〜0.2%、を含有
し、さらに、 Cr:0.05〜0.3%、Cu:0.05〜0.7%、 を含有し、残りがAlと不可避不純物からなる組
成を有するAl合金の芯材の両面に、 Zn:0.3〜2%、 を含有し、残りがAlと不可避不純物からなる組
成(以上重量%)を有するAl合金の皮材をクラ
ツドしてなる3層複合板で構成したことを特徴と
する高温耐サグ性、犠牲陽極効果、および熱伝導
性にすぐれた熱交換器フイン材。
[Claims] 1. Zn: 0.3 to 2% on both sides of an Al alloy core material having a composition of 1 Si: 0.1 to 0.8%, Zr: 0.02 to 0.2%, and the remainder consisting of Al and inevitable impurities. %, and the remainder is Al and unavoidable impurities (weight %). Heat exchanger fin material with excellent anode effect and thermal conductivity. 2 Both sides of an Al alloy core material containing Si: 0.1 to 0.8%, Zr: 0.02 to 0.2%, and further containing Cr: 0.05 to 0.3%, with the remainder consisting of Al and inevitable impurities. It is characterized by being constructed of a three-layer composite plate made by cladding an Al alloy skin material containing Zn: 0.3 to 2%, and the remainder consisting of Al and unavoidable impurities (weight percent). A heat exchanger fin material with excellent high-temperature sag resistance, sacrificial anode effect, and thermal conductivity. 3 Both sides of an Al alloy core material containing Si: 0.1 to 0.8%, Zr: 0.02 to 0.2%, and Cu: 0.05 to 0.7%, with the remainder consisting of Al and inevitable impurities. It is characterized by being constructed of a three-layer composite plate made by cladding an Al alloy skin material containing Zn: 0.3 to 2%, and the remainder consisting of Al and unavoidable impurities (weight percent). A heat exchanger fin material with excellent high-temperature sag resistance, sacrificial anode effect, and thermal conductivity. 4 Contains Si: 0.1 to 0.8%, Zr: 0.02 to 0.2%, further contains Cr: 0.05 to 0.3%, Cu: 0.05 to 0.7%, and has a composition with the remainder consisting of Al and inevitable impurities. A three-layer composite board made by cladding an Al alloy core material on both sides with an Al alloy skin material containing 0.3 to 2% Zn and the remainder consisting of Al and unavoidable impurities (weight percent). A heat exchanger fin material with excellent high-temperature sag resistance, sacrificial anode effect, and thermal conductivity.
JP23041082A 1982-12-24 1982-12-24 Composite al alloy sheet for fin material for heat exchanger Granted JPS59116353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23041082A JPS59116353A (en) 1982-12-24 1982-12-24 Composite al alloy sheet for fin material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23041082A JPS59116353A (en) 1982-12-24 1982-12-24 Composite al alloy sheet for fin material for heat exchanger

Publications (2)

Publication Number Publication Date
JPS59116353A JPS59116353A (en) 1984-07-05
JPH0210213B2 true JPH0210213B2 (en) 1990-03-07

Family

ID=16907446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23041082A Granted JPS59116353A (en) 1982-12-24 1982-12-24 Composite al alloy sheet for fin material for heat exchanger

Country Status (1)

Country Link
JP (1) JPS59116353A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2640816B2 (en) * 1987-10-14 1997-08-13 三菱アルミニウム株式会社 Al alloy composite fin material for heat exchanger with excellent brazing and corrosion resistance
JPH0755373B2 (en) * 1990-09-18 1995-06-14 住友軽金属工業株式会社 Aluminum alloy clad material and heat exchanger
JP2815708B2 (en) * 1990-12-28 1998-10-27 本田技研工業株式会社 Aluminum alloy clad material with excellent corrosion resistance
US5260142A (en) * 1990-12-28 1993-11-09 Honda Giken Kogyo Kabushiki Kaisha Corrosion-resistant clad material made of aluminum alloys
US5292595A (en) * 1992-02-18 1994-03-08 Sumitomo Light Metal Industries, Ltd. Clad aluminum alloy material having high strength and high corrosion resistance for heat exchanger
JP5506279B2 (en) * 2009-08-13 2014-05-28 株式会社Uacj Aluminum clad material for heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595094A (en) * 1979-01-16 1980-07-18 Sumitomo Light Metal Ind Ltd Core of heat-exchanger made of aluminum alloy
JPS5641347A (en) * 1979-09-13 1981-04-18 Furukawa Alum Co Ltd Aluminum alloy clad for vacuum brazing
JPS575840A (en) * 1980-06-12 1982-01-12 Mitsubishi Alum Co Ltd Aluminum alloy brazing sheet having excellent pitting- corrosion resistance and high strength
JPS5713141A (en) * 1980-06-27 1982-01-23 Sumitomo Light Metal Ind Ltd Finely grained material for stringer of airplane with superior corrosion resistance and its manufacture
JPS57131339A (en) * 1981-02-04 1982-08-14 Mitsubishi Alum Co Ltd Al alloy with superior heat deformation resistance and heat conductivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595094A (en) * 1979-01-16 1980-07-18 Sumitomo Light Metal Ind Ltd Core of heat-exchanger made of aluminum alloy
JPS5641347A (en) * 1979-09-13 1981-04-18 Furukawa Alum Co Ltd Aluminum alloy clad for vacuum brazing
JPS575840A (en) * 1980-06-12 1982-01-12 Mitsubishi Alum Co Ltd Aluminum alloy brazing sheet having excellent pitting- corrosion resistance and high strength
JPS5713141A (en) * 1980-06-27 1982-01-23 Sumitomo Light Metal Ind Ltd Finely grained material for stringer of airplane with superior corrosion resistance and its manufacture
JPS57131339A (en) * 1981-02-04 1982-08-14 Mitsubishi Alum Co Ltd Al alloy with superior heat deformation resistance and heat conductivity

Also Published As

Publication number Publication date
JPS59116353A (en) 1984-07-05

Similar Documents

Publication Publication Date Title
US6592688B2 (en) High conductivity aluminum fin alloy
JPS6248742B2 (en)
JP2011162823A (en) Aluminum alloy clad material used for heat-exchanger and core-material for aluminum alloy clad material used for the same
KR20200041869A (en) Aluminum alloy brazing sheet for heat exchanger
JPS6245301B2 (en)
JP6307231B2 (en) Aluminum alloy heat exchanger and manufacturing method thereof
JPH0210213B2 (en)
JP2640816B2 (en) Al alloy composite fin material for heat exchanger with excellent brazing and corrosion resistance
JPH0210212B2 (en)
JPH0333770B2 (en)
JPH0210216B2 (en)
JP3863595B2 (en) Aluminum alloy brazing sheet
JPH07179973A (en) Al alloy brazing sheet for vacuum brazing for structural member for heat exchanger, excellent in corrosion resistance
JP2693181B2 (en) Aluminum brazing sheet
JPS62211360A (en) Manufacture of al alloy pipe superior in corrosion resistance for heat exchanger
JPH029100B2 (en)
JPH029098B2 (en)
JPS6323260B2 (en)
JPH01159343A (en) Al alloy clad fin material for heat exchanger having superior brazability and corrosion resistance
JPH0416535B2 (en)
JPS6261099B2 (en)
JPS6136576B2 (en)
JPH0321617B2 (en)
JPH0463276B2 (en)
JPS6216262B2 (en)