JPH04296057A - Mos semiconductor element - Google Patents

Mos semiconductor element

Info

Publication number
JPH04296057A
JPH04296057A JP6061691A JP6061691A JPH04296057A JP H04296057 A JPH04296057 A JP H04296057A JP 6061691 A JP6061691 A JP 6061691A JP 6061691 A JP6061691 A JP 6061691A JP H04296057 A JPH04296057 A JP H04296057A
Authority
JP
Japan
Prior art keywords
region
layer
conductivity type
gate electrode
resistivity layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6061691A
Other languages
Japanese (ja)
Inventor
Kenya Sakurai
建弥 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6061691A priority Critical patent/JPH04296057A/en
Publication of JPH04296057A publication Critical patent/JPH04296057A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a MOS semiconductor element to be lessened in ON-state resistance by a method wherein a gate electrode provided onto a semiconductor surface layer which serves as a channel region is used for the formation of an inversionlayer inside a channel region in a semiconductor layer provided onto the gate electrode through the intermediary of an insulating layer. CONSTITUTION:A second gate oxide film 61 is formed on a gate electrode 7, a polycrystalline silicon layer is deposited thereon, and a P region 11 and an N<+> source region 12 and an N<+> drain region 13 which sandwich the region 11 between them are formed. The second N channel NOSFET is made to have a threshold voltage nearly equal to that of a first N channel MOSFET by controlling a P region in impurity concentration and an oxide film 61 in thickness. The electron currents which flow when MOS semiconductor elements are in ON-states are set equal to each other as much as possible. The source region 12 of the second MOSFET is connected to a source electrode 8, and the drain region 13 is connected to a narrow N<+> contact region 14 provided onto the surface layer of an N<-> layer 2 with a second drain electrode 15.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えばMOSFET,
 伝導度変調型MOSFET (IGBT) あるいは
MOS制御サイリスタ (MCT) などのように半導
体素体上にMOS構造を有し、ゲート電極への電圧印加
により主電流を制御するMOS型半導体素子に関する。
[Industrial Field of Application] The present invention is applicable to, for example, MOSFET,
The present invention relates to a MOS type semiconductor element, such as a conductivity modulated MOSFET (IGBT) or a MOS controlled thyristor (MCT), which has a MOS structure on a semiconductor body and whose main current is controlled by applying a voltage to a gate electrode.

【0002】0002

【従来の技術】現在、パワーエレクトロニクス分野にお
いて最も注目されている電力用半導体素子はパワーMO
SFETとIGBTであると言える。これらは、パワー
エレクトロニクス製品の小型化, 高性能化に対して現
在最適な素子と考えられるからである。それは、両者の
高速スイッチング性能と低駆動電力の特長よりきている
。 しかし、とどまる所を知らないパワーエレクトロニクス
製品の拡大と小型化, 高性能化は、さらなる電力用半
導体素子の低損失化, 高周波化を求めている。図2は
市場にある電力用MOSFETの比オン抵抗、すなわち
ターンオン抵抗Ronと面積Aの積の関係を示したもの
である。電力用MOSFETの低オン抵抗化は、低耐圧
側ではLSIプロセス技術の微細加工技術を利用したセ
ル集積度の向上によってそのチャネル幅を増大すること
により行われてきた。 (”Low on−Resis
tance and High Relialilit
y Power MOSFETs”PESC ’88 
RECORD,APRIL 1988 参照)また、さ
らにトレンチゲート構造による集積度向上によってオン
抵抗を低減した報告もある。 (”NUMERICAL
 AND EXPERIMENTAL COMPARI
SON OF 60V VERTICAL DOUBL
E−DIFFUSED MOSFETS AND MO
SFETS WITH A TRENCH−GATE 
STRUCTURE” Solid−State El
ectronics,Vol.32, NO.3,19
89参照)
[Prior Art] Currently, the power semiconductor device that is attracting the most attention in the field of power electronics is the power MO
It can be said that they are SFET and IGBT. These are currently considered to be the most suitable elements for downsizing and improving the performance of power electronics products. This is due to the high-speed switching performance and low drive power of both. However, the unstoppable expansion, miniaturization, and higher performance of power electronics products require even lower loss and higher frequency power semiconductor devices. FIG. 2 shows the relationship between the specific on-resistance of power MOSFETs on the market, that is, the product of the turn-on resistance Ron and the area A. Lower on-resistance of power MOSFETs has been achieved on the low breakdown voltage side by increasing the channel width by improving cell integration using microfabrication technology of LSI process technology. (“Low on-Resis
tance and High Reality
y Power MOSFETs"PESC '88
(Refer to RECORD, APRIL 1988) There are also reports that the on-resistance is reduced by further increasing the degree of integration using a trench gate structure. (”NUMERICAL
AND EXPERIMENTAL COMPARI
SON OF 60V VERTICAL DOUBL
E-DIFFUSED MOSFETS AND MO
SFETS WITH A TRENCH-GATE
STRUCTURE” Solid-State El
electronics, Vol. 32, NO. 3,19
89)

【0003】一方、IGBTのオン電圧は次式で与えら
れる。 VCE(sat) =VJ (p+ −n− ) +V
MOD +I・RS +IMOS ( Ra +Rj 
+Rch)    (1)ここで、VJ (p+ −n
− ) はnチャネルIGBTのp+ コレクタとn−
 高抵抗領域の拡散電位、VMOD はn− 高抵抗領
域の伝導度変調された領域の電圧降下、RS は他のシ
リーズ抵抗、また (Ra+Rj +Rch) はMO
SFET部の蓄積層の抵抗Ra , ジャンクションF
ET部の抵抗Rj およびチャネル抵抗Rchの和であ
る。図3に解析的に求めたIGBTのオン電圧成分を示
す。このようなIGBTにおいてもMOSFET部のオ
ン抵抗を低減することが最も重要なファクタとなってい
る。これはラッチアップ現象を避けるためにチャネルが
形成される領域の不純物濃度を高め、深さを増大させる
必要があり、チャネル抵抗の大幅な増加を余儀なくされ
ているからである。従って、IGBTのセル集積度をあ
げてオン抵抗を低減する努力がさかんに行われている。  (”Improved electricalCha
racteristics trade−off be
tween VCE(sat) and tf ” P
ower Conversion June 1990
 Proceedings)
On the other hand, the on-voltage of the IGBT is given by the following equation. VCE (sat) = VJ (p+ -n-) +V
MOD +I・RS +IMOS (Ra +Rj
+Rch) (1) Here, VJ (p+ -n
−) is the p+ collector of the n-channel IGBT and the n−
The diffusion potential of the high resistance region, VMOD is the voltage drop of the conductivity modulated region of the n- high resistance region, RS is the other series resistance, and (Ra+Rj +Rch) is the MO
Resistance Ra of storage layer of SFET section, junction F
This is the sum of the resistance Rj of the ET section and the channel resistance Rch. FIG. 3 shows the analytically determined on-voltage component of the IGBT. In such IGBTs as well, reducing the on-resistance of the MOSFET section is the most important factor. This is because in order to avoid the latch-up phenomenon, it is necessary to increase the impurity concentration and depth of the region where the channel is formed, which necessitates a significant increase in channel resistance. Therefore, efforts are being made to increase the cell integration density of IGBTs and reduce the on-resistance. ("Improved electricalCha
racteristics trade-off be
tween VCE(sat) and tf”P
OWER Conversion June 1990
Proceedings)

【0004】0004

【発明が解決しようとする課題】しかし、集積度向上に
よるオン抵抗の低減にはそれぞれ特有の問題が存在する
。図4はトレンチゲート構造のMOSFETを示し、n
+ ドレイン層1, nドリフト層2, pベース層3
, p+ 層4の4層を有するシリコン基板の表面から
選択的に形成されたn+ ソース領域5を貫通してnド
リフト層2に達する溝 (トレンチ)20 の内面に、
ゲート酸化膜6を介してゲート電極7が設けられている
。そして、p+ 層4およびn+ 領域5に共通にソー
ス電極8が接触し、n+ 層1にはドレイン電極9が接
触する。しかし、このようなトレンチゲート構造では、
トレンチ20の底のゲート電極7の先端部に電界集中が
発生し、高耐圧化が困難であること、トレンチゲート部
のゲート酸化膜6の膜質の確保が困難であること、さら
にゲート電極7に対向するpベース層3のチャネル部に
残存するトレンチ加工の際の結晶損傷により大幅に移動
度の低下することなど解決すべき課題は多い。一方、単
なる微細加工による集積度向上には高精度なフォトリソ
グラフィ技術が不可欠であり、超LSI技術と全く同等
の高価な製造装置が必要になる。さらに、特に500 
V以上の高耐圧MOSFET, IGBTでは最適なセ
ル寸法が存在し、むやみにセル寸法を小さくしてもかえ
ってオン電圧が増大する結果になる。図5はMOSFE
Tのセル寸法 (蓄積層幅) と比オン抵抗RonAと
の関係を示し、蓄積層幅は基板表面におけるチャネル領
域間の間隔である。図(a) は高抵抗層幅が4.6 
μmでチャネル長0.3 μmの耐圧100 Vの素子
、図(b) は高抵抗層幅が73μmでチャネル長1μ
mの耐圧1000Vの素子であり、Sはp+ ウエル部
の幅, RD はドリフト層の抵抗である。図のように
p+ ウエル部を縮小することはそのオン電圧の低減に
有効であるが、IGBTの場合のラッチアップ現象など
による破壊耐量の低下が著しい。
[Problems to be Solved by the Invention] However, each method of reducing on-resistance by increasing the degree of integration has its own problems. FIG. 4 shows a trench gate structure MOSFET, with n
+ Drain layer 1, n drift layer 2, p base layer 3
, a trench 20 selectively formed from the surface of a silicon substrate having four layers, p+ layer 4, penetrating through n+ source region 5 and reaching n drift layer 2,
A gate electrode 7 is provided with a gate oxide film 6 interposed therebetween. A source electrode 8 commonly contacts p+ layer 4 and n+ region 5, and a drain electrode 9 contacts n+ layer 1. However, in such a trench gate structure,
Electric field concentration occurs at the tip of the gate electrode 7 at the bottom of the trench 20, making it difficult to increase the withstand voltage, making it difficult to ensure the quality of the gate oxide film 6 at the trench gate part, and furthermore, There are many problems to be solved, such as a significant decrease in mobility due to crystal damage during trench processing that remains in the channel portion of the opposing p base layer 3. On the other hand, high-precision photolithography technology is indispensable for improving the degree of integration through mere microfabrication, which requires expensive manufacturing equipment that is exactly equivalent to VLSI technology. Furthermore, especially 500
For high voltage MOSFETs and IGBTs with a voltage higher than V, there is an optimum cell size, and unnecessarily reducing the cell size will result in an increase in the on-state voltage. Figure 5 is a MOSFE
The relationship between cell dimensions (accumulation layer width) of T and specific on-resistance RonA is shown, where the accumulation layer width is the interval between channel regions on the substrate surface. In Figure (a), the high resistance layer width is 4.6
Figure (b) is a device with a breakdown voltage of 100 V and a channel length of 0.3 μm in μm.The high-resistance layer width is 73 μm and the channel length is 1 μm.
The element has a breakdown voltage of 1000 V, S is the width of the p+ well, and RD is the resistance of the drift layer. Although reducing the size of the p+ well as shown in the figure is effective in reducing its on-voltage, the breakdown resistance due to the latch-up phenomenon in the case of IGBTs is significantly reduced.

【0005】本発明の目的は、以上のようにトレンチゲ
ート構造あるいは微細化構造による集積度向上によって
オン電圧を低減することには難があるのにかんがみ、最
適なセル寸法を保ち、それほど高精度の製造装置を必要
とせず、耐圧低下を生じさせずにセル密度を増大してオ
ン抵抗を低減させたMOS型半導体素子を提供すること
にある。
The purpose of the present invention is to maintain optimal cell dimensions and achieve high accuracy, in view of the difficulties in reducing the on-voltage by increasing the degree of integration through trench gate structures or miniaturized structures. It is an object of the present invention to provide a MOS type semiconductor device which does not require any manufacturing equipment and has increased cell density and reduced on-resistance without causing a decrease in breakdown voltage.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のMOS型半導体素子は、第一導電型の高
比抵抗層と、その高比抵抗層の一面の表面層内に選択的
に形成された第二導電型の第一領域と、その第一領域の
表面層内に選択的に形成された第一導電型の第二領域と
、その第二領域と前記高比抵抗層にはさまれた第一領域
の部分とをチャネル領域としてそのチャネル領域の上に
絶縁膜を介して設けられたゲート電極と、そのゲート電
極の前記チャネル領域と反対側に絶縁膜を介して形成さ
れ、ゲート電極に対向して第二導電型の第三領域が両側
の第一導電型の第四領域, 第五領域にはさまれて存在
する半導体層と、第一領域, 第二領域に共通に接触す
る一つの主電極とを有し、第四領域がゲート電極と、第
五領域が前記高比抵抗層と接続され、ゲート電極への所
定の電圧印加時に前記チャネル領域および第三領域に同
時に第一導電型の反転層が生ずるものとする。そして、
そのようなMOS型半導体素子には、第一導電型の高比
抵抗層の他面に第一導電型の低抵抗層が隣接し、その低
比抵抗層に別の主電極が接触するMOSFET、あるい
は第一導電型の高比抵抗層の他面に直接あるいは第一導
電型の低抵抗層を介して第二導電型の低比抵抗層が隣接
し、その低比抵抗層に別の主電極が接触するIGBTが
ある。
[Means for Solving the Problems] In order to achieve the above object, the MOS type semiconductor device of the present invention includes a high resistivity layer of a first conductivity type and a surface layer on one side of the high resistivity layer. a selectively formed first region of a second conductivity type; a second region of a first conductivity type selectively formed in a surface layer of the first region; the second region and the high specific resistance; a gate electrode provided on the channel region with an insulating film interposed therebetween, and a gate electrode provided on the opposite side of the channel region with an insulating film interposed therebetween; a semiconductor layer in which a third region of the second conductivity type is sandwiched between fourth and fifth regions of the first conductivity type on both sides facing the gate electrode, the first region, and the second region; a fourth region is connected to the gate electrode, a fifth region is connected to the high resistivity layer, and when a predetermined voltage is applied to the gate electrode, the channel region and the third It is assumed that an inversion layer of the first conductivity type is simultaneously generated in the region. and,
Such a MOS type semiconductor device includes a MOSFET in which a low resistance layer of a first conductivity type is adjacent to the other surface of a high resistivity layer of a first conductivity type, and another main electrode is in contact with the low resistivity layer; Alternatively, a low resistivity layer of a second conductivity type is adjacent to the other surface of the high resistivity layer of the first conductivity type, either directly or via a low resistivity layer of the first conductivity type, and another main electrode is connected to the low resistivity layer. There is an IGBT that contacts the

【0007】[0007]

【作用】本発明によるMOS型半導体素子では、従来の
素子と同様に第一導電型の高比抵抗半導体層、その表面
層に形成された第二導電型の第一領域, 第一導電型の
第二領域およびその第一領域上に絶縁膜を介して設けら
れるゲート電極からなる第一のMOSFET構造のほか
に、そのゲート電極とそのゲート電極の反対側に絶縁膜
を介して設けられる第二導電型の第三領域および第一導
電型の第四, 第五領域とよりなり、第三領域をチャネ
ル領域とする第二のMOSFET構造が存在し、二つの
MOSFET部が同一のしきい値電圧を有する。そして
、しきい値電圧以上の電圧を印加したとき二つのMOS
FET部のチャネル領域にほぼ同じ電流が流れるように
すれば、従来と同一セル寸法, 同一チップ寸法でチャ
ネル部の抵抗成分は約半減できる。特にIGBTでは、
そのオン電圧に占めるMOS部の成分は大きいので、本
発明の効果はMOSFETにおけるよりさらに大きい。 今、nチャネルIGBTで考えると、nチャネルIGB
Tは、ワイドベースpnpバイポーラトランジスタをn
チャネルMOSFETを流れた電子ベース電流が駆動し
ていると定性的にその動作を考えることができる。本発
明による二つのMOSFET部を流れる電子電流が等し
い理想的な場合を考えると、コレクタ電流ICは、Ih
 をpnpトランジスタの正孔電流、Ie をMOSF
ET1素子当たりの電子電流であるとしてIC =Ih
 +2Ie となる。Ih = (αpnp / (1
−αpnp ))・2Ie であるから、IC = (
2/ (1−αpnp ))・Ie となり、2倍の電
流が流せることになる。従って、IGBTのオン電圧の
大幅な低減が達せられる。
[Operation] The MOS type semiconductor device according to the present invention has a high specific resistance semiconductor layer of the first conductivity type, a first region of the second conductivity type formed on the surface layer, and a high resistivity semiconductor layer of the first conductivity type, as in the conventional device. In addition to the first MOSFET structure consisting of a second region and a gate electrode provided on the first region with an insulating film interposed therebetween, the second MOSFET structure includes a second region and a gate electrode provided on the opposite side of the gate electrode with an insulating film interposed therebetween. There is a second MOSFET structure consisting of a third region of conductivity type and fourth and fifth regions of first conductivity type, with the third region serving as a channel region, and the two MOSFET parts have the same threshold voltage. has. Then, when a voltage higher than the threshold voltage is applied, the two MOS
If almost the same current flows through the channel region of the FET section, the resistance component of the channel section can be reduced by about half with the same cell size and chip size as in the past. Especially in IGBT,
Since the MOS portion accounts for a large component in the on-voltage, the effect of the present invention is even greater than that of a MOSFET. Now, considering n-channel IGBT, n-channel IGB
T is a wide base pnp bipolar transistor
Its operation can be qualitatively considered to be driven by the electron base current flowing through the channel MOSFET. Considering an ideal case in which the electron currents flowing through the two MOSFET sections according to the present invention are equal, the collector current IC is Ih
is the hole current of pnp transistor, Ie is MOSF
Assuming that the electron current per ET element is IC = Ih
+2Ie. Ih = (αpnp / (1
−αpnp ))・2Ie, so IC = (
2/(1-αpnp))·Ie, which means that twice as much current can flow. Therefore, a significant reduction in the on-state voltage of the IGBT can be achieved.

【0008】[0008]

【実施例】図1は本発明の一実施例の電力用MOSFE
Tを示し、図4と共通の部分には同一の符号が付されて
いる。ドレイン端子Dに接続されるドレイン電極9の接
触するn+ ドレイン層1の上のn− ドリフト層2の
表面層内に選択的にpベース量3およびp+ ウエル4
が形成され、それらのp領域の表面層内に選択的にn+
 ソース領域5が形成されている。そして、n+ 領域
5とn− 層2にはさまれたp領域3の表面上にゲート
端子Gに接続されるゲート電極7がゲート酸化膜6を介
して設けられ、p+ 領域4およびn+ 領域5に共通
にソース端子Sに接続されるソース電極8が接触し、ゲ
ート電極7と絶縁膜10で絶縁されていることは従来の
縦型DMOSFETの構造と同じである。この構造に加
えて、ゲート電極7の上に第二のゲート酸化膜61を形
成し、さらにその上に多結晶シリコン層を堆積して不純
物の拡散によりp領域11とそれをはさむn+ ソース
領域12, n+ ドレイン領域13を形成する。この
ようにして形成された第二のnチャネルMOSFETは
、p領域の不純物濃度、酸化膜61の厚さを調整するこ
とにより、n− 層2, p領域3, n+ 領域5,
 ゲート酸化膜6, ゲート電極7よりなる第一のnチ
ャネルMOSFETのしきい値電圧とほぼ等しいしきい
値電圧を有するようにし、またオン時に流れる電子電流
がなるべく近い値になるようにする。第二のMOSFE
Tのソース領域12はソース電極8に接続され、ドレイ
ン領域13はn− 層2の表面層に設けられた狭いn+
 コンタクト領域14に第二ドレイン電極15によって
接続される。従って等価回路は図6のようになる。この
MOSFETのゲート電極7に正の電圧が印加され、し
きい値電圧を超えると、第一, 第二のMOSFETと
もにオン状態に入り、電子が一方はチャネル領域3を、
他方はチャネル領域11を通過してn− ドリフト層2
に流れこみ、そして正のドレイン電圧によってn+ ド
レイン層1にひきよせられる。
[Embodiment] Figure 1 shows a power MOSFE according to an embodiment of the present invention.
T, and parts common to those in FIG. 4 are given the same reference numerals. A p base amount 3 and a p+ well 4 are selectively formed in the surface layer of the n− drift layer 2 on the n+ drain layer 1 which is in contact with the drain electrode 9 connected to the drain terminal D.
is formed, and n+ is selectively formed in the surface layer of these p regions.
A source region 5 is formed. A gate electrode 7 connected to the gate terminal G is provided on the surface of the p region 3 sandwiched between the n+ region 5 and the n− layer 2 via a gate oxide film 6, and the p+ region 4 and the n+ region 5 The source electrode 8 commonly connected to the source terminal S is in contact with the gate electrode 7 and is insulated by the insulating film 10, which is the same as the structure of the conventional vertical DMOSFET. In addition to this structure, a second gate oxide film 61 is formed on the gate electrode 7, a polycrystalline silicon layer is further deposited on it, and impurities are diffused to form the p region 11 and the n+ source region 12 sandwiching it. , n+ drain region 13 is formed. The second n-channel MOSFET formed in this way has n- layer 2, p region 3, n+ region 5,
It is made to have a threshold voltage almost equal to the threshold voltage of the first n-channel MOSFET consisting of gate oxide film 6 and gate electrode 7, and the electron current flowing when turned on is made to have a value as close as possible. Second MOSFE
The source region 12 of T is connected to the source electrode 8, and the drain region 13 is a narrow n+
A second drain electrode 15 is connected to the contact region 14 . Therefore, the equivalent circuit becomes as shown in FIG. When a positive voltage is applied to the gate electrode 7 of this MOSFET and exceeds the threshold voltage, both the first and second MOSFETs enter the on state, and electrons pass through the channel region 3 on one side.
The other side passes through the channel region 11 and forms the n- drift layer 2.
and is attracted to the n+ drain layer 1 by the positive drain voltage.

【0009】図7は別の実施例を示し、図1と共通の部
分には同一の符号が付されているがこの場合は電極15
を用いないでn+ 領域13が絶縁膜10に開けられた
コンタクトホールを埋めてコンタクト領域14に接触し
ている。これらのMOSFETでは、特に低耐圧の場合
にオン抵抗の低減が著しい。例えば100 V以下クラ
スの低耐圧MOSFETで20%程度オン抵抗が低減し
た。
FIG. 7 shows another embodiment, in which parts common to those in FIG.
The n+ region 13 fills the contact hole opened in the insulating film 10 and contacts the contact region 14 without using the contact region 14. In these MOSFETs, the on-resistance is significantly reduced, especially when the breakdown voltage is low. For example, the on-resistance of a low-voltage MOSFET in the 100 V or lower class has been reduced by about 20%.

【0010】以上の実施例は縦型DMOSFETについ
て述べたが、n+ 層1の代わりにn+ バッファ層を
介してあるいはn+ バッファ層なしにp+ 層を設け
たIGBTにおいても実施でき、オン電圧の大幅な低減
、あるいはオン電圧を同じにしてチャネルの形成される
領域の不純物濃度, 深さを大幅に増大できるため、高
ラッチアップ耐量が達成できる。また、MCTにおいて
も実施できる。
Although the above embodiments have been described with respect to a vertical DMOSFET, they can also be implemented in an IGBT in which a p+ layer is provided through an n+ buffer layer instead of the n+ layer 1 or without an n+ buffer layer, and the on-voltage can be significantly increased. It is possible to significantly increase the impurity concentration and depth of the region where the channel is formed while keeping the on-voltage the same, making it possible to achieve high latch-up resistance. It can also be implemented in MCT.

【0011】[0011]

【発明の効果】本発明によれば、従来のMOSFET,
 IGBTなどのMOS型半導体素子の半導体素体表面
層のチャネル領域上に備えられるゲート電極をゲート電
極のさらに上に絶縁膜を介して設けられる半導体層中の
チャネル領域への反転層形成にも用い、並列接続される
半導体素体表面部に形成されたMOSFETと、ゲート
電極上に形成されたMOSFETとのしきい値電圧をほ
ぼ等しくし、オン電流を匹敵する大きさにすることによ
り、両者の反転層を通じて素体内に供給される電流が従
来の約2倍となるため、チャネル部の抵抗が約半減し、
オン抵抗あるいはオン電圧の大幅な低減がセル寸法の変
更, チップ寸法の増大を招くことなく可能になり、さ
らにIGBTのラッチアップ耐量の向上にも有効である
[Effects of the Invention] According to the present invention, the conventional MOSFET,
The gate electrode provided on the channel region of the semiconductor body surface layer of a MOS type semiconductor device such as IGBT is also used to form an inversion layer in the channel region of the semiconductor layer provided further above the gate electrode via an insulating film. By making the threshold voltages of the MOSFET formed on the surface of the semiconductor body and the MOSFET formed on the gate electrode approximately equal and making the on-state currents comparable, the MOSFETs are connected in parallel. The current supplied into the element body through the inversion layer is approximately twice that of the conventional one, so the resistance of the channel portion is approximately halved.
It is possible to significantly reduce the on-resistance or on-voltage without changing the cell dimensions or increasing the chip size, and it is also effective in improving the latch-up resistance of the IGBT.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の電力用nチャネルMOSF
ETの要部断面図
FIG. 1: Power n-channel MOSF of one embodiment of the present invention
Cross-sectional view of main parts of ET

【図2】電力用MOSFETの耐圧とRon・A積との
関係線図
[Figure 2] Relationship diagram between power MOSFET breakdown voltage and Ron・A product

【図3】IGBTの耐圧と計算によるオン電圧成分との
関係線図
[Figure 3] Relationship diagram between IGBT breakdown voltage and calculated on-voltage component

【図4】トレンチゲートMOSFETの断面図[Figure 4] Cross-sectional view of trench gate MOSFET

【図5】
MOSFETのセル寸法とオン電圧の関係線図
[Figure 5]
Relationship diagram between MOSFET cell dimensions and on-voltage

【図6】
図1のMOSFETの等価回路図
[Figure 6]
Equivalent circuit diagram of MOSFET in Figure 1

【図7】本発明の別の
実施例の電力用nチャネルMOSFETの要部断面図
FIG. 7 is a sectional view of a main part of a power n-channel MOSFET according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1    n+ ドレイン層 2    n− ドリフト層 3    pベース領域 4    p+ ウエル 5    n+ ソース領域 6    ゲート酸化膜 61    第二ゲート酸化膜 7    ゲート電極 8    ソース電極 9    ドレイン電極 11    p領域 12    n+ ソース領域 13    n+ ドレイン領域 1 n+ drain layer 2 n- drift layer 3 P base region 4 p+ well 5 n+ source area 6 Gate oxide film 61 Second gate oxide film 7 Gate electrode 8 Source electrode 9 Drain electrode 11 p region 12 n+ source area 13 n+ drain region

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】第一導電型の高比抵抗層と、その高比抵抗
層の一面の表面層内に選択的に形成された第二導電型の
第一領域と、その第一領域の表面層内に選択的に形成さ
れた第一導電型の第二領域と、その第二領域と前記高比
抵抗層にはさまれた第一領域の部分をチャネル領域とし
てそのチャネル領域の上に絶縁膜を介して設けられたゲ
ート電極と、そのゲート電極の前記チャネル領域と反対
側に絶縁膜を介して形成され、ゲート電極に対向して第
二導電型の第三領域が両側の第一導電型の第四領域, 
第五領域にはさまれて存在する半導体層と、第一領域,
 第二領域に共通に接触する一つの主電極とを有し、第
四領域がゲート電極と、第五領域が前記高比抵抗層と接
続され、ゲート電極への所定の電圧印加時に前記チャネ
ル領域および第三領域に同時に第一導電型の反転層が生
ずることを特徴とするMOS型半導体素子。
1. A high resistivity layer of a first conductivity type, a first region of a second conductivity type selectively formed in a surface layer on one side of the high resistivity layer, and a surface of the first region. A second region of the first conductivity type selectively formed in the layer, and a portion of the first region sandwiched between the second region and the high resistivity layer as a channel region and insulated over the channel region. A gate electrode is provided through a film, and a third region of a second conductivity type is formed on the opposite side of the gate electrode from the channel region with an insulating film interposed therebetween, and a third region of a second conductivity type is formed on the opposite side of the gate electrode with the first conductivity type on both sides. The fourth area of the type,
A semiconductor layer sandwiched between the fifth region and the first region,
one main electrode in common contact with the second region, a fourth region is connected to the gate electrode, a fifth region is connected to the high resistivity layer, and when a predetermined voltage is applied to the gate electrode, the channel region and an inversion layer of the first conductivity type simultaneously formed in the third region.
【請求項2】第一導電型の高比抵抗層の他面に第一導電
型の低抵抗層が隣接し、その低比抵抗層に別の主電極が
接触するMOSFETである請求項1記載のMOS型半
導体素子。
2. The MOSFET according to claim 1, wherein a low resistance layer of the first conductivity type is adjacent to the other surface of the high resistivity layer of the first conductivity type, and another main electrode is in contact with the low resistance layer. MOS type semiconductor device.
【請求項3】第一導電型の高比抵抗層の他面に第二導電
型の低比抵抗層が隣接し、その低比抵抗層に別の主電極
が接触する伝導度変調型MOSFETである請求項1記
載のMOS型半導体素子。
3. A conductivity modulated MOSFET in which a second conductivity type low resistivity layer is adjacent to the other surface of the first conductivity type high resistivity layer, and another main electrode is in contact with the low resistivity layer. A MOS type semiconductor device according to claim 1.
【請求項4】第一導電型の高比抵抗層の他面に第一導電
型の低比抵抗層を介して第二導電型の低比抵抗層が設け
られ、その第二導電型の低比抵抗層に別の主電極が接触
する伝導度変調型MOSFETである請求項1記載のM
OS型半導体素子。
4. A low resistivity layer of a second conductivity type is provided on the other surface of the high resistivity layer of the first conductivity type via a low resistivity layer of the first conductivity type, and the low resistivity layer of the second conductivity type is provided with a low resistivity layer of the second conductivity type. The M according to claim 1, which is a conductivity modulation type MOSFET in which another main electrode is in contact with the resistivity layer.
OS type semiconductor device.
JP6061691A 1991-03-26 1991-03-26 Mos semiconductor element Pending JPH04296057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6061691A JPH04296057A (en) 1991-03-26 1991-03-26 Mos semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6061691A JPH04296057A (en) 1991-03-26 1991-03-26 Mos semiconductor element

Publications (1)

Publication Number Publication Date
JPH04296057A true JPH04296057A (en) 1992-10-20

Family

ID=13147390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6061691A Pending JPH04296057A (en) 1991-03-26 1991-03-26 Mos semiconductor element

Country Status (1)

Country Link
JP (1) JPH04296057A (en)

Similar Documents

Publication Publication Date Title
EP0565349B1 (en) MOS-controlled thyristor
US5319221A (en) Semiconductor device with MISFET-controlled thyristor
JP2574267B2 (en) Insulated gate transistor array
JPH043981A (en) Conductivity-modulation mosfet
US5079607A (en) Mos type semiconductor device
JPH07169868A (en) Circuit pattern having at least one bipolar power device
JP2946750B2 (en) Semiconductor device
JPH10294461A (en) Insulation gate type semiconductor element
JP3201213B2 (en) Semiconductor device and control method thereof
US6242967B1 (en) Low on resistance high speed off switching device having unipolar transistors
JPH0888357A (en) Lateral igbt
JPH0254969A (en) Mos type semiconductor device
JP3376294B2 (en) Semiconductor device
JPH09246545A (en) Semiconductor element for power
JPH04296057A (en) Mos semiconductor element
JPH06232392A (en) Dual gate semiconductor device
JP3161092B2 (en) Dual gate MOS thyristor
JPH0661479A (en) Mos control thyristor in planar structure
JPH0758783B2 (en) Conduction modulation type MOSFET
JPH06163908A (en) Double gate mos device
JPH05299639A (en) Vertical structure of mos control thyristor
JP3163746B2 (en) Semiconductor device
JPH0645592A (en) Composite type semiconductor device
JPH04174561A (en) Lateral insulated-gate bipolar transistor
JPH04241467A (en) Semiconductor device