JPH04288840A - Mos semiconductor device of ldd structure and manufacture thereof - Google Patents

Mos semiconductor device of ldd structure and manufacture thereof

Info

Publication number
JPH04288840A
JPH04288840A JP7853891A JP7853891A JPH04288840A JP H04288840 A JPH04288840 A JP H04288840A JP 7853891 A JP7853891 A JP 7853891A JP 7853891 A JP7853891 A JP 7853891A JP H04288840 A JPH04288840 A JP H04288840A
Authority
JP
Japan
Prior art keywords
region
concentration region
drain
low concentration
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7853891A
Other languages
Japanese (ja)
Inventor
Soichiro Tanaka
荘一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7853891A priority Critical patent/JPH04288840A/en
Publication of JPH04288840A publication Critical patent/JPH04288840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To enhance breakdown strength of an MOS semiconductor in LDD structure by allowing a drain region to have three stage offset structure consisting of a low concentration region, middle concentration region, and a high concentration region and the low concentration region to project from a side wall to the drain side. CONSTITUTION:A drain region comprises a low concentration region 6 which occupies a side wall 9 of an electrode 4 and a region extending outward from there, a middle concentration region 8 which is positioned outside the low concentration region 6 and provides a higher impurity concentration, and a high concentration region 11 which is positioned outside the middle concentration region 8 and provides a higher impurity concentration. As the drain goes to the channel side, the concentration is lowered by three stages. Since the most inner side low concentration region 6 extends out-wardly from the lower part of the side wall, the length of the low concentration region in its channel direction is greater than the thickness of the side wall. It is, there fore possible to increase the amount of extending the depletion layer for that portion and raises its breakdown strength in its turn.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、LDD構造のMOS半
導体装置及びその製造方法、特に高耐圧のLDD構造の
MOS半導体装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS semiconductor device with an LDD structure and a method of manufacturing the same, and more particularly to a MOS semiconductor device with a high breakdown voltage LDD structure and a method of manufacturing the same.

【0002】0002

【従来の技術】LDD構造のMOS半導体装置は、ゲー
ト電極をマスクとして素子形成領域に不純物をドープす
ることによりライトドープドレイン領域及びライトドー
プソース領域を形成し、次いでゲート電極の側面にサイ
ドウォールを形成し、該サイドウォール及びゲート電極
をマスクとして不純物をドープすることによりオフセッ
トの高濃度ドレイン領域及び高濃度ソース領域を形成し
てなる。このようなLDD構造のMOS半導体装置は、
ホットキャリアの発生を抑制でき、ホットキャリアによ
る特性劣化を防止できる。
2. Description of the Related Art In a MOS semiconductor device having an LDD structure, a lightly doped drain region and a lightly doped source region are formed by doping an element formation region with impurities using a gate electrode as a mask, and then sidewalls are formed on the sides of the gate electrode. By doping impurities using the sidewalls and gate electrodes as masks, offset high concentration drain regions and high concentration source regions are formed. A MOS semiconductor device with such an LDD structure is
The generation of hot carriers can be suppressed, and characteristic deterioration due to hot carriers can be prevented.

【0003】ところで、LDD構造のMOS半導体装置
に対してそれを高耐圧化するいくつかの試みが為されて
おり、図5はその試みの一つを示す断面図である。図5
に示すMOS半導体装置は、サイドウォール下のn− 
型のライトドープ領域aとn+ 型ドレイン領域bとの
間にn− 型の領域cを形成したものである。
By the way, several attempts have been made to increase the withstand voltage of a MOS semiconductor device having an LDD structure, and FIG. 5 is a sectional view showing one of the attempts. Figure 5
The MOS semiconductor device shown in FIG.
An n- type region c is formed between a lightly doped region a and an n+ type drain region b.

【0004】このようなMOS半導体装置によれば、ド
レイン領域bのチャンネル側のエッジが三段階の階段状
になっており、ドレイン・基板間に加わる電圧による電
界が三段階で緩和され、即ち、低濃度(n−−)領域a
と高濃度(n+ )領域bとの間にその中間濃度(n−
 )の中濃度領域cが介在して電界緩和される。従って
、従来よりもホットキャリアの発生を少なくできるだけ
でなく耐圧も高くできる。
According to such a MOS semiconductor device, the edge of the drain region b on the channel side has a three-step staircase shape, and the electric field due to the voltage applied between the drain and the substrate is relaxed in three steps. Low concentration (n--) region a
and high concentration (n+) region b, there is an intermediate concentration (n-
), the electric field is relaxed through the intermediate concentration region c. Therefore, not only the generation of hot carriers can be reduced compared to the conventional method, but also the breakdown voltage can be increased.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図5に
示す従来の高耐圧MOS半導体装置によれば、高耐圧化
に限界があった。というのは、n−−型領域9がサイド
ウォールd下に位置している構造のためn−−型領域a
の幅がサイドウォールdの厚さに拘束されてしまい、高
濃度ドレインbのエッジがゲート電極eのエッジの近い
ところに位置し、ドレインからチャンネル側へ延びる空
乏層の延びに限界があるからである。
However, according to the conventional high voltage MOS semiconductor device shown in FIG. 5, there is a limit to the increase in voltage resistance. This is because the n-type region 9 is located below the sidewall d, so the n-type region a
This is because the width of the depletion layer is limited by the thickness of the sidewall d, the edge of the highly doped drain b is located close to the edge of the gate electrode e, and there is a limit to the extension of the depletion layer extending from the drain to the channel side. be.

【0006】本発明はこのような問題点を解決すべく為
されたものであり、LDD構造のMOS半導体装置の高
耐圧化を図ることを目的とする。
The present invention has been made to solve these problems, and an object of the present invention is to increase the withstand voltage of a MOS semiconductor device having an LDD structure.

【0007】[0007]

【課題を解決するための手段】本発明は、ドレイン領域
が低濃度領域と中濃度領域と高濃度領域による三段階オ
フセット構造を有し、低濃度領域がサイドウォールから
ドレイン側に食み出すようにしたことを特徴とする。
[Means for Solving the Problems] According to the present invention, the drain region has a three-stage offset structure consisting of a low concentration region, a medium concentration region, and a high concentration region, and the low concentration region protrudes from the sidewall toward the drain side. It is characterized by the following.

【0008】[0008]

【実施例】以下、本発明MOS半導体装置及びその製造
方法を図示実施例に従って詳細に説明する。図1は本発
明MOS半導体装置の一つの実施例を示す断面図である
。1はp型半導体基板、2は該半導体基板1の表面部を
選択的に酸化することにより形成されたフィールド絶縁
膜、3はゲート絶縁膜、4はシリコンゲート電極、5は
n−−型ライトドープソース領域、6はn−−型ライト
ドープドレイン領域で、ゲート電極4をマスクとするイ
オン打込みによりライトドープソース領域5と同時に形
成されたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The MOS semiconductor device and method of manufacturing the same according to the present invention will be explained in detail below according to the illustrated embodiments. FIG. 1 is a sectional view showing one embodiment of the MOS semiconductor device of the present invention. 1 is a p-type semiconductor substrate, 2 is a field insulating film formed by selectively oxidizing the surface of the semiconductor substrate 1, 3 is a gate insulating film, 4 is a silicon gate electrode, and 5 is an n-type light The doped source region 6 is an n-type lightly doped drain region, which is formed simultaneously with the lightly doped source region 5 by ion implantation using the gate electrode 4 as a mask.

【0009】7はn− 型のソース領域、8はn− 型
のドレイン領域で、ゲート電極4及びレジスト膜をマス
クとする不純物のイオン打込みによりn− 型のソース
領域7と同時に形成されたものであり、n−−型のライ
トドープドレイン領域6よりも拡散深さが深い。
Reference numeral 7 denotes an n- type source region, and 8 denotes an n- type drain region, which are formed simultaneously with the n- type source region 7 by implanting impurity ions using the gate electrode 4 and the resist film as masks. The diffusion depth is deeper than that of the n-type lightly doped drain region 6.

【0010】9はゲート電極4の側面に形成されたSi
O2 からなるサイドウォールである。上記n− 型の
ドレイン領域8はそのチャンネル側のエッジがサイドウ
ォール9のエッジよりもかなり外側にずれており、従っ
て、上記n−−型ライトドープドレイン領域6はサイド
ウォール9下から外側にかなり伸びている。10はn+
 型のソース領域、11はn+ 型のドレイン領域で、
これ等はサイドウォール9形成後ゲート電極4及びレジ
スト膜をマスクする不純物のイオン打込みにより形成さ
れたもので、n− 型ドレイン領域7よりも拡散深さが
深い。
9 is a Si formed on the side surface of the gate electrode 4.
This is a sidewall made of O2. The channel side edge of the n-type drain region 8 is shifted considerably outward from the edge of the sidewall 9, and therefore the n-type lightly doped drain region 6 is shifted considerably outward from below the sidewall 9. It's growing. 10 is n+
11 is an n+ type drain region,
These are formed by implanting impurity ions to mask the gate electrode 4 and the resist film after forming the sidewall 9, and have a deeper diffusion depth than the n- type drain region 7.

【0011】本MOS半導体装置のドレインはn−−型
ライトドープドレイン領域(低濃度領域)6と、n− 
型ドレイン領域(中濃度領域)8と、n+ 型ドレイン
領域(高濃度領域)11からなり、ドレインの外周縁は
三段階の階段状に形成されている。そして、最も内側の
n−−型ライトドープドレイン領域6はサイドウォール
9下から外側へ相当に延びている。従って、本MOS半
導体装置によれば、n−−型ライトドープドレイン領域
6のチャンネル方向における長さがサイドウォール9の
厚みよりも相当に長いので逆方向バイアスのドレイン電
圧によりドレインからチャンネル側へ延びる空乏層の延
びの許容量が大きくなり、延いては耐圧が相当に高くな
る。
The drain of this MOS semiconductor device has an n- type lightly doped drain region (low concentration region) 6 and an n- type lightly doped drain region (low concentration region) 6.
It consists of a type drain region (medium concentration region) 8 and an n+ type drain region (high concentration region) 11, and the outer peripheral edge of the drain is formed in the shape of three steps. The innermost n-type lightly doped drain region 6 extends considerably outward from below the sidewall 9. Therefore, according to the present MOS semiconductor device, since the length of the n-type lightly doped drain region 6 in the channel direction is considerably longer than the thickness of the sidewall 9, the n-type lightly doped drain region 6 is extended from the drain to the channel side by the reverse bias drain voltage. The allowable amount of extension of the depletion layer becomes large, and as a result, the withstand voltage becomes considerably high.

【0012】図2乃至図4は図1に示した本発明MOS
半導体装置の製造方法を工程順に示す断面図である。 (1)p型の半導体基板2の表面部を選択的に酸化する
ことによりフィールド絶縁膜2を形成し、ゲート絶縁膜
3及びゲート電極4を形成し、該ゲート電極4をマスク
として半導体基板1表面部に不純物をイオン打込みする
ことによりn−−型ソース領域5及びn−−型ドレイン
領域6を形成する。図2は領域5、6形成後の状態を示
す。 (2)次に、図3に示すように、レジスト膜12を形成
して少なくともn−−型ドレイン領域6を、n− 型ド
レイン領域8を形成すべき部分を除きマスクし、その状
態で不純物をドープすることによりn− 型ソース領域
7及びn− 型サイドウォール8を形成する。 (3)次に、ゲート電極4の側面にサイドウォール9形
成後、図4に示すように、レジスト膜13を形成してn
−−型ドレイン領域6及びn−−型ドレイン領域8を、
n+ 型ドレイン領域11を形成すべき部分を除きマス
クし、その状態で不純物をドープすることによりn+ 
型ソース領域10及びn+ 型サイドウォール11を形
成する。これにより図1に示すMOS半導体装置が出来
上る。
FIGS. 2 to 4 show the MOS of the present invention shown in FIG.
FIG. 1 is a cross-sectional view showing a method for manufacturing a semiconductor device in order of steps. (1) Form a field insulating film 2 by selectively oxidizing the surface of a p-type semiconductor substrate 2, form a gate insulating film 3 and a gate electrode 4, and use the gate electrode 4 as a mask to form a field insulating film 2 on the semiconductor substrate 2. An n--type source region 5 and an n--type drain region 6 are formed by ion-implanting impurities into the surface portion. FIG. 2 shows the state after regions 5 and 6 are formed. (2) Next, as shown in FIG. 3, a resist film 12 is formed to mask at least the n- type drain region 6 except for the part where the n- type drain region 8 is to be formed, and in this state, impurity By doping, an n- type source region 7 and an n- type sidewall 8 are formed. (3) Next, after sidewalls 9 are formed on the side surfaces of the gate electrode 4, a resist film 13 is formed as shown in FIG.
---type drain region 6 and n--type drain region 8,
The area where the n+ type drain region 11 is to be formed is masked, and impurities are doped in that state to form the n+ type drain region 11.
A type source region 10 and an n+ type sidewall 11 are formed. As a result, the MOS semiconductor device shown in FIG. 1 is completed.

【0013】[0013]

【発明の効果】本発明は、ドレイン領域が、ゲート電極
のサイドウォール下及びそこから外側へ適宜延びた領域
を占有する低濃度領域と、該低濃度領域よりも外側に位
置し不純物濃度の高い中濃度領域と、該中濃度領域より
も外側に位置し不純物濃度の高い高濃度領域と、からな
ることを特徴とするものである。従って、本発明によれ
ば、ドレインはチャンネル側に行くに従って濃度が三段
階に低くなるように形成され、そして、最も内側の低濃
度領域はサイドウォール下から外側へ延びているので、
低濃度ドレイン領域のチャンネル方向における長さがサ
イドウォールの厚みよりも相当に長い。従って、その分
空乏層の延びる量を大きくすることができ、延いては耐
圧を相当に高くすることができる。
[Effects of the Invention] The present invention provides a drain region that has a low concentration region that occupies a region below the sidewall of a gate electrode and a region extending outward from there as appropriate, and a drain region that is located outside the low concentration region and has a high impurity concentration. It is characterized by consisting of a medium concentration region and a high concentration region located outside the medium concentration region and having a high impurity concentration. Therefore, according to the present invention, the drain is formed so that the concentration decreases in three steps toward the channel side, and the innermost low concentration region extends from below the sidewall to the outside.
The length of the lightly doped drain region in the channel direction is considerably longer than the thickness of the sidewall. Therefore, the amount by which the depletion layer extends can be increased accordingly, and the withstand voltage can be increased considerably.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明MOS半導体装置の一つの実施例を示す
断面図である。
FIG. 1 is a sectional view showing one embodiment of a MOS semiconductor device of the present invention.

【図2】図1に示す本発明MOS半導体装置の製造方法
の第1の工程を示す断面図である。
FIG. 2 is a cross-sectional view showing the first step of the method for manufacturing the MOS semiconductor device of the present invention shown in FIG. 1;

【図3】図1に示す本発明MOS半導体装置の製造方法
の第2の工程を示す断面図である。
3 is a sectional view showing a second step of the method for manufacturing the MOS semiconductor device of the present invention shown in FIG. 1; FIG.

【図4】図1に示す本発明MOS半導体装置の製造方法
の第3の工程を示す断面図である。
FIG. 4 is a cross-sectional view showing the third step of the method for manufacturing the MOS semiconductor device of the present invention shown in FIG. 1;

【図5】従来例の要部を示す断面図である。FIG. 5 is a sectional view showing main parts of a conventional example.

【符号の説明】[Explanation of symbols]

1  半導体基板 4  ゲート電極 6  低濃度領域 8  中濃度領域 9  サイドウォール 11  高濃度領域 1 Semiconductor substrate 4 Gate electrode 6 Low concentration area 8 Medium concentration area 9 Sidewall 11 High concentration area

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ドレイン領域が、ゲート電極のサイド
ウォール下及びそこから外側へ適宜延びた領域を占有す
る低濃度領域と、該低濃度領域よりも外側に位置し不純
物濃度の高い中濃度領域と、該中濃度領域よりも外側に
位置し不純物濃度の高い高濃度領域と、からなることを
特徴とするLDD構造のMOS半導体装置
1. The drain region includes a low concentration region that occupies a region below the sidewall of the gate electrode and a region extending outward from the sidewall, and a medium concentration region that is located outside the low concentration region and has a high impurity concentration. , a high concentration region having a high impurity concentration located outside the medium concentration region, and a MOS semiconductor device having an LDD structure.
【請求項2】
  ゲート電極をマスクとして半導体基板の素子形成領
域に不純物をドープすることにより少なくともドレイン
の低濃度領域を形成する工程と、少なくとも上記ドレイ
ンの低濃度領域をレジスト膜で選択的にマスクし、該レ
ジスト膜及びゲート電極をマスクとして半導体基板の素
子形成領域に不純物をドープすることにより少なくとも
ドレインの中濃度領域を形成する工程と、ゲート電極の
側面にサイドウォールを形成した後少なくとも上記ドレ
インの低濃度領域及び中濃度領域をレジスト膜で選択的
にマスクし、該レジスト膜、上記ゲート電極及び上記サ
イドウォールをマスクとして半導体基板の素子形成領域
に不純物をドープすることにより少なくともドレインの
高濃度領域を形成する工程と、を有することを特徴とす
る請求項1記載のLDD構造のMOS半導体装置の製造
方法
[Claim 2]
forming at least a low concentration region of the drain by doping an impurity into the element formation region of the semiconductor substrate using the gate electrode as a mask; selectively masking at least the low concentration region of the drain with a resist film; and forming at least a medium concentration region of the drain by doping an impurity into the element formation region of the semiconductor substrate using the gate electrode as a mask, and forming at least the low concentration region of the drain after forming sidewalls on the sides of the gate electrode. selectively masking the medium concentration region with a resist film, and doping an impurity into the element formation region of the semiconductor substrate using the resist film, the gate electrode, and the sidewall as a mask to form at least a high concentration region of the drain; 2. The method of manufacturing a MOS semiconductor device having an LDD structure according to claim 1, comprising:
JP7853891A 1991-03-18 1991-03-18 Mos semiconductor device of ldd structure and manufacture thereof Pending JPH04288840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7853891A JPH04288840A (en) 1991-03-18 1991-03-18 Mos semiconductor device of ldd structure and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7853891A JPH04288840A (en) 1991-03-18 1991-03-18 Mos semiconductor device of ldd structure and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04288840A true JPH04288840A (en) 1992-10-13

Family

ID=13664692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7853891A Pending JPH04288840A (en) 1991-03-18 1991-03-18 Mos semiconductor device of ldd structure and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04288840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005618A1 (en) * 1994-08-11 1996-02-22 National Semiconductor Corporation High-voltage ldd-mosfet with increased breakdown voltage and method of fabrication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996005618A1 (en) * 1994-08-11 1996-02-22 National Semiconductor Corporation High-voltage ldd-mosfet with increased breakdown voltage and method of fabrication
US5721170A (en) * 1994-08-11 1998-02-24 National Semiconductor Corporation Method of making a high-voltage MOS transistor with increased breakdown voltage

Similar Documents

Publication Publication Date Title
US5510279A (en) Method of fabricating an asymmetric lightly doped drain transistor device
KR940006702B1 (en) Manufacturing method of mosfet
US6198131B1 (en) High-voltage metal-oxide semiconductor
JPH04276653A (en) Manufacturing process of integrated circuit device
JPH06204469A (en) Field-effect transistor and manufacture thereof
US6054357A (en) Semiconductor device and method for fabricating the same
JPH10223771A (en) Semiconductor device and fabrication thereof
US20050064671A1 (en) Reduction of channel hot carrier effects in transistor devices
JPH0234936A (en) Semiconductor device and its manufacture
KR101099560B1 (en) Method for manufacturing high voltage transistor
JPH04288840A (en) Mos semiconductor device of ldd structure and manufacture thereof
KR100375600B1 (en) Transistor and method for manufacturing the same
JPH0338839A (en) Manufacture of semiconductor device
JP4170270B2 (en) MOS transistor and manufacturing method thereof
JPS6344769A (en) Field effect transistor and manufacture of the same
JPS62120082A (en) Semiconductor device and manufacture thereof
JPH09186322A (en) Semiconductor device and manufacture thereof
JPH05235346A (en) Semiconductor device and manufacture thereof
JPH06338616A (en) Vertical mos device and manufacture thereof
KR100310173B1 (en) Method for manufacturing ldd type cmos transistor
KR100215853B1 (en) Fabrication process of semiconductor
JP3394562B2 (en) MOSFET manufacturing method
JPH0521789A (en) Field effect type transistor and its manufacture
KR100486084B1 (en) Method for fabricating ldd type cmos transistor
KR0152937B1 (en) Method of fabricating semiconductor device