JPS62120082A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS62120082A
JPS62120082A JP26045685A JP26045685A JPS62120082A JP S62120082 A JPS62120082 A JP S62120082A JP 26045685 A JP26045685 A JP 26045685A JP 26045685 A JP26045685 A JP 26045685A JP S62120082 A JPS62120082 A JP S62120082A
Authority
JP
Japan
Prior art keywords
impurity
diffusion layer
gate electrode
element region
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26045685A
Other languages
Japanese (ja)
Inventor
Masaki Sato
正毅 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26045685A priority Critical patent/JPS62120082A/en
Publication of JPS62120082A publication Critical patent/JPS62120082A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode

Abstract

PURPOSE:To increase the operating speed of an element, by composing each of source and drain regions of a low-concentration first diffusion layer provided in an element region near a gate electrode, of a low-concentration second diffusion layer located in an element region deeper than the first diffusion layer and of a high-concentration diffusion layer in an element region shallower than the second diffusion layer. CONSTITUTION:Phosphorus ions are implanted with a gate electrode 24 used as a mask for forming first impurity layers 25a and 26a (a). Using the gate electrode 24 and a silicon oxide film 27' on the side wall thereof as a mask, phosphorus and arsenic ions are implanted sequentially to form second impurity layers 25b and 26b, and third impurity layers 25c and 26c (b). The structure is then subjected to thermal treatment so that low-concentration first diffusion layers 28a and 29a are formed near the electrode 24, second diffusion layers 28b and 29b are formed in deeper locations than the first diffusion layers and third diffusion layers 28c and 29c are formed to be surrounded by the second diffusion layers 28b and 29b, respectively (c). Thus, an MOS transistor having an LDD structure can be obtained. In such MOS transistor, the operating speed of element, namely the operating speed of the device would be decreased by the reason that current driving ability in the transistor is decreased by the utilization of the low-concentration diffusion layer. According to the invention, however, the decrease in operating speed of the device can be decreased by the decrease in drain capacity.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置及びその製造方法に関し、特にソー
ス・ドレイン領域の形成に改良を施したMIS型半導体
装置及びその製造方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a MIS type semiconductor device with improved formation of source/drain regions and a method of manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体装置の分野において、Mo8ICの微細化は目覚
ましいものがある。特に、MoSトランジスタのスイッ
チング速度の改善の観点から、ゲート電極のチャネル長
の縮少化が図られている。
In the field of semiconductor devices, the miniaturization of Mo8 ICs is remarkable. In particular, from the viewpoint of improving the switching speed of MoS transistors, efforts are being made to reduce the channel length of the gate electrode.

しかしながら、チャネル長が減少するに伴って、素子特
性の面から次のような問題が生じる。
However, as the channel length decreases, the following problems arise in terms of device characteristics.

まず、一つにはチャネル長が減少するにつれて短チヤン
ネル領域でのトランジスタのしきい値電圧が浅くなる、
いわゆるショートチャネル効果を生じることがある(第
2図図示)。即ち、短チヤンネル領域でトランジスタの
しきい値電圧が急激に低下し、素子の製造工程での僅か
な変化によってしきい値電圧が大幅に変動する、これは
、ソース・ドレイン領域間の間隙が短くなるため、チャ
ネル領域において、ソース・ドレイン領域近傍に生じる
空乏層の影響が無視できなくなり、その結果実効的にチ
ャネル領域表面を反転させるに要するゲート電圧が低く
なることにより説明される。
First, as the channel length decreases, the threshold voltage of the transistor in the short channel region becomes shallower.
A so-called short channel effect may occur (as shown in FIG. 2). In other words, the threshold voltage of a transistor decreases rapidly in the short channel region, and the threshold voltage fluctuates significantly due to slight changes in the device manufacturing process. This is because the gap between the source and drain regions is short. This is explained by the fact that in the channel region, the influence of the depletion layer generated near the source/drain region cannot be ignored, and as a result, the gate voltage required to effectively invert the surface of the channel region becomes lower.

一般に、チャネル領域を形成する基板の電位は、ソース
領域の電位に等しいか、もしくは非常に近いので、ソー
ス・ドレイン領域近傍のチャネル領域で強くなり、しき
い値電圧の低下に及ぼす影響もこの部分で最も強くなる
Generally, the potential of the substrate forming the channel region is equal to or very close to the potential of the source region, so it is stronger in the channel region near the source/drain region, and this region also has an effect on the reduction of the threshold voltage. becomes the strongest.

また、チャネル長が減少するにつれて、ソース・ドレイ
ン領域間に印加される電圧によりチャネル領域に生じる
電界が強くなり、その結果チャネル電流によりインパク
トアイオゼーションにより発生したエレクトロンまたホ
ールの一部は、半導体基板とゲート絶縁膜中に飛込み、
ゲート雪掻に流れ出してゲート電流お生しるが、その一
部はゲート絶縁膜内にトラップされて溜り、トランジス
タのしきいち電圧を変動させたり、チャンネルコンダク
タンスを変化させたりする等、トランジスタの動作特性
を変化させ、デバイスの信頼性を屓つという大きな原因
となる。このため、ソース・ドレイン領域間め電界は、
集中的にドレイン領域近傍のチャネル領域で強くなるた
め、インパクトアイオニゼーションは主として該領域で
起こることになる。このようなことから、第3図に示す
如く、ドレイン領域を形成する不純物領域のうちチャネ
ルf14域に近い領域に不純物濃度の比較的低いfIA
Ilj、を設けたL D D (L ightly  
D oped  D rain>構造のMOSトランジ
スタが開発されている。
In addition, as the channel length decreases, the electric field generated in the channel region by the voltage applied between the source and drain regions becomes stronger, and as a result, some of the electrons and holes generated by impact ionization due to the channel current are transferred to the semiconductor substrate. and jump into the gate insulating film,
A portion of the current flows into the gate and generates a gate current, but some of it is trapped within the gate insulating film and accumulates, causing changes in the transistor's threshold voltage, channel conductance, etc., which affect the operation of the transistor. This is a major cause of changes in characteristics and deterioration of device reliability. Therefore, the electric field between the source and drain regions is
Since the impact ionization is concentrated in the channel region near the drain region, impact ionization mainly occurs in this region. For this reason, as shown in FIG. 3, among the impurity regions forming the drain region, there is a relatively low impurity concentration fIA in the region near the channel f14 region.
L D D (Lightly
A MOS transistor with a D oped drain structure has been developed.

図中の1は、例えばP型の半導体基板である。1 in the figure is, for example, a P-type semiconductor substrate.

この基板1の表面には、フィールド酸化膜2が設けられ
ている。このフィールド酸化ll12で囲まれた前記基
板1の素子領域には、ソース・ドレイン領域3.4が互
いに離間して設けられている。ここで、ソース領域3は
、チャネル領域から離れた比較的高濃度(〜10zO/
ClR3程度>+7)N”型の不純物拡散領域3aと、
チャンンネル領域に近い比較的低濃度(〜1018/c
IR3程度)のN−型の不純物拡散領域3bとから構成
されている。
A field oxide film 2 is provided on the surface of this substrate 1. In the element region of the substrate 1 surrounded by the field oxide 112, source/drain regions 3.4 are provided spaced apart from each other. Here, the source region 3 is located at a relatively high concentration (~10zO/
ClR3 degree>+7) N'' type impurity diffusion region 3a,
Relatively low concentration near the channel region (~1018/c
It is composed of an N- type impurity diffusion region 3b with an IR of about 3).

又、ドレイン領域4も、同様にN1型の不純物拡散領t
ii14aと、N−の不純物拡散領域4bとから構成さ
れている。前記ソース・ドレイン領[3,4間の基板1
上には、ゲート酸化11!5を介してゲート電極6が設
けられている。これらゲート電極6を含む全面には層間
絶縁膜7が設けられ、前記ソース・ドレイン領域3.4
上の層間絶縁膜7にはコンタクトホール8が開孔されて
いる。このコンタクトホール8には、前記ソース・ドレ
イン領域3.4と電気的に接続するへ2配線9が設けら
れている。
Similarly, the drain region 4 is also an N1 type impurity diffusion region t.
ii14a, and an N- impurity diffusion region 4b. The source/drain region [substrate 1 between 3 and 4]
A gate electrode 6 is provided thereon via a gate oxide 11!5. An interlayer insulating film 7 is provided on the entire surface including these gate electrodes 6, and the source/drain regions 3.4
A contact hole 8 is formed in the upper interlayer insulating film 7 . This contact hole 8 is provided with a wire 9 electrically connected to the source/drain region 3.4.

第3図のMOSトラジスタによれば、チャネル領域に接
する部分のドレイン領iii!4が濃度の低い不純物拡
散領tg4bとなっているため、ソース・ドレイン領域
4域3.4間に印加される電圧の一部をこの部分で受持
つことができ、ドレイン領144近傍のチャネル領域に
集中していた電界を弱めることができる。従って、上述
したチャネル長の減少によるしきい値電圧の変動やデバ
イス信頼性を改善することができる。しかしながら、前
記のMo8)−ランジスタの場合、チャネル領域に接す
るソース・ドレイン領域3.4がN−型の不純物拡散領
域3b、4bとなっているため、必然的にその部分の抵
抗値が高くなる。そのため、トランジスタのスイッチン
グ速度を低下させ、高速性を損う原因となる。
According to the MOS transistor shown in FIG. 3, the drain region iii! in contact with the channel region! Since 4 is an impurity diffusion region tg4b with a low concentration, this region can bear part of the voltage applied between the source and drain regions 4 and 3.4, and the channel region near the drain region 144 It is possible to weaken the electric field concentrated in the Therefore, it is possible to improve the variation in threshold voltage and device reliability due to the above-mentioned reduction in channel length. However, in the case of the above-mentioned Mo8)-transistor, the source/drain regions 3.4 in contact with the channel region are N-type impurity diffusion regions 3b, 4b, so the resistance value of that part inevitably increases. . This causes a reduction in the switching speed of the transistor, impairing its high speed performance.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、素子の高速
vJ作化が可能な微細な半導体装置及びその製造方法を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fine semiconductor device that allows high-speed VJ fabrication of an element, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本願筒1の発明は、ソース・ドレイン領域を、夫々ゲー
ト電極近傍の素子領域に設けた低濃度の第1拡散層と、
この第1拡散層より深い素子領域に設けられた低濃度の
第2拡散層と、この第2拡散層よりも浅い素子領域に設
けられた高濃度の第3拡散層とから構成することを特徴
とし、もって素子の高速動作化を図ったことを骨子とす
る。
The invention of the present application cylinder 1 includes a first low concentration diffusion layer in which source and drain regions are respectively provided in device regions near gate electrodes;
It is characterized by being composed of a low concentration second diffusion layer provided in an element region deeper than this first diffusion layer, and a high concentration third diffusion layer provided in an element region shallower than this second diffusion layer. The main idea is to achieve high-speed operation of the device.

本願筒2の発明は、第1導電型の半導体基板の表面にフ
ィールド酸化膜を形成する工程と、このフィールド酸化
膜で囲まれた前記基板の素子fr4域上にゲート酸化膜
を介してゲート電極を形成する工程と、このゲート酸化
膜をマスクとして前記素子領域に第2導電型の第1不純
物を低濃度に導入する工程と、全面に被膜を形成した後
これを反応性イオンエツチングにより除去し、該被膜を
前記ゲート電極の側壁に残存させる工程と、前記ゲート
電極及び残存する被膜をマスクとして前記素子領域に第
2導電型の第1不純物を低濃度に導入する工程と、前記
ゲートN極及び残存する被膜をとして第2不純物を高濃
度に導入する工程とを具備することを特徴とし、素子の
高速動作化を図ったことを骨子とする。
The second invention of the present application includes a step of forming a field oxide film on the surface of a semiconductor substrate of a first conductivity type, and a gate electrode formed on the element fr4 region of the substrate surrounded by the field oxide film via a gate oxide film. a step of introducing a first impurity of a second conductivity type into the element region at a low concentration using the gate oxide film as a mask; and a step of forming a film over the entire surface and removing it by reactive ion etching. , a step of leaving the film on the side wall of the gate electrode, a step of introducing a first impurity of a second conductivity type into the element region at a low concentration using the gate electrode and the remaining film as a mask, and a step of introducing a first impurity of a second conductivity type into the element region at a low concentration, and a step of introducing a second impurity at a high concentration into the remaining film, and the main point is to achieve high-speed operation of the device.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をNチャネルMO8FETの製造に適用し
た場合について第1図(a)〜l)を参照して説明する
Hereinafter, a case in which the present invention is applied to the manufacture of an N-channel MO8FET will be described with reference to FIGS. 1(a) to 1(l).

[1]まず、P型の(100)シリコン基板21の表面
に、周知の選択酸化法により素子分離用のフィールド酸
化膜22を形成した(第1図(a)図示)。つづいて、
このフィールド酸化膜22で囲まれた前記基板の素子領
域の表面に厚さ250人のゲート酸化膜(S i 02
膜)23を形成したく第1図(b)図示)。次いで、基
板全面に多結晶シリコン膜を形成した後、周知の微細加
工技術を用いて所望の形状のゲート電極24を形成した
。しかる後、全面にリンを加速電圧40KeV、ドーズ
l12x 1.0” cm°2の条件でイオン注入し、
低濃度の第1不純物層25a、26aを形成したく第1
図(C)図示)。更に、基板21全面を洗浄した後、基
板表面を200人程程度化して露出するゲート1i11
i24と基板21の表面に酸化膜(図示せず)を形成し
、ひきつづき気相成長法により被膜としてのシリコン酸
化膜27を形成したく第1図(d)図示)。
[1] First, a field oxide film 22 for element isolation was formed on the surface of a P-type (100) silicon substrate 21 by a well-known selective oxidation method (as shown in FIG. 1(a)). Continuing,
A gate oxide film (S i 02
To form a film 23 (as shown in FIG. 1(b)). Next, after forming a polycrystalline silicon film over the entire surface of the substrate, a gate electrode 24 having a desired shape was formed using a well-known microfabrication technique. After that, phosphorus was ion-implanted into the entire surface at an acceleration voltage of 40 KeV and a dose of 1.0" cm°2.
To form the first impurity layers 25a and 26a with a low concentration, the first
Figure (C) (Illustrated). Furthermore, after cleaning the entire surface of the substrate 21, approximately 200 gates 1i11 are exposed on the surface of the substrate.
An oxide film (not shown) is formed on the surfaces of the i24 and the substrate 21, and then a silicon oxide film 27 as a coating is formed by vapor phase growth (as shown in FIG. 1(d)).

[2]次に、前記シリコン酸化膜26を、例えばCF4
ガスとH2ガスの混合ガスをエッチャントガスとして反
応性イオンエツチング(RIE)によりツヂングし、ゲ
ート電極24の側壁にシリコン!l!1ヒ膜27′を残
存させた。つづいて、前記ゲート電極24及び残存した
シリコン酸化膜27′をマスクとして前記素子領域にリ
ンを加速電圧60KeV、ドーズ量4X1013αダの
条件でイオン注入し、低濃度の第2不純物層25b、2
5bを形成した。ひきつづき、同じ材料をマスクとして
素子領域に加速電圧50KeV、ドーズff15X10
”clR’の条件でイオン注入し、前記第2不純物層2
5b、26bより浅い高濃度の第3不純物層25c、2
6cを形成した(第1図(e)図示)。次いで、酸素雰
囲気中で900℃にて熱処理を施し、露出する基板21
及びゲート電極24上にシリコン酸化Ml(図示せず)
を形成するとともに、前記不純物層25a〜25c、2
6a〜26C中の不純物を活性化した。その結果、ゲー
ト電極近傍くチャネル領域近傍)の素子領域に低濃度の
第1拡散層28a (29a)が、これより深い素子領
域に低濃度の第2拡散層28b (29b)が、この第
2拡散層28b(29b)より浅い素子領域に該第2拡
散層に包まれるように高濃度の第3拡散!28c (2
9c)が夫々形成された。ここで、拡散層28a〜28
Cを総称してソース領128と呼び、29a〜29Gを
総称してドレイン領域2つと呼ぶ。更に、周知の技術に
より全面にシリコン酸化11130を形成した後、リン
をドープしたガラスll31を形成した(第1図(f)
図示)。しかる後、950℃、N2中でアニールをした
後、前記ソース・ドレイン領域29.30上のガラス1
I31、シリコン酸化1130などを選択的に開孔しコ
ンタクトホール32を形成した。最後に、このコンタク
トホール32にΔ2配線33を形成してNチャネルMO
3FETを製造シタく第1図(g)図示)。
[2] Next, the silicon oxide film 26 is coated with, for example, CF4.
Silicon is etched on the sidewalls of the gate electrode 24 by reactive ion etching (RIE) using a mixed gas of gas and H2 gas as an etchant gas. l! The 1st membrane 27' was left intact. Next, using the gate electrode 24 and the remaining silicon oxide film 27' as a mask, phosphorus is ion-implanted into the element region under conditions of an acceleration voltage of 60 KeV and a dose of 4×10 13 α da, to form low-concentration second impurity layers 25 b and 2 .
5b was formed. Subsequently, using the same material as a mask, an acceleration voltage of 50 KeV and a dose of ff15X10 were applied to the element region.
Ion implantation is performed under the condition of "clR" to form the second impurity layer 2.
High concentration third impurity layers 25c, 2 shallower than 5b, 26b
6c (as shown in FIG. 1(e)). Next, heat treatment is performed at 900° C. in an oxygen atmosphere to remove the exposed substrate 21.
and silicon oxide Ml (not shown) on the gate electrode 24.
, and the impurity layers 25a to 25c, 2
The impurities in 6a-26C were activated. As a result, a lightly doped first diffusion layer 28a (29a) is formed in the element region (near the gate electrode (near the channel region)), and a lightly doped second diffused layer 28b (29b) is formed in the deeper element region. A third diffusion layer with a high concentration is formed in an element region shallower than the diffusion layer 28b (29b) so as to be surrounded by the second diffusion layer! 28c (2
9c) were formed respectively. Here, the diffusion layers 28a to 28
C is collectively called a source region 128, and 29a to 29G are collectively called two drain regions. Furthermore, after forming silicon oxide 11130 on the entire surface using a well-known technique, phosphorus-doped glass 1131 was formed (Fig. 1(f)).
(Illustrated). Thereafter, after annealing in N2 at 950°C, the glass 1 on the source/drain regions 29, 30 is removed.
A contact hole 32 was formed by selectively opening holes in I31, silicon oxide 1130, and the like. Finally, a Δ2 wiring 33 is formed in this contact hole 32 to form an N-channel MO
3FET is manufactured (as shown in Figure 1(g)).

本発明によれば、第1図(C)でゲート電極24をマス
クとしてリンをイオン注入することにより第1不純物層
25a、26aを形成した後、第1図(e)でゲート電
極24及びこの側壁に形成したシリコン酸化膜27′を
マスクとしてリン及びヒ素を順次所定の条件下でイオン
注入することにより第2不純物層25b、26b、第3
不純物層250,260を形成し、更に熱処理を施すた
め、ゲート電wA24の近傍に低濃度の第1拡散112
8a、29aが、これより深く第2拡散層28b、29
bが、かつ第2拡散層28b、29bに夫々包まれるよ
うに第3拡散1128c、29cが形成される。従って
、本発明によれば、LDD構造のMOSトランジスタで
低濃度拡散層を使用したことによるトランジスタ内の電
流駆動能力の低下に起因する素子の動作速度の低下、即
ち装置のスピード低下はドレイン容量の低下により低減
され、最適条件においては逆に向上する。
According to the present invention, after forming the first impurity layers 25a and 26a by ion-implanting phosphorus using the gate electrode 24 as a mask in FIG. 1(C), the gate electrode 24 and this impurity layer are formed in FIG. Using the silicon oxide film 27' formed on the sidewall as a mask, ions of phosphorus and arsenic are sequentially implanted under predetermined conditions to form the second impurity layers 25b, 26b, and the third impurity layer.
In order to form impurity layers 250 and 260 and further perform heat treatment, a low concentration first diffusion 112 is formed near the gate electrode wA24.
8a, 29a are deeper than the second diffusion layers 28b, 29
Third diffusions 1128c and 29c are formed such that the third diffusion layers 1128c and 29c are surrounded by the second diffusion layers 28b and 29b, respectively. Therefore, according to the present invention, the reduction in the operating speed of the device due to the reduction in the current driving ability in the transistor due to the use of a low concentration diffusion layer in the MOS transistor with the LDD structure, that is, the reduction in the speed of the device, is due to the drain capacitance. It is reduced by lowering, and on the contrary, it increases under optimal conditions.

これについて、第4図を参照して説明する。同図によれ
ば、一般にLDD構造MoSトランジスタにおいては、
N+層の容量は、N一層に置き変えることにより接合に
印加される逆方向電圧に依存して低下することが明らか
である。事実、特に印加電圧の小さいところでは約1/
10になる。そして、上記実施例では、第3拡散JI2
8c(29C)の容量は、同様に深さ方向に第2拡散層
28b (29b)で包むことにより低下する。
This will be explained with reference to FIG. According to the figure, in general, in an LDD structure MoS transistor,
It is clear that the capacitance of the N+ layer decreases depending on the reverse voltage applied to the junction by replacing it with a single N layer. In fact, especially at low applied voltages, the
It becomes 10. In the above embodiment, the third diffusion JI2
Similarly, the capacitance of 8c (29C) is reduced by wrapping the second diffusion layer 28b (29b) in the depth direction.

この時、第5図に示す如く、低濃度拡散層形成用のリン
のイオン注入量を1×1013αりから4X 1014
ctx”に増した場合、第2拡散層28b (29b)
でのリンのプロファイルは深さ方向に伸びて深い接合と
なり、深さ方向に第2拡rl1層28b (29b)が
多くなる。このため、この深い第2拡散128b (2
9b)が空乏化することにより、拡散層側の空乏層幅が
長くなり接合容量が低下する。
At this time, as shown in FIG. 5, the amount of ion implantation of phosphorus for forming a low concentration diffusion layer was changed from 1×1013α to 4×1014.
ctx”, the second diffusion layer 28b (29b)
The phosphorus profile extends in the depth direction to form a deep junction, and the second expanded rl1 layer 28b (29b) increases in the depth direction. Therefore, this deep second diffusion 128b (2
9b) is depleted, the width of the depletion layer on the diffusion layer side increases, and the junction capacitance decreases.

本発明に係るNチャネルMO8FETは、第1図(Q)
に示す如く、比較的低濃度(N−)の第1拡散1128
a、29aをゲート電極24近傍に設け、前記第1拡散
1128a、29aよりも浅く比較的低濃度の第2拡散
層28a、29bを設け、この第2拡散層28b、29
bに包まれるように比較的高濃度の第3拡散層28C1
29Gを設けた構造となっている。従って、前述したと
同様、従来と比べ接合容量を低下して素子の高速動作化
を達成できる。
The N-channel MO8FET according to the present invention is shown in FIG.
As shown in FIG.
a, 29a are provided in the vicinity of the gate electrode 24, and second diffusion layers 28a, 29b, which are shallower than the first diffusion layers 1128a, 29a and have a relatively low concentration, are provided.
The relatively high concentration third diffusion layer 28C1 is surrounded by b.
It has a structure with 29G. Therefore, as described above, it is possible to reduce the junction capacitance compared to the conventional method and achieve high-speed operation of the element.

なお、上記実施例では、第1図(C)の工程でグー1−
電極をマスクとしてリンをイオン注入したが、これに限
らず、例えばヒ素でもよい。また、第1図(e)の工程
のゲート電極及びシリコン酸化膜をマスクとしたイオン
注入も同様である。しかし、この領域の不純物は低濃度
で深く形成されることが好ましいため、ヒ素よりリンの
方が有効である。更に、上記実施例では、リンをイオン
注入したが、例えば950℃以下の拡散技術を用いても
よい。
In the above example, the goo 1-
Although phosphorus was ion-implanted using the electrode as a mask, the implantation is not limited to this, and for example, arsenic may be used. Further, the same applies to the ion implantation using the gate electrode and silicon oxide film as masks in the step of FIG. 1(e). However, since it is preferable that the impurity in this region be formed deeply and at a low concentration, phosphorus is more effective than arsenic. Further, in the above embodiment, phosphorus ions are implanted, but a diffusion technique at 950° C. or lower may be used, for example.

上記実施例では、比較的’PIM度の第3拡散層の形成
にヒ素をイオン注入したが、これに限らずリンを用いて
もよい。但し、リンを用いる場合には、ゲート電極の側
壁にシリコン酸化膜を残存させ、n型の第1不純物を低
濃度にドープした後、この不純物を第2拡散層よりも深
く形成するため、第2拡散層珍成用の不純物を導入する
前にアニール工程を行う必要がある。
In the above embodiment, arsenic ions are implanted to form the third diffusion layer having a relatively high degree of PIM, but the present invention is not limited to this, and phosphorus may also be used. However, when using phosphorus, the silicon oxide film remains on the sidewalls of the gate electrode, and after doping the n-type first impurity at a low concentration, this impurity is formed deeper than the second diffusion layer. It is necessary to perform an annealing process before introducing impurities for forming the second diffusion layer.

上記実施例では、NチャネルMO8FETの製造に適用
した場合について述べたが、これに限らず、例えばPチ
ャネルMO8FETの製造に適用してもよい。但し、P
チャネルMO8FETの場合には、例えば比較的低濃度
の拡散層の形成用の不純物として B1を使用し、比較
的高濃度の拡散層形成用の不純物として B+又はBF
2”″を用いることが可能である。
In the above embodiment, the case where the present invention is applied to the manufacture of an N-channel MO8FET has been described, but the present invention is not limited to this, and may be applied to the manufacture of a P-channel MO8FET, for example. However, P
In the case of channel MO8FET, for example, B1 is used as an impurity for forming a relatively low concentration diffusion layer, and B+ or BF is used as an impurity for forming a relatively high concentration diffusion layer.
2"" can be used.

(発明の効果) 以上詳述した如く本発明によれば、素子の高速動作化が
可能な微細な半導体装置及びその製造方法を提供するこ
とができる。
(Effects of the Invention) As described in detail above, according to the present invention, it is possible to provide a fine semiconductor device capable of high-speed operation of an element and a method for manufacturing the same.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(g)は本発明の一実施例に係るNチャ
ネルMO8FETの製造方法を工程順に示す断面図、第
2図はゲートチャネルを毛きい値電圧との関係を示す特
性図、第3図は従来のMoSトランジスタの断面図、第
4図は逆方向印加電圧と接合容ωとの関係を示す特性図
、第5図は深さと不純物濃度との関係を示す特性図であ
る。 21・・・P型のシリコン基板、22・・・フィールド
酸化膜、23・・・ゲート酸化膜、24・・・ゲート電
極、25a〜25C126a 〜26 c−・・不純物
層、27.27’−・・シリコンa化躾、8a〜28C
129a〜29c・・・拡散層、30・・・シリコン酸
化膜、31・・・ガラス膜、32・・・コンタクトホー
ル、33・・・AQ配線。 出願人代理人 弁理士 鈴江武彦 (−’                v田。 尽 伝ぐ
FIGS. 1(a) to (g) are cross-sectional views showing the manufacturing method of an N-channel MO8FET according to an embodiment of the present invention in order of steps, and FIG. 2 is a characteristic diagram showing the relationship between the gate channel and the threshold voltage. , FIG. 3 is a cross-sectional view of a conventional MoS transistor, FIG. 4 is a characteristic diagram showing the relationship between reverse applied voltage and junction capacitance ω, and FIG. 5 is a characteristic diagram showing the relationship between depth and impurity concentration. . 21... P-type silicon substrate, 22... Field oxide film, 23... Gate oxide film, 24... Gate electrode, 25a to 25C126a to 26 c-... Impurity layer, 27.27'-・・Silicon a training, 8a~28C
129a to 29c...diffusion layer, 30...silicon oxide film, 31...glass film, 32...contact hole, 33...AQ wiring. Applicant's agent Patent attorney Takehiko Suzue (-'vda.

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板と、この半導体基板の表
面に設けられたフィールド酸化膜と、このフィールド酸
化膜で囲まれた前記基板の素子領域に設けられた第2導
電型のソース・ドレイン領域と、前記ソース・ドレイン
領域間のチャネル領域を少なくとも含む素子領域上にゲ
ート酸化膜を介して設けられたゲート電極とを具備した
半導体装置において、前記ソース、ドレイン領域が、夫
々前記ゲート電極近傍の素子領域に設けられた低濃度の
第1拡散層と、この第1拡散層よりも深い前記素子領域
に設けられた低濃度の第2拡散層と、この第2拡散層よ
りも浅い前記素子領域に設けられた高濃度の拡散層とか
ら構成されることを特徴とする半導体装置。
(1) A semiconductor substrate of a first conductivity type, a field oxide film provided on the surface of this semiconductor substrate, and a source region of a second conductivity type provided in an element region of the substrate surrounded by the field oxide film. In a semiconductor device comprising a drain region and a gate electrode provided via a gate oxide film over an element region including at least a channel region between the source and drain regions, the source and drain regions are respectively connected to the gate electrode. a first low concentration diffusion layer provided in a nearby element region; a second low concentration diffusion layer provided in the element region deeper than the first diffusion layer; and a second diffusion layer shallower than the second diffusion layer. 1. A semiconductor device comprising a highly doped diffusion layer provided in an element region.
(2)第1導電型の半導体基板の表面にフィールド酸化
膜を形成する工程と、このフィールド酸化膜で囲まれた
前記基板の素子領域上にゲート酸化膜を介してゲート電
極を形成する工程と、このゲート電極をマスクとして前
記素子領域に第2導電型の第1不純物を低濃度に導入す
る工程と、全面に被膜を形成した後これを反応性イオン
エッチングにより除去し、該被膜を前記ゲート電極の側
壁に残存させる工程と、前記ゲート電極及び残存する被
膜をマスクとして前記素子領域に第2導電型の第1不純
物を低濃度に導入する工程と、前記ゲート電極及び残存
する被膜をマスクとして第2不純物を高濃度に導入する
工程とを具備することを特徴とする半導体装置の製造方
法。
(2) forming a field oxide film on the surface of a first conductivity type semiconductor substrate; and forming a gate electrode via a gate oxide film on the element region of the substrate surrounded by the field oxide film. , a step of introducing a first impurity of a second conductivity type into the element region at a low concentration using this gate electrode as a mask, and forming a film on the entire surface and removing it by reactive ion etching, and removing the film by reactive ion etching. a step of allowing the first impurity to remain on the side wall of the electrode; a step of introducing a first impurity of a second conductivity type into the element region at a low concentration using the gate electrode and the remaining film as a mask; A method for manufacturing a semiconductor device, comprising the step of introducing a second impurity at a high concentration.
(3)第2導電型の第1不純物がリンで、第2導電型の
不純物がヒ素であることを特徴とする特許請求の範囲第
2項記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 2, wherein the first impurity of the second conductivity type is phosphorus, and the impurity of the second conductivity type is arsenic.
(4)第2導電型の第1不純物がポロンで、第2導電型
の第2不純物がBF_2イオンであることを特徴とする
特許請求の範囲第2項記載の半導体装置の製造方法。
(4) The method for manufacturing a semiconductor device according to claim 2, wherein the first impurity of the second conductivity type is poron, and the second impurity of the second conductivity type is BF_2 ions.
JP26045685A 1985-11-20 1985-11-20 Semiconductor device and manufacture thereof Pending JPS62120082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26045685A JPS62120082A (en) 1985-11-20 1985-11-20 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26045685A JPS62120082A (en) 1985-11-20 1985-11-20 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62120082A true JPS62120082A (en) 1987-06-01

Family

ID=17348197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26045685A Pending JPS62120082A (en) 1985-11-20 1985-11-20 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62120082A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239632A (en) * 1989-03-13 1990-09-21 Sanyo Electric Co Ltd Semiconductor device and manufacture thereof
JPH0574803A (en) * 1991-03-04 1993-03-26 Sharp Corp Manufacture of semiconductor device
KR20000003628A (en) * 1998-06-29 2000-01-15 김영환 Manufacturing method for semiconductor device
WO2004097942A1 (en) * 2003-04-30 2004-11-11 Fujitsu Limited Semiconductor manufacturing method
JP2009200334A (en) * 2008-02-22 2009-09-03 Fujitsu Microelectronics Ltd Semiconductor device, and manufacturing method of semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239632A (en) * 1989-03-13 1990-09-21 Sanyo Electric Co Ltd Semiconductor device and manufacture thereof
JPH0574803A (en) * 1991-03-04 1993-03-26 Sharp Corp Manufacture of semiconductor device
KR20000003628A (en) * 1998-06-29 2000-01-15 김영환 Manufacturing method for semiconductor device
WO2004097942A1 (en) * 2003-04-30 2004-11-11 Fujitsu Limited Semiconductor manufacturing method
US7135393B2 (en) 2003-04-30 2006-11-14 Fujitsu Limited Semiconductor device manufacture method capable of supressing gate impurity penetration into channel
JP2009200334A (en) * 2008-02-22 2009-09-03 Fujitsu Microelectronics Ltd Semiconductor device, and manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US5510279A (en) Method of fabricating an asymmetric lightly doped drain transistor device
KR100205320B1 (en) Mosfet and fabrication thereof
JPH06326306A (en) Mos transistor and preparation thereof
KR19980082416A (en) Structure and manufacturing method of semiconductor device
US6709939B2 (en) Method for fabricating semiconductor device
KR100270420B1 (en) Method for manufacturing semiconductor device and semiconductor device manufactured by same method
JPS6344770A (en) Field effect transistor and manufacture of the same
US6576521B1 (en) Method of forming semiconductor device with LDD structure
JPH0730107A (en) High voltage withstand transistor and its manufacture
KR900008153B1 (en) Semiconductor device and its manufacturing method
JPH0417371A (en) Manufacture of mos field-effect transistor
JPH11214686A (en) Semiconductor device and its manufacture
US5502322A (en) Transistor having a nonuniform doping channel
JPS62120082A (en) Semiconductor device and manufacture thereof
JP2924947B2 (en) Method for manufacturing semiconductor device
JPH0234936A (en) Semiconductor device and its manufacture
JPH07297393A (en) Semiconductor device and manufacture thereof
JPH09312397A (en) Semiconductor device and method of fabricating the same
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
JPH04343437A (en) Manufacture of semiconductor device
US20050133831A1 (en) Body contact formation in partially depleted silicon on insulator device
KR100212150B1 (en) Cmos transistor and fabrication method thereof
JPH0348428A (en) Semiconductor device
KR100334968B1 (en) Method for fabricating buried channel type PMOS transistor
JPH06204456A (en) Semiconductor device