JPH04255668A - Hydrogen storage alloy electrode and manufacture thereof - Google Patents

Hydrogen storage alloy electrode and manufacture thereof

Info

Publication number
JPH04255668A
JPH04255668A JP3017536A JP1753691A JPH04255668A JP H04255668 A JPH04255668 A JP H04255668A JP 3017536 A JP3017536 A JP 3017536A JP 1753691 A JP1753691 A JP 1753691A JP H04255668 A JPH04255668 A JP H04255668A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
storage alloy
powder
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3017536A
Other languages
Japanese (ja)
Other versions
JP2574542B2 (en
Inventor
Koji Yamamura
康治 山村
Yoshio Moriwaki
良夫 森脇
Hajime Seri
世利 肇
Yoichiro Tsuji
庸一郎 辻
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3017536A priority Critical patent/JP2574542B2/en
Publication of JPH04255668A publication Critical patent/JPH04255668A/en
Application granted granted Critical
Publication of JP2574542B2 publication Critical patent/JP2574542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To dissolve problems of a low discharge characteristic and a short life in a hydrogen storage alloy electrode to be used for such as a nickel - hydrogen storage battery in order to provide the hydrogen storage alloy electrode excellent in an initial characteristic and a utilization factor. CONSTITUTION:For instance, ZrMn0.3Cr0.3V0.15Ni1.15 which is one of C 15 type Laves phase alloys is used for hydrogen storage alloy powder and nickel powder composed of nickel salt water solution zinc powder is mixed with or stuck to this hydrogen storage alloy powder in order to manufacture an electrode. When this electrode is made a negative electrode and a known nickel electrode is used for a positive electrode so as to constitute a battery, the battery excellent in an initial characteristic and a utilization factor, and having long life can be obtained.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、ニッケル−水素蓄電池
等に使用される水素吸蔵合金電極とその製造法に関する
。 【0002】 【従来の技術】各種の電源として広く使われている蓄電
池として鉛蓄電池とアルカリ蓄電池がある。このうちア
ルカリ蓄電池は高信頼性が期待でき、小形軽量化も可能
などの理由で小型電池は各種ポ−タブル機器用に、大型
電池は産業用として使われてきた。 【0003】このアルカリ蓄電池において、正極として
は一部空気極や酸化銀極なども取り上げられているが、
ほとんどの場合ニッケル極である。ポケット式から焼結
式に代わって特性が向上し、さらに密閉化が可能になる
とともに用途も広がった。  【0004】一方負極としてはカドミウムの他に亜鉛、
鉄、水素などが対象となっている。最近一層の高エネル
ギ−密度化を達成するために金属水素化物、すなわち水
素吸蔵合金電極を使ったニッケル−水素蓄電池が注目さ
れ、製法などに多くの提案がされている。 【0005】たとえば水素吸蔵合金粉末のとくに耐酸化
性および利用率や成型性を改善するために粒子表面をニ
ッケルや銅でメッキして多孔性の金属層を形成する技術
が知られている。また特性向上のために合金製作後真空
で熱処理したり、アルカリ溶液に浸漬するなどの工程が
提案されている。 【0006】さらに密閉形に適用する際にはとくに充電
時の正極からの酸素ガスや過充電時に発生することがあ
る水素ガスの吸収性を改良するためにフッ素樹脂や触媒
の添加が試みられている。 【0007】水素吸蔵合金電極の製法としては、合金粉
末を焼結する方式や発泡状、繊維状またはパンチングメ
タルなどの多孔性支持体に合金粉末を充填したり、また
は塗着する方式のペ−スト式などがある。このうち製法
が簡単なのがペ−スト式である。水素吸蔵合金はカドミ
ウム極や亜鉛極などと同様に電子伝導性の点で比較的優
れているので非焼結式電極の可能性は大きい。すなわち
結着剤とともにペ−スト状としこれを3次元または2次
元構造の多孔性導電板に充填または塗着しているのが一
般的である。 【0008】 【発明が解決しようとする課題】しかしながら上記従来
の構成では、充放電サイクルの初期での放電特性や一層
の利用率の向上や高率放電特性を向上させる点では改良
の必要があった。また密閉形においては基本的にはニッ
ケル−カドミウム系同様負極における発生ガスの吸収が
可能なので採用できるが、急速充電性をさらに向上させ
なければならないという課題がある。 【0009】本発明は上記課題を解決するものであり、
優れた初期特性や利用率を有し、かつ長寿命の水素吸蔵
合金電極とその製造法を提供することを目的とする。 【0010】 【課題を解決するための手段】本発明は上記目的を達成
するために、水素吸蔵合金粉末にニッケル塩水溶液と亜
鉛粉末とにより合成した活性なニッケル粉末を混合また
は付着させた電極材料より構成したものである。 【0011】 【作用】したがって本発明によれば、水素吸蔵合金粉末
にニッケル塩水溶液と亜鉛粉末とにより合成したニッケ
ル粉末を混合または付着させて電極材料を形成している
ために、その電極材料はきわめて活性であり、したがっ
て充電時における水素吸蔵合金への水素の吸蔵の加速は
極めて大きなものとなる。 【0012】 【実施例】以下、本発明の一実施例の水素吸蔵合金電極
について詳細に説明する。 【0013】(実施例1)水素吸蔵合金としてLave
s相合金の一つであるZrMn2をベースとするZrM
n0.3Cr0.3V0.15Ni1.25を粉砕して
400メッシュを通過させた粉末を用いた。活性なニッ
ケル粉末は下記のように合成した。 【0014】亜鉛微粒子を少量の水に分散した水溶液に
塩化ニッケル熱水溶液を撹はんしながら一度に加え、ニ
ッケル粉末を沈澱させた。この沈澱したニッケル粉末を
水洗後10重量%カセイソーダ水溶液に55℃で20分
間処理し、再び水洗して活性なニッケル粉末を合成した
。 【0015】上記の水素吸蔵合金粉末に合成した活性な
ニッケル粉末を10重量%加え、ボールミルを用いて混
合し、電極材料粉末を作成した。この電極材料粉末にス
チレン樹脂系ゴム水性ディスパ−ジョン液を樹脂が0.
5重量%になるように加えてペ−ストを作成した。この
ペ−ストを多孔度95%厚さ0.8mmの発泡状ニッケ
ル板に充填し、減圧で乾燥後、5%のフッ素樹脂ディス
パージョン液をその表面に塗布し、所定の大きさに裁断
し、リ−ド板をスポット溶接により取り付け電極を作成
した。この電極を電極Aとする。 【0016】つぎに比較例して、合成した活性なニッケ
ル粉末を混合しない電極材料粉末を用いて電極Aと同様
の方法で電極を作成した。この電極を電極Bとする。 【0017】まず両者の負極としての特性を調べるため
に負極律則になるように十分に容量の大きい対極として
焼結式のニッケル極を用い、電解液として比重1.30
の苛性カリ水溶液を用い、電解液の豊富な開放形で試験
を行った。 【0018】5時間率で負極容量の140%定電流充電
−0.5Aで0.9Vまでの定電流放電を行なったとこ
ろ、電極Aの放電容量密度は1サイクルで270mAh
/g、2サイクルで290mAh/g、3サイクル以後
ほぼ一定で310mAh/gであった。ところが電極B
では、1サイクルで25mAh/g、2サイクルで30
mAh/g、3サイクルで75mAh/gで10サイク
ル以後ほぼ一定になったが、容量密度は270mAh/
gであった。この結果から電極Aではサイクル初期特性
が向上し利用率も高いことがわかる。 【0019】つぎに従来通り正極律則の密閉形ニッケル
−水素蓄電池を構成した。相手極として公知の発泡状ニ
ッケル極、セパレータとして親水処理ポリプロピレン不
織布を用いた。電解液は比重1.25の苛性カリ水溶液
に25g/lの水酸化リチウムを溶解したものを用いた
。電池は単2型とした。正極に対する負極の容量は15
0%とした。ニッケル塩水溶液と亜鉛粉末とにより合成
した活性なニッケル粉末を混合した粉末より作成した電
極Aを用いた電池を電池Aとした。 【0020】つぎに、比較例の電極Bを用いた電池を電
池Bとした。同じ重量の合金を用いたので正極に対する
負極の容量は約140%になった。 【0021】まず初期の放電電圧と容量を比較した。5
時間率で容量の130%定電流充電−1.0Aで0.9
Vまでの定電流放電を行なったところ、電池Aは平均電
圧は1.24Vであり、放電容量は2サイクル以後ほぼ
一定で2.7〜2.9Ahであった。ところが電池Bで
は、平均電圧は1.21Vであり、放電特性が向上して
ほぼ一定になるまでに30サイクルを必要とした。 【0022】つぎに電池Aおよび電池Bをそれぞれ10
セル用いてこの充放電の条件で寿命特性を比較した。そ
の結果、放電容量は500サイクルでは、いずれも正極
律則で95%以上を保持していたが、750サイクルで
は電池Aはまだ正極律則で初期の87%を示しているの
に対して、電池Bでは負極律則になり74%であった。 この結果から明らかなように電池Aが極めて長寿命であ
ることがわかる。 【0023】(実施例2)水素吸蔵合金粉末としてZr
Mn0.3Cr0.3V0.15Ni1.25を用いた
。 【0024】水素吸蔵合金ZrMn0.3Cr0.3V
0.15Ni1.25の100〜400メッシュ粉末に
亜鉛400メッシュ粉末を10重量%加え、乳鉢で摩砕
し水素吸蔵合金に亜鉛を付着させ、400メッシュ通過
粉末を作成した。この粉末を少量の水に分散し、塩化ニ
ッケルの熱水溶液を撹はんしながら一度に加え、80℃
で1時間処理した。この粉末を水洗後10重量%カセイ
ソーダ水溶液に55℃で20分間処理し、再び水洗して
電極材料粉末を合成した。この電極材料粉末を用いて実
施例1と同様の方法で電極を作成し、負極としての特性
を調べた。 【0025】試験方法は、実施例1と同様に負極律則に
なるように十分に容量の大きい対極として焼結式のニッ
ケル極を用い、電解液として比重1.30の苛性カリ水
溶液を用い、電解液の豊富な開放形で試験を行った。 【0026】5時間率で負極容量の130%定電流充電
−0.5Aで0.9Vまでの定電流放電を行なったとこ
ろ、電極Aの放電容量密度は1サイクルで260mAh
/g、2サイクルで285mAh/g、3サイクル以後
ほぼ一定で305mAh/gであった。 【0027】つぎに従来通り正極律則の密閉形ニッケル
−水素蓄電池を構成した。相手極として公知の発泡状ニ
ッケル極、セパレータとして親水処理ポリプロピレン不
織布を用いた。電解液は比重1.25の苛性カリ水溶液
に25g/lの水酸化リチウムを溶解したものを用いた
。電池は単2型とした。正極に対する負極の容量は14
0%とした。 【0028】5時間率で容量の130%定電流充電−1
.0Aで0.9Vまでの定電流放電を行なったところ、
電池の平均電圧は1.24Vであり、放電容量は2サイ
クル以後ほぼ一定で2.7〜2.9Ahであった。 【0029】つぎにこの充放電の条件で寿命特性を調べ
た。その結果、放電容量は、500サイクルでは、正極
律則で初期の95%以上、750サイクルでは正極律則
で初期の86%の放電容量を維持していた。この結果よ
り本実施例による電池が長寿命であることが確認できた
。 【0030】以上は水素吸蔵合金粉末がAB2型Lav
es相合金の場合であるが、LaNi5ベース合金でも
同様に優れた結果を得ることができる。 【0031】また、実施例では処理液としてカセイソー
ダ水溶液を用いたが、酢酸水溶液を用いて処理しても同
様の効果を得ることができる。 【0032】さらに、混合はボールミルおよび乳鉢を用
いたが、高速気流中衝撃法で亜鉛、または亜鉛とニッケ
ル塩水溶液より合成されるニッケル粒子、あるいはメッ
キにより亜鉛を水素吸蔵合金に付着させることにより同
様の効果を得ることができた。このように上記実施例に
よれば、水素吸蔵合金粉末に活性なニッケル粉末を混合
して電極を構成しているため、この水素吸蔵合金電極を
用いた電池は優れた初期特性を有し、かつ極めて長寿命
であるという利点を有する。 【0033】 【発明の効果】上記実施例より明らかなように本発明の
水素吸蔵合金電極は、初期特性、利用率を向上させるこ
とができ、かつ長寿命化できるとともに、この水素吸蔵
合金電極を用いて極めて高性能な電池を提供することが
できる。
Description: [0001] The present invention relates to a hydrogen storage alloy electrode used in nickel-hydrogen storage batteries and the like, and a method for manufacturing the same. [0002] Lead storage batteries and alkaline storage batteries are widely used as various power sources. Among these, alkaline storage batteries are expected to have high reliability, and because they can be made smaller and lighter, small batteries have been used for various portable devices, and large batteries have been used for industrial purposes. [0003] In this alkaline storage battery, some air electrodes and silver oxide electrodes have been used as positive electrodes, but
Most often nickel electrodes. The pocket type was replaced by the sintered type, which improved its properties, made it possible to seal it more tightly, and expanded its uses. On the other hand, in addition to cadmium, zinc,
Targets include iron and hydrogen. Recently, nickel-hydrogen storage batteries using metal hydrides, that is, hydrogen storage alloy electrodes, have attracted attention in order to achieve even higher energy density, and many proposals have been made for manufacturing methods. For example, in order to particularly improve the oxidation resistance, utilization rate, and moldability of hydrogen-absorbing alloy powder, a technique is known in which the particle surface is plated with nickel or copper to form a porous metal layer. Additionally, processes such as heat treatment in a vacuum or immersion in an alkaline solution after manufacturing the alloy have been proposed in order to improve its properties. Furthermore, when applied to a closed type, attempts have been made to add fluororesins and catalysts to improve the absorption of oxygen gas from the positive electrode during charging and hydrogen gas that may be generated during overcharging. There is. [0007] Hydrogen storage alloy electrodes can be manufactured by sintering alloy powder or by filling or coating alloy powder into a porous support such as foamed, fibrous or punched metal. There is a strike style, etc. Among these, the paste method is the easiest to manufacture. Hydrogen storage alloys, like cadmium electrodes and zinc electrodes, have relatively good electronic conductivity, so there is great potential for non-sintered electrodes. That is, it is generally made into a paste together with a binder and filled or applied to a porous conductive plate having a three-dimensional or two-dimensional structure. [Problems to be Solved by the Invention] However, the conventional configuration described above requires improvement in terms of improving the discharge characteristics at the beginning of the charge/discharge cycle, further improving the utilization rate, and improving the high rate discharge characteristics. Ta. In addition, the sealed type can basically be used because it is possible to absorb the generated gas at the negative electrode like the nickel-cadmium type, but there is a problem that the rapid charging performance must be further improved. [0009] The present invention solves the above problems,
The purpose of the present invention is to provide a hydrogen storage alloy electrode with excellent initial properties and utilization rate, and a long life, and a method for manufacturing the same. [Means for Solving the Problems] In order to achieve the above object, the present invention provides an electrode material in which active nickel powder synthesized from a nickel salt aqueous solution and zinc powder is mixed or adhered to hydrogen storage alloy powder. It is composed of [Operation] Therefore, according to the present invention, since the electrode material is formed by mixing or adhering nickel powder synthesized from a nickel salt aqueous solution and zinc powder to the hydrogen storage alloy powder, the electrode material is It is extremely active, and therefore the acceleration of hydrogen storage into the hydrogen storage alloy during charging is extremely large. [Embodiment] A hydrogen storage alloy electrode according to an embodiment of the present invention will be explained in detail below. (Example 1) Lave as a hydrogen storage alloy
ZrM based on ZrMn2, which is one of the s-phase alloys
A powder obtained by crushing n0.3Cr0.3V0.15Ni1.25 and passing it through 400 mesh was used. Active nickel powder was synthesized as follows. A hot aqueous solution of nickel chloride was added all at once while stirring to an aqueous solution in which fine zinc particles were dispersed in a small amount of water to precipitate nickel powder. The precipitated nickel powder was washed with water, treated with a 10% by weight aqueous solution of caustic soda at 55° C. for 20 minutes, and washed again with water to synthesize active nickel powder. [0015] 10% by weight of the synthesized active nickel powder was added to the above hydrogen storage alloy powder and mixed using a ball mill to prepare an electrode material powder. Add a styrene resin rubber aqueous dispersion liquid to this electrode material powder until the resin reaches 0.
A paste was prepared by adding 5% by weight. This paste was filled into a foamed nickel plate with a porosity of 95% and a thickness of 0.8 mm, and after drying under reduced pressure, a 5% fluororesin dispersion liquid was applied to the surface, and the plate was cut into a predetermined size. Then, an electrode was created by attaching a lead plate by spot welding. This electrode will be referred to as electrode A. Next, as a comparative example, an electrode was prepared in the same manner as Electrode A using an electrode material powder not mixed with the synthesized active nickel powder. This electrode will be referred to as electrode B. First, in order to investigate the characteristics of both as negative electrodes, a sintered nickel electrode with a sufficiently large capacity to meet the negative electrode rule was used as the counter electrode, and a specific gravity of 1.30 was used as the electrolyte.
The test was conducted using an aqueous solution of caustic potassium in an open type with a rich electrolyte. When constant current charging to 140% of the negative electrode capacity was performed at a rate of 5 hours - constant current discharging at 0.5 A to 0.9 V, the discharge capacity density of electrode A was 270 mAh in one cycle.
/g, 290mAh/g after 2 cycles, and remained almost constant at 310mAh/g after 3rd cycle. However, electrode B
So, 25mAh/g in 1 cycle and 30mAh/g in 2 cycles.
mAh/g was 75mAh/g for 3 cycles and became almost constant after 10 cycles, but the capacity density was 270mAh/g.
It was g. This result shows that electrode A has improved cycle initial characteristics and a high utilization rate. Next, a sealed nickel-metal hydride storage battery according to the positive electrode rule was constructed in the conventional manner. A well-known foamed nickel electrode was used as the counter electrode, and a hydrophilically treated polypropylene nonwoven fabric was used as the separator. The electrolytic solution used was one in which 25 g/l of lithium hydroxide was dissolved in a caustic potassium aqueous solution with a specific gravity of 1.25. The batteries were AA type. The capacity of the negative electrode relative to the positive electrode is 15
It was set to 0%. Battery A was a battery using electrode A made from a mixture of active nickel powder synthesized from an aqueous nickel salt solution and zinc powder. Next, a battery using electrode B of a comparative example was designated as battery B. Since the same weight of alloy was used, the capacity of the negative electrode relative to the positive electrode was approximately 140%. First, the initial discharge voltage and capacity were compared. 5
130% constant current charging of capacity at time rate - 0.9 at 1.0A
When constant current discharge was performed up to V, the average voltage of battery A was 1.24 V, and the discharge capacity was approximately constant from 2 cycles to 2.7 to 2.9 Ah. However, in battery B, the average voltage was 1.21 V, and it took 30 cycles for the discharge characteristics to improve and become almost constant. [0022] Next, 10 each of battery A and battery B
The life characteristics of the cells were compared under these charging and discharging conditions. As a result, at 500 cycles, the discharge capacity in all cases was maintained at 95% or higher under the positive electrode rule, but at 750 cycles, battery A still showed the initial 87% under the positive electrode rule. In battery B, the negative electrode rule was applied and the ratio was 74%. As is clear from these results, it can be seen that battery A has an extremely long life. (Example 2) Zr as hydrogen storage alloy powder
Mn0.3Cr0.3V0.15Ni1.25 was used. Hydrogen storage alloy ZrMn0.3Cr0.3V
10% by weight of zinc 400 mesh powder was added to 100-400 mesh powder of 0.15Ni1.25 and ground in a mortar to adhere zinc to the hydrogen storage alloy to create a 400 mesh passing powder. This powder was dispersed in a small amount of water, and a hot aqueous solution of nickel chloride was added all at once while stirring at 80°C.
It was treated for 1 hour. After washing this powder with water, it was treated with a 10% by weight aqueous solution of caustic soda at 55° C. for 20 minutes, and washed again with water to synthesize an electrode material powder. An electrode was prepared using this electrode material powder in the same manner as in Example 1, and its properties as a negative electrode were investigated. As in Example 1, the test method was to use a sintered nickel electrode as a counter electrode with a sufficiently large capacity to satisfy the negative electrode rule, and a caustic potassium aqueous solution with a specific gravity of 1.30 as an electrolyte. Tests were conducted in an open configuration with plenty of liquid. When constant current charging to 130% of the negative electrode capacity was carried out at a rate of 5 hours - constant current discharging at 0.5 A to 0.9 V, the discharge capacity density of electrode A was 260 mAh in one cycle.
/g, 285 mAh/g after 2 cycles, and remained almost constant at 305 mAh/g after 3 cycles. Next, a sealed nickel-metal hydride storage battery using the positive electrode rule was constructed in the conventional manner. A well-known foamed nickel electrode was used as the counter electrode, and a hydrophilically treated polypropylene nonwoven fabric was used as the separator. The electrolytic solution used was one in which 25 g/l of lithium hydroxide was dissolved in a caustic potassium aqueous solution with a specific gravity of 1.25. The batteries were AA type. The capacity of the negative electrode to the positive electrode is 14
It was set to 0%. Constant current charging at 130% capacity at a 5 hour rate-1
.. When constant current discharge was performed to 0.9V at 0A,
The average voltage of the battery was 1.24 V, and the discharge capacity remained almost constant after 2 cycles, ranging from 2.7 to 2.9 Ah. Next, the life characteristics were investigated under these charging and discharging conditions. As a result, the discharge capacity maintained 95% or more of the initial discharge capacity under the positive electrode rule at 500 cycles, and 86% of the initial discharge capacity under the positive electrode rule at 750 cycles. From this result, it was confirmed that the battery according to this example had a long life. [0030] The hydrogen storage alloy powder is AB2 type Lav.
Although this is the case for es-phase alloys, equally excellent results can be obtained with LaNi5-based alloys. Further, in the examples, a caustic soda aqueous solution was used as the treatment liquid, but the same effect can be obtained by treating with an acetic acid aqueous solution. Furthermore, although a ball mill and a mortar were used for mixing, zinc particles synthesized from a high-speed air impact method, or nickel particles synthesized from a zinc and nickel salt aqueous solution, or zinc adhered to a hydrogen storage alloy by plating, could be similarly mixed. I was able to obtain the effect of As described above, according to the above embodiment, since the electrode is formed by mixing active nickel powder with hydrogen storage alloy powder, a battery using this hydrogen storage alloy electrode has excellent initial characteristics and It has the advantage of extremely long life. [Effects of the Invention] As is clear from the above examples, the hydrogen storage alloy electrode of the present invention can improve the initial characteristics and the utilization rate, and can extend the life of the hydrogen storage alloy electrode. can be used to provide extremely high performance batteries.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金粉末にニッケル塩水溶液と亜
鉛粉末とにより合成したニッケル粉末を混合または付着
させた電極材料よりなることを特徴とする水素吸蔵合金
電極。
1. A hydrogen storage alloy electrode comprising an electrode material in which nickel powder synthesized from a nickel salt aqueous solution and zinc powder is mixed or adhered to hydrogen storage alloy powder.
【請求項2】水素吸蔵合金粉末の一般式がABα(α=
1.5〜2.5)で表わされ、合金相が実質的に金属間
化合物のLaves相に属し、その結晶構造が六方対称
のC14型または立方対称のC15型であることを特徴
とする請求項1記載の水素吸蔵合金電極。
Claim 2: The general formula of the hydrogen storage alloy powder is ABα (α=
1.5 to 2.5), the alloy phase substantially belongs to the Laves phase of an intermetallic compound, and the crystal structure is a hexagonally symmetrical C14 type or a cubic symmetrical C15 type. The hydrogen storage alloy electrode according to claim 1.
【請求項3】水素吸蔵合金粉末に亜鉛を混合または付着
させた後、ニッケル塩水溶液に浸漬することによりニッ
ケル粉末を混合または付着させて電極を形成することを
特徴とする水素吸蔵合金電極の製造法。
3. Manufacture of a hydrogen storage alloy electrode characterized in that the electrode is formed by mixing or adhering zinc to hydrogen storage alloy powder and then immersing it in an aqueous nickel salt solution to mix or adhere nickel powder. Law.
JP3017536A 1991-02-08 1991-02-08 Hydrogen storage alloy electrode and its manufacturing method Expired - Fee Related JP2574542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3017536A JP2574542B2 (en) 1991-02-08 1991-02-08 Hydrogen storage alloy electrode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3017536A JP2574542B2 (en) 1991-02-08 1991-02-08 Hydrogen storage alloy electrode and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH04255668A true JPH04255668A (en) 1992-09-10
JP2574542B2 JP2574542B2 (en) 1997-01-22

Family

ID=11946642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017536A Expired - Fee Related JP2574542B2 (en) 1991-02-08 1991-02-08 Hydrogen storage alloy electrode and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2574542B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343053A (en) * 1991-08-29 1993-12-24 Furukawa Battery Co Ltd:The Hydrogen storage alloy electrode and mill treated mixed powder for electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343053A (en) * 1991-08-29 1993-12-24 Furukawa Battery Co Ltd:The Hydrogen storage alloy electrode and mill treated mixed powder for electrode

Also Published As

Publication number Publication date
JP2574542B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
WO2004066421A1 (en) Closed nickel-hydrogen storage battery and its production method
JP5119577B2 (en) Nickel metal hydride battery
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP2574542B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPS63266767A (en) Manufacture of hydrogen storage electrode
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP3429684B2 (en) Hydrogen storage electrode
JPH03289046A (en) Manufacture of hydrogen storage alloy electrode for alkaline battery
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH0668875A (en) Manufacture of hydrogen storage alloy electrode for battery
JP2553780B2 (en) Hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3136688B2 (en) Nickel-hydrogen storage battery
JPH0448551A (en) Manufacture of hydrogen storage alloy electrode for battery
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JPH04264362A (en) Hydrogen storage alloy electrode
JPH09190817A (en) Nickel hydroxide active material powder, nonsintered electrode, and alkaline storage battery
JPH06231760A (en) Hydrogen storage alloy electrode and its manufacture
JPH06124704A (en) Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode
JPH06295723A (en) Manufacture of hydrogen storage alloy electrode for battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees