JPH09190817A - Nickel hydroxide active material powder, nonsintered electrode, and alkaline storage battery - Google Patents

Nickel hydroxide active material powder, nonsintered electrode, and alkaline storage battery

Info

Publication number
JPH09190817A
JPH09190817A JP8019434A JP1943496A JPH09190817A JP H09190817 A JPH09190817 A JP H09190817A JP 8019434 A JP8019434 A JP 8019434A JP 1943496 A JP1943496 A JP 1943496A JP H09190817 A JPH09190817 A JP H09190817A
Authority
JP
Japan
Prior art keywords
active material
nickel
nickel hydroxide
electrode
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8019434A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP8019434A priority Critical patent/JPH09190817A/en
Publication of JPH09190817A publication Critical patent/JPH09190817A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the expansion of active material particles, and to improve the cycle life of a battery using a nonsintered nickel electrode, by including a specific amount of cobalt and zirconium, in the powder of a nickel hydroxide active material. SOLUTION: In the nickel hydroxide particles used in the positive electrode of an alkaline storage battery, at least cobalt; 0.2 to 5wt.%, and zirconium; 0.1 to 4wt.% are included. By using such a nickel hydroxide active material, a high capacity maintaining rate and a high temperature charging property of an alkaline storage battery is improved. Furthermore, by including zinc in the nickel hydroxide particles, while the form of the nickel hydroxide particles is made in a spherical form, it is favorable to improve the apparent density and the filling density. The paste of this active material mixture is filled to a porous base board for electric collecting and pressurized, and a nonsintered nickel electrode in which the filling density of the active material mixture is made about 2.4 to 2.9/cc is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル・水素蓄
電池、ニッケル・カドミウム蓄電池などのアルカリ蓄電
池の正極として用いる水酸化ニッケル活物質粉末非焼結
式ニッケル電極並びにアルカリ蓄電池に関する。
TECHNICAL FIELD The present invention relates to a nickel hydroxide active material powder non-sintered nickel electrode used as a positive electrode of an alkaline storage battery such as a nickel-hydrogen storage battery and a nickel-cadmium storage battery, and an alkaline storage battery.

【0002】[0002]

【従来の技術並びに発明が解決しようとする課題】近
年、ニッケル・水素蓄電池やニッケル・カドミウム蓄電
池などのアルカリ蓄電池は、単位重量当たりのエネルギ
ー密度(wh/kg)が高く、サイクル寿命等の信頼性
に優れているため、種々のポータブル機器用の電源とし
て広く使用されるようになり、特にその正極として焼結
式ニッケル電極に比しエネルギー密度が高く、高容量の
非焼結式ニッケル電極が種々開発されている。即ち、そ
の高エネルギー密度の非焼結式ニッケル電極は、集電用
多孔基板として、3次元の発泡ニッケル基板やニッケル
繊維多孔基板などの多孔度90%以上を有する集電用多
孔基板に水酸化ニッケル活物質粉末を充填することによ
り得られる。しかし乍ら、該水酸化ニッケル活物質粉末
は、ニッケル塩水溶液とアルカリ水溶液とを反応させて
沈殿析出せしめた後、水洗、乾燥、粉砕することによっ
て得られたものは、その粒子の表面は角のあるものとな
るため、その粉末は、集電用多孔基板に対する充填密度
の高いものを得るに限界があった。この充電密度を向上
させるため、球状、いびつな球状などの球状タイプの粒
子の集団から成る水酸化ニッケル活物質粉末が開発され
た。しかし乍ら、粒子形状が上記の非球タイプ或いは球
状タイプのいずれの形状であっても、これを用いた非焼
結式ニッケル電極を正極として用いたアルカリ蓄電池の
サイクル寿命が短くなる問題がある。その原因は、充電
時に低密度のγ−NiOOHがその正極に生成するため
正極を膨脹させ、電解液を吸収し、電解液量の枯渇など
によるものと考えられる。そこで、この正極の膨脹を抑
制するため、水酸化ニッケル粒子中にコバルトと亜鉛を
含有せしめた水酸化ニッケル活物質粉末が提案された。
(特開平5−21064号公報、特開平2−30061
号公報)。しかし乍ら、上記のコバルトや亜鉛を含有さ
せた粒子集団から成る水酸化ニッケル活物質粉末を用い
て非焼結式ニッケルを作製し、これを正極として用いた
アルカリ蓄電池を充放電してそのサイクル寿命を検討し
てみると、その膨潤抑制効果は充分でないことが判っ
た。而して、これを用いた非焼結式ニッケル電極を正極
としたアルカリ蓄電池のサイクル寿命や高温充電特性な
ども充分でなく改善の余地があることが判った。上記従
来の問題に鑑み、活物質粉末粒子の膨脹を更に抑制し、
非焼結式ニッケル電極を用いた電池のサイクル寿命の向
上、容量維持率の向上、高温充電特性の向上などを改善
し得る水酸化ニッケル活物質粉末、非焼結式ニッケル電
極或いはアルカリ蓄電池の開発が望まれる。
2. Description of the Related Art In recent years, alkaline storage batteries such as nickel-hydrogen storage batteries and nickel-cadmium storage batteries have high energy density (wh / kg) per unit weight and reliability such as cycle life. It has been widely used as a power source for various portable devices due to its excellent heat resistance, and in particular, various high-capacity non-sintered nickel electrodes with a higher energy density than the sintered nickel electrodes are used as the positive electrode. Being developed. That is, the high-energy-density non-sintered nickel electrode is used as a current collecting porous substrate on a current collecting porous substrate having a porosity of 90% or more, such as a three-dimensional foamed nickel substrate or a nickel fiber porous substrate. It is obtained by filling a nickel active material powder. However, the nickel hydroxide active material powder is obtained by reacting an aqueous solution of a nickel salt with an aqueous alkali solution to cause precipitation, followed by washing with water, drying and crushing, and the surface of the particle is square. Therefore, the powder has a limit in obtaining a powder having a high packing density in the porous substrate for collecting electricity. In order to improve the charge density, a nickel hydroxide active material powder composed of a group of spherical type particles such as spherical particles and distorted spherical particles has been developed. However, there is a problem that the cycle life of the alkaline storage battery using the non-sintered nickel electrode using this as a positive electrode is shortened regardless of whether the particle shape is the above-mentioned non-spherical type or spherical type. . It is considered that the cause is that γ-NiOOH having a low density is generated in the positive electrode during charging to expand the positive electrode, absorb the electrolytic solution, and exhaust the amount of the electrolytic solution. Then, in order to suppress the expansion of this positive electrode, a nickel hydroxide active material powder in which cobalt and zinc are contained in nickel hydroxide particles has been proposed.
(JP-A-5-21064 and JP-A-2-30061)
Issue). However, we made non-sintered nickel using the nickel hydroxide active material powder consisting of the above-mentioned particle group containing cobalt and zinc, and charged and discharged the alkaline storage battery using this as a positive electrode to cycle it. When the life was examined, it was found that the swelling suppressing effect was not sufficient. Therefore, it has been found that the cycle life and high temperature charging characteristics of the alkaline storage battery using the non-sintered nickel electrode using this as a positive electrode are not sufficient and there is room for improvement. In view of the above conventional problems, further suppressing the expansion of the active material powder particles,
Development of nickel hydroxide active material powder, non-sintered nickel electrode or alkaline storage battery that can improve the cycle life of batteries using non-sintered nickel electrodes, improved capacity retention rate, improved high temperature charging characteristics, etc. Is desired.

【0003】[0003]

【課題を解決するための手段】本発明は、上記従来の課
題を解決し、上記の要望を満足した水酸化ニッケル活物
質粉末、非焼結式ニッケル電極並びにアルカリ蓄電池を
提供するもので、本発明の水酸化ニッケル活物質粉末
は、水酸化ニッケル粒子中に、少なくともコバルト0.
2〜5wt.%及びジルコニウム0.1〜4wt.%含
有することを特徴とする。更に本発明は、非焼結式ニッ
ケル電極を用いたアルカリ蓄電池の高容量維持率、高温
充電特性の更なる向上をもたらす水酸化ニッケル活物質
粉末を提供するもので、上記の本発明の水酸化ニッケル
活物質粉末の該粒子中に、更に亜鉛を含有することを特
徴とする。この場合、該水酸化ニッケル粒子の形状は、
球状タイプであることが嵩密度、充填密度の向上にとり
好ましい。また、上記の目的を達成するための本発明の
非焼結式ニッケル電極は、前記本発明のコバルト及びジ
ルコニウム含有の水酸化ニッケル活物質粉末を集電用多
孔基板に充填したことを特徴とする。また、本発明は、
前記本発明の非焼結式ニッケル電極の利用率、サイクル
寿命の更なる向上をもたらす非焼結式ニッケル電極を提
供するもので、前記の本発明のコバルト及びジルコニウ
ム又はコバルト、ジルコニウム及び亜鉛含有の球形タイ
プの水酸化ニッケル活物質粉末に、コバルト及びコバル
ト化合物のコバルト系添加剤の少なくとも1種を添加混
合して成る活物質合剤を、集電用多孔基板に充填、加圧
し、該活物質合剤の充填密度を、2.4〜2.9g/c
cとしたことを特徴とする。更に本発明は、特に急放電
特性の向上したアルカリ蓄電池をもたらす非焼結式ニッ
ケル電極を提供するもので、前記の本発明の活物質合剤
に、ニッケル粉末を添加して成る活物質合剤を、集電用
多孔基板に充填したことを特徴とする。更に本発明は、
低温放電特性、高温充電受入れ性を向上したアルカリ蓄
電池を提供するもので、正極として、本発明の上記の非
焼結式ニッケル電極を用い、且つ電解液としてLiOH
0〜4wt.%、KOH20〜40wt.%から成るア
ルカリ電解液又はLiOH0〜4wt.%、KOH+N
aOH20〜40%、NaOH0〜10wt.%から成
るアルカリ電解液を具備したことを特徴とする。
The present invention provides a nickel hydroxide active material powder, a non-sintered nickel electrode, and an alkaline storage battery which solve the above-mentioned conventional problems and satisfy the above-mentioned needs. The nickel hydroxide active material powder of the invention has a nickel hydroxide particle having a cobalt content of at least 0.
2-5 wt. % And zirconium 0.1-4 wt. %. Furthermore, the present invention provides a nickel hydroxide active material powder which brings about a further improvement in high capacity retention rate and high temperature charging characteristics of an alkaline storage battery using a non-sintered nickel electrode. It is characterized in that zinc is further contained in the particles of the nickel active material powder. In this case, the shape of the nickel hydroxide particles is
The spherical type is preferable for improving bulk density and packing density. Further, the non-sintered nickel electrode of the present invention for achieving the above object is characterized in that the cobalt and zirconium-containing nickel hydroxide active material powder of the present invention is filled in a current collecting porous substrate. . Also, the present invention
The present invention provides a non-sintered nickel electrode that further improves the utilization rate and cycle life of the non-sintered nickel electrode of the present invention. The non-sintered nickel electrode of the present invention contains cobalt and zirconium or cobalt, zirconium and zinc. An active material mixture prepared by adding and mixing at least one cobalt-based additive of cobalt and a cobalt compound to a spherical type nickel hydroxide active material powder is filled into a porous substrate for current collection and pressed to obtain the active material. The packing density of the mixture is 2.4 to 2.9 g / c.
It is characterized in that it is c. Furthermore, the present invention provides a non-sintered nickel electrode that provides an alkaline storage battery with improved rapid discharge characteristics, in particular, an active material mixture obtained by adding nickel powder to the above-mentioned active material mixture of the present invention. Is filled in a porous substrate for current collection. Furthermore, the present invention
Provided is an alkaline storage battery having improved low-temperature discharge characteristics and high-temperature charge acceptance, which uses the non-sintered nickel electrode of the present invention as a positive electrode and LiOH as an electrolytic solution.
0-4 wt. %, KOH 20-40 wt. % Alkaline electrolyte or LiOH 0-4 wt. %, KOH + N
aOH 20-40%, NaOH 0-10 wt. % Of the alkaline electrolyte.

【0004】[0004]

【発明の実施の形態】次に、本発明の実施例を詳述す
る。本発明の水酸化ニッケルの粒子中にコバルト及びジ
ルコニウムを含有する水酸化ニッケル活物質粉末の製造
例を説明する。その1例は、硫酸ニッケル、硝酸ニッケ
ルなどのニッケル塩に、硝酸コバルト、硫酸コバルトな
どのコバルト塩及び硫酸ジルコニウム、硝酸ジルコニウ
ムなどのジルコニウム塩を夫々所定の割合で水に溶解さ
せ、ニッケル、コバルト、ジルコニウムの各イオンが溶
解した混合水溶液を作製した後、これを反応槽内で水酸
化ナトリウム、水酸化カリなどのアルカリ水溶液と所定
時間撹拌し乍ら反応させるときは、コバルトとジルコニ
ウムを夫々所定量含有する水酸化ニッケル粒子が生成す
る。この場合、アルカリ水溶液を、例えば、pH14程
度の強アルカリに調製するときは、角形の非球状の水酸
化ニッケル粒子が生成し、pHを10〜13程度の弱ア
ルカリに調製するときは、球状又は楕円形又はいびつな
球状などの球状タイプの水酸化ニッケル粒子が生成す
る。尚、その反応時の加熱温度、撹拌条件、時間などを
適宜制御する必要がある。このようにして生成した水酸
化ニッケル粒子を濾過、水洗、乾燥することにより、水
酸化ニッケル結晶中にコバルトとジルコニウムが夫々所
定の割合で固溶体として含有する非球状又は球状タイプ
の水酸化ニッケル粒子の集団から成る水酸化ニッケル活
物質粉末が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described in detail. A production example of the nickel hydroxide active material powder containing cobalt and zirconium in the nickel hydroxide particles of the present invention will be described. An example thereof is nickel salt such as nickel sulfate and nickel nitrate, cobalt salt such as cobalt nitrate and cobalt sulfate, and zirconium salt such as zirconium sulfate and zirconium nitrate are dissolved in water at a predetermined ratio to obtain nickel, cobalt, After preparing a mixed aqueous solution in which the respective ions of zirconium are dissolved and reacting it with an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide in the reaction vessel for a predetermined period of time and reacting, a predetermined amount of cobalt and zirconium are respectively prepared. Nickel hydroxide particles are formed. In this case, for example, when the alkaline aqueous solution is adjusted to a strong alkaline having a pH of about 14, prismatic non-spherical nickel hydroxide particles are generated, and when adjusted to a weak alkaline having a pH of about 10 to 13, a spherical or Spherical type nickel hydroxide particles, such as elliptical or distorted spheres, are produced. In addition, it is necessary to appropriately control the heating temperature, stirring conditions, time and the like during the reaction. The nickel hydroxide particles thus produced are filtered, washed with water, and dried to obtain a non-spherical or spherical type nickel hydroxide particles containing cobalt and zirconium in the nickel hydroxide crystal in a predetermined proportion, respectively. A nickel hydroxide active material powder consisting of a mass is obtained.

【0005】非球状の水酸化ニッケル活物質は、球状タ
イプの水酸化ニッケル活物質に比し嵩密度が低く、ま
た、集電用多孔基板に充填したときの充填密度が低いの
で、球状タイプの水酸化ニッケル活物質が好ましく使用
される。粒子中にコバルト及びジルコニウムを含有する
水酸化ニッケル活物質粉末として球状タイプのものを製
造する方法としては、下記の製造容易な製造法によって
製造することが好ましい。即ち、ニッケル塩水溶液に弱
塩基性のアミンを溶解させ、ニッケルイオンをアミン錯
体として安定化させ、これに所定量のコバルト塩及びジ
ルコニウム塩を添加溶解させる。この水溶液に所定量の
苛性カリ、苛性ソーダなどを添加、撹拌し、全体に均一
な反応を行わせる。ニッケルアミン錯体を生成するため
のアミン類としては、アンモニア、アンモニウム塩など
が使用される。
The non-spherical nickel hydroxide active material has a bulk density lower than that of the spherical type nickel hydroxide active material, and has a low packing density when filled in the porous substrate for current collection. Nickel hydroxide active material is preferably used. As a method for producing a spherical type nickel hydroxide active material powder containing cobalt and zirconium in the particles, it is preferable to produce by the following easy production method. That is, a weakly basic amine is dissolved in a nickel salt aqueous solution to stabilize nickel ions as an amine complex, and a predetermined amount of cobalt salt and zirconium salt is added and dissolved therein. A predetermined amount of caustic potash, caustic soda, etc. is added to this aqueous solution and stirred to allow a uniform reaction to occur throughout. As the amines for forming the nickel amine complex, ammonia, ammonium salt and the like are used.

【0006】このようにして得られた本発明の水酸化ニ
ッケル活物質は、従来の球状粒子中にコバルト又は亜鉛
を含有する水酸化ニッケル活物質に比し、下記に明らか
にするように、特に膨脹が更に抑制されてサイクル寿命
の向上した非焼結式ニッケル電極及び電池をもたらし
た。この場合、Zrは、粒子中では、ZrO2 ・2H2
Oとして存在し、これは、正極の酸化反応(充電)には
関与しないものと考えられ、酸素過電圧を大きくする効
果があり、負極にプリチャージを形成することがないた
め、密閉アルカリ蓄電池の高容量化に著しく貢献するも
のと考えられる。特に、粒子中にコバルト0.2〜5w
t.%、ジルコニウム0.1〜4wt.%を含有すると
きは利用率が良く、特にサイクル寿命、高温充電特性の
優れた電池が得られることが判った。
The nickel hydroxide active material of the present invention thus obtained is, in comparison with the conventional nickel hydroxide active material containing cobalt or zinc in spherical particles, as shown below, The result is a non-sintered nickel electrode and battery with further suppressed expansion and improved cycle life. In this case, Zr is ZrO 2 · 2H 2 in the particles.
It exists as O, and it is considered that it does not participate in the oxidation reaction (charge) of the positive electrode, has the effect of increasing the oxygen overvoltage, and does not form a precharge at the negative electrode. It is thought that it will significantly contribute to the capacity increase. In particular, 0.2-5w cobalt in the particles
t. %, Zirconium 0.1 to 4 wt. It has been found that a battery having a high utilization ratio, particularly excellent cycle life and high-temperature charging characteristics, can be obtained when the content of C is 50%.

【0007】[0007]

【実施例】多数の容器内に用意した1.6モル/lの硫
酸ニッケルを水に溶解した硫酸ニッケル水溶液の夫々
に、25wt.%アンモニア水を添加し撹拌してニッケ
ルアミン錯体が生成されたpH10.5〜11の硫酸ニ
ッケル水溶液を調製した。この夫々の調製液に、硫酸コ
バルト及び硫酸ジルコニウムを種々の添加量とモル比で
添加し撹拌して溶解し、そのpH10.5〜11.0を
保持し乍ら、苛性ソーダを徐々に添加し撹拌し、50℃
で全体に均一な反応を進めて、水酸化ニッケルを析出生
成させた。その後、これを濾過し、その水酸化ニッケル
析出物を水洗した後、50〜70℃程度で加熱乾燥して
水酸化ニッケル結晶中にZr、Coが夫々の割合で固溶
体として含有した図1,図2示のような球状タイプの水
酸化ニッケル活物質を得た。一方、比較のため、硫酸コ
バルト及び硫酸ジルコニウムに代えて、従来公知の亜鉛
及びコバルトを夫々添加した以外は、上記の方法によ
り、表1に示す亜鉛及びコバルトを含有する従来の水酸
化ニッケル活物質を製造した。また、比較のため、コバ
ルトとジルコニウムの含有量が所定の割合を越えた表1
及び表2に示す水酸化ニッケル活物質粉末を製造した。
得られた本発明の水酸化ニッケル活物質粉末の粒径は、
夫々約10μmであった。また、その粉末のタップ密度
は約2.1g/ccであった。
EXAMPLE An aqueous solution of nickel sulphate prepared by dissolving 1.6 mol / l of nickel sulphate in water prepared in a large number of containers was added to each of 25 wt. % Aqueous ammonia was added and stirred to prepare a nickel sulfate aqueous solution having a pH of 10.5 to 11 in which a nickel amine complex was formed. Cobalt sulphate and zirconium sulphate were added to each of the prepared liquids at various addition amounts and molar ratios and dissolved by stirring. While maintaining the pH of 10.5 to 11.0, caustic soda was gradually added and stirred. And 50 ℃
The reaction was carried out uniformly over the whole, and nickel hydroxide was deposited and formed. Thereafter, this was filtered, the nickel hydroxide precipitate was washed with water, and then dried by heating at about 50 to 70 ° C. to contain Zr and Co in the nickel hydroxide crystal as solid solutions in respective proportions. A spherical type nickel hydroxide active material as shown in 2 was obtained. On the other hand, for comparison, the conventional nickel hydroxide active material containing zinc and cobalt shown in Table 1 was prepared by the above-mentioned method except that conventionally known zinc and cobalt were added instead of cobalt sulfate and zirconium sulfate, respectively. Was manufactured. In addition, for comparison, the content of cobalt and zirconium exceeds a predetermined ratio.
And the nickel hydroxide active material powder shown in Table 2 was manufactured.
The particle size of the obtained nickel hydroxide active material powder of the present invention is
Each was about 10 μm. The tap density of the powder was about 2.1 g / cc.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 [Table 2]

【0010】上記の表1及び表2に示す夫々の水酸化ニ
ッケル活物質粉末を用いて、次のように非焼結式ニッケ
ル電極を製造した。即ち、夫々の活物質粉末100重量
部に導電剤としてCoO 8重量部を混合し、これに1
%CMC水溶液37重量部を添加混練してペースト状と
し、これを多孔度95%の発泡ニッケル基板に充填し、
常法により加熱乾燥、プレスして夫々の容量1150m
Ahの非焼結式ニッケル電極を作製した。
Non-sintered nickel electrodes were manufactured as follows using the nickel hydroxide active material powders shown in Tables 1 and 2 above. That is, 100 parts by weight of each active material powder was mixed with 8 parts by weight of CoO as a conductive agent, and 1
% KMC aqueous solution 37 parts by weight is added and kneaded to form a paste, which is filled in a foamed nickel substrate having a porosity of 95%,
Heat drying and pressing by the usual method, each capacity 1150m
A non-sintered nickel electrode of Ah was produced.

【0011】夫々の上記非焼結式ニッケル電極と下記の
ように製造した容量2000mAhの水素吸蔵合金電極
を負極としてセパレータを介して積層、捲回し、これを
円筒缶内に収容し、比重1.33のアルカリ電解液を
1.95ml注入し、気密に施蓋してAAサイズ、11
00mAhのニッケル・水素蓄電池を夫々製造した。該
負極は、MmNi3.3 Co1.0 Mn0.4 Al0.3 から成
る水素吸蔵合金粉末100重量部とニッケル粉10重量
部、PVdF2重量部の混合物を1%CMC水溶液20
重量%と共に混練してペースト状とし、これを厚み0.
07mm、開孔率38%、孔径1.5mmのパンチング
メタルに塗布充填、加熱乾燥、プレスして製造した。
Each of the above-mentioned non-sintered nickel electrodes and a hydrogen storage alloy electrode having a capacity of 2000 mAh manufactured as described below were laminated and wound as a negative electrode via a separator, which was housed in a cylindrical can and had a specific gravity of 1. Inject 1.95 ml of 33 alkaline electrolyte, cover with air-tightness, AA size, 11
00mAh nickel-hydrogen storage batteries were manufactured respectively. The negative electrode was prepared by mixing a mixture of 100 parts by weight of hydrogen storage alloy powder consisting of MmNi 3.3 Co 1.0 Mn 0.4 Al 0.3, 10 parts by weight of nickel powder and 2 parts by weight of PVdF with a 1% CMC aqueous solution 20.
It was kneaded together with wt% to form a paste, which had a thickness of 0.
A punching metal having a diameter of 07 mm, a porosity of 38%, and a hole diameter of 1.5 mm was applied, filled, heated and dried, and pressed.

【0012】このように製造した夫々の密閉アルカリ蓄
電池につき、充放電サイクル寿命試験、高温充電試験、
利用率について夫々試験した。充放電サイクル寿命試験
は、上記の夫々の電池につき、温度23±2℃で、1C
の電流で充電した後、1Cの電流で1.0Vまで行っ
た。充電制御は−ΔV制御で行った。而して700サイ
クル目の20℃、0.2C充放電で測定した初期容量に
対する容量維持率を測定した。高温充電試験は、上記の
夫々の電池につき、50℃の温度で、0.2Cの電流で
150%充電した後、20℃で0.2Cの電流で1.0
Vまで放電し、20℃、0.2C充放電で測定した容量
に対するその容量維持率を測定した。利用率は、上記の
夫々の電池につき、使用したNi(OH)2 g数×28
9mAh/gの理論容量に対する実容量から求めた。そ
の結果は、上記表1及び表2に示す通りであった。
For each sealed alkaline storage battery manufactured in this way, a charge / discharge cycle life test, a high temperature charge test,
Each was tested for utilization. The charge / discharge cycle life test was conducted at a temperature of 23 ± 2 ° C. and 1 C for each of the above batteries.
After being charged with a current of 1V, the current was increased to 1.0V with a current of 1C. Charge control was performed by -ΔV control. Then, the capacity retention rate with respect to the initial capacity measured at 20 ° C. and 0.2 C charge / discharge at the 700th cycle was measured. The high temperature charging test was carried out by charging each of the above batteries at a temperature of 50 ° C. with a current of 0.2 C at 150% and then with a current of 0.2 C at 20 ° C. for 1.0%.
The battery was discharged to V and the capacity retention ratio to the capacity measured at 20 ° C. and 0.2 C charge / discharge was measured. The utilization rate is the number of Ni (OH) 2 g used for each of the above batteries x 28
It was calculated from the actual capacity against the theoretical capacity of 9 mAh / g. The results were as shown in Tables 1 and 2 above.

【0013】該表1及び表2から明らかなように、Co
とZrの含有率が所定の範囲内にある本発明の水酸化ニ
ッケル活物質粉末を用いて製造した本発明の非焼結式ニ
ッケル電極を正極とした本発明の電池実施例1〜9は、
水酸化ニッケル活物質粉末の粒子中に従来のCo又はZ
n単独やCoとZnを共に含有する水酸化ニッケル活物
質粉末を用いて製造した従来の非焼結式ニッケル電極を
正極とした電池、従来例1〜3に比し、特に700サイ
クル目の容量維持率及び高温充電特性において向上す
る。然し乍ら、比較例1,2,4が示すように、Zrの
含有率が0.1wt.%未満であるとき、或いはCoの
含有率が0.2未満であるときは、700サイクル目の
容量維持率が望ましい80%以上にならず、また高温充
電特性の容量維持率が望ましい60%以上にならず、従
って、実施例1,6が示すように、Zrは少なくとも
0.1wt.%、Coは少なくとも0.2wt.%含有
することが必要であることが判る。また、比較例2,4
が示すように、Zr及びCoの含有率の上限が夫々4w
t.%及び5wt.%を越えても、上記の利用率、サイ
クル寿命、高温充電特性の全てにおいて良いが、夫々の
添加量の増大に伴い、その夫々の特性が増大するわけで
もないので、経済的見地からZrの添加量は4wt.%
まで、Coの添加量は5wt.%までで足りるとの結論
に達した。
As is clear from Tables 1 and 2, Co
The battery examples 1 to 9 of the present invention using the non-sintered nickel electrode of the present invention manufactured by using the nickel hydroxide active material powder of the present invention in which the contents of Zr and Zr are within a predetermined range are
Conventional Co or Z in the particles of nickel hydroxide active material powder
Batteries using a conventional non-sintered nickel electrode produced by using a nickel hydroxide active material powder containing n alone or both Co and Zn as a positive electrode, particularly the capacity at the 700th cycle compared to Conventional Examples 1 to 3. The maintenance rate and high temperature charging characteristics are improved. However, as shown in Comparative Examples 1, 2, and 4, the Zr content is 0.1 wt. %, Or when the Co content is less than 0.2, the capacity retention rate at the 700th cycle does not become 80% or more, and the capacity retention rate of high-temperature charging characteristics is preferably 60% or more. Therefore, as shown in Examples 1 and 6, Zr is at least 0.1 wt. %, Co is at least 0.2 wt. It turns out that it is necessary to contain%. In addition, Comparative Examples 2 and 4
, The upper limits of the Zr and Co contents are 4 w each.
t. % And 5 wt. %, The above-mentioned utilization rate, cycle life, and high-temperature charging characteristics are all good, but since the respective characteristics do not increase with the increase of the addition amount of each, Zr The addition amount is 4 wt. %
Up to 5 wt. We have come to the conclusion that up to% is sufficient.

【0014】このように、本発明によれば、Zr0.1
〜4wt.%、Co0.2〜5wt.%を含有する粒子
集団から成る水酸化ニッケル活物質を集電用多孔基板に
充填して成る非焼結式ニッケル電極は、従来のCoやZ
nを含有する粒子集団から成る水酸化ニッケル活物質を
集電用多孔基板に充填して成る従来の非焼結式ニッケル
電極を正極に用いた場合に比し、活物質粒子、電極の膨
潤の抑制効果が向上し、利用率は90%以上を保ち、サ
イクル寿命の増大、高温での容量維持率の向上をもたら
す。尚、種々検討した所、含有Zrは、アルカリ電解液
に溶出しにくいので、これによる水酸化ニッケル粒子の
膨潤現象の抑制効果が長期に亘って維持される効果があ
る。一方、含有CoはCoOOHとなり、導電性に寄与
するものと考えられる。
Thus, according to the present invention, Zr0.1
~ 4 wt. %, Co 0.2-5 wt. %, A non-sintered nickel electrode obtained by filling a porous substrate for current collection with a nickel hydroxide active material composed of a particle group containing 1% of
In comparison with the case where a conventional non-sintered nickel electrode obtained by filling a porous substrate for current collection with a nickel hydroxide active material composed of a particle group containing n is used as a positive electrode, the active material particles and the swelling of the electrode The suppression effect is improved, the utilization rate is maintained at 90% or more, the cycle life is increased, and the capacity retention rate at high temperature is improved. As a result of various studies, the content of Zr is less likely to be eluted in the alkaline electrolyte, and thus the effect of suppressing the swelling phenomenon of the nickel hydroxide particles can be maintained for a long period of time. On the other hand, the contained Co becomes CoOOH and is considered to contribute to conductivity.

【0015】このように、上記の本発明の水酸化ニッケ
ル活物質粉末の粒子は、Zr及びCoの含有により、充
放電サイクルの繰り返しでの膨潤の抑制効果が向上する
ため、充放電サイクル寿命、高容量維持率の増大をもた
らす。しかし乍ら、反面、同時に充填活物質粉末粒子相
互並びに多孔基板との密着性が低くなり、利用率が低下
し、サイクル寿命も短くなる嫌いがある。そこで、該活
物質に、良好な導電性を有するコバルト系添加剤、即
ち、コバルト、CoO、Co(OH)2 、CoOxなど
のコバルト化合物から選択した少なくとも1種を該活物
質に対し8wt.%程度添加混合して活物質合剤とし、
これにCMCなどの粘稠剤液で混練したものを、集電用
多孔基板に充填し、乾燥、プレスすることにより非焼結
式ニッケル電極とすることが考えられるが、その活物質
合剤の充填密度が低過ぎる場合は、上記の特性の向上が
認められず、高過ぎる場合は、電解液が不足し、逆に、
サイクル寿命の短縮などをもたらす。
As described above, since the particles of the nickel hydroxide active material powder of the present invention described above contain Zr and Co, the effect of suppressing swelling during repeated charging / discharging cycles is improved. High capacity retention rate is increased. However, on the other hand, at the same time, the adhesiveness between the particles of the filled active material powder and the porous substrate is lowered at the same time, the utilization factor is lowered, and the cycle life is shortened. Therefore, a cobalt-based additive having good conductivity, that is, at least one selected from cobalt compounds such as cobalt, CoO, Co (OH) 2 , and CoOx is added to the active material in an amount of 8 wt. % Add and mix to make active material mixture,
It is considered that a non-sintered nickel electrode is obtained by filling a porous substrate for current collection with a mixture obtained by kneading this with a viscous liquid such as CMC, and drying and pressing. If the packing density is too low, the above properties are not improved, and if the packing density is too high, the electrolyte solution is insufficient, and conversely,
Cycle life is shortened.

【0016】この観点より種々検討した結果、上記の本
発明の水酸化ニッケル活物質粉末に、上記のコバルト系
添加剤粉末を添加混合して成る活物質合剤のペーストを
集電用多孔基板に充填し、乾燥した後加圧して集電用基
板を圧縮してその活物質合剤の充填密度を2.4〜2.
9g/ccとすることにより、利用率及びサイクル寿命
の向上した非焼結式ニッケル電極を得ることができた。
As a result of various studies from this viewpoint, a paste of an active material mixture prepared by adding and mixing the above-mentioned cobalt-based additive powder to the above-mentioned nickel hydroxide active material powder of the present invention is used as a current collecting porous substrate. After being filled and dried, pressure is applied to compress the current collecting substrate so that the packing density of the active material mixture is 2.4 to 2.
By setting it to 9 g / cc, a non-sintered nickel electrode with improved utilization and cycle life could be obtained.

【0017】次にその詳細な実施例につき説明する。 実施例 前記表1の実施例3に相当するZr1.0wt.%及び
Co0.7wt.%を含有する球状タイプの粒子の集団
(平均粒径10μm、タップ密度約2.1g/ccを有
する)から成る本発明の水酸化ニッケル活物質粉末10
0重量部と平均粒径5μmのCoO粉末8重量部とを混
合した活物質合剤に1%CMC水溶液37重量部を添加
混練してペースト状とし、これを厚さ1.1mm、多孔
度96%の発泡ニッケル多孔基板に充填し、加熱乾燥後
2t/cm2 の加圧力でプレスして非焼結式ニッケル電
極を製造した。加圧度を種々変えて、下記表3に示すよ
うな活物質合剤の充填密度を夫々もつ電極を製造した、
充填密度は、活物質合剤ペーストの非焼結式ニッケル極
板における充填密度を産出した。この夫々の非焼結式ニ
ッケル電極を用いて、前記の実施例で作製した水素吸蔵
電極を夫々セパレータを介して積層、捲回し、これを円
筒状缶に収容し、KOHを主体とした比重1.3のアル
カリ電解液を注入して、AAサイズ、1100mAhの
Ni/Mh電池を夫々作製した。この製造過程におい
て、活物質合剤のペーストを充填した発泡ニッケル多孔
基板をプレスする際のこれらの電池につき、次のように
充放電サイクル試験を行い、利用率と700サイクル目
の容量維持率を求めた。その利用率は、温度20℃にお
いて、0.2Cの電流で150%充電後0.2Cの電流
で1Vまで放電することを6回行った後の容量から産出
した。サイクル寿命試験は、温度25℃において、1C
の電流で充電し、−ΔV制御により充電を制御後、1C
の電流で1Vまで放電することを繰り返し、700サイ
クル目の容量を測定し、この値を20℃、0.2Cで充
放電した容量を100%として産出した容量維持率%で
評価した。その結果は下記表3に示す通りであった。
Next, a detailed embodiment will be described. Example Zr 1.0 wt. % And Co 0.7 wt. % Nickel-containing active material powder 10 of the present invention consisting of a population of spherical type particles containing 10% (having an average particle size of 10 μm and a tap density of about 2.1 g / cc).
37 parts by weight of a 1% CMC aqueous solution was added to an active material mixture in which 0 parts by weight and 8 parts by weight of CoO powder having an average particle size of 5 μm were mixed and kneaded to form a paste, which had a thickness of 1.1 mm and a porosity of 96. % Foamed nickel porous substrate, heated and dried, and then pressed at a pressing force of 2 t / cm 2 to produce a non-sintered nickel electrode. Electrodes having various packing densities of the active material mixture as shown in Table 3 below were produced by changing the degree of pressurization.
The packing density yielded the packing density of the active material mixture paste in the non-sintered nickel plate. Using each of these non-sintered nickel electrodes, the hydrogen storage electrodes produced in the above-mentioned examples were laminated and wound via separators, respectively, which were then housed in a cylindrical can and made to have a specific gravity of mainly KOH of 1 .3 alkaline electrolyte was injected to produce AA size and 1100 mAh Ni / Mh batteries, respectively. In this manufacturing process, a charging / discharging cycle test was performed on these batteries when pressing the foamed nickel porous substrate filled with the paste of the active material mixture, and the utilization rate and the capacity retention rate at the 700th cycle were evaluated as follows. I asked. The utilization rate was produced from the capacity after six times of charging at 150 ° C. with a current of 0.2 C and discharging to 1 V at a current of 0.2 C at a temperature of 20 ° C. Cycle life test is 1C at 25 ℃
1C after charging is controlled by -ΔV control
The capacity at the 700th cycle was measured by repeating the discharge up to 1 V with the current of 1., and this value was evaluated as the capacity retention rate% with the capacity charged and discharged at 0.2 ° C. as 100%. The results are shown in Table 3 below.

【0018】[0018]

【表3】 [Table 3]

【0019】該表3から明らかなように、利用率100
%以上、700サイクル目の容量維持率90%以上を確
保するためには、その活物質合剤の充填密度は、2.4
〜2.9g/ccの範囲が必要であることが判った。
As is clear from Table 3, the utilization rate of 100
% Or more and the capacity retention rate at the 700th cycle of 90% or more, the packing density of the active material mixture is 2.4.
It has been found that a range of ~ 2.9 g / cc is required.

【0020】尚、上記の実施例で使用したCoOの代わ
りに、Co、CoO以外のコバルト酸化物、コバルト水
酸化物の単独又はその混合物の粉末を使用しても、同様
に充放電サイクル寿命の向上効果が得られた。
Even if powders of cobalt oxides other than Co and CoO or cobalt hydroxides alone or in a mixture thereof are used in place of the CoO used in the above-mentioned examples, the charge-discharge cycle life is similarly improved. The improvement effect was obtained.

【0021】上記の本発明の水酸化ニッケル活物質合剤
を使用し、非焼結式ニッケル電極について、種々、試験
研究を行った結果、更にこの合剤にニッケル粉、好まし
くはカーボニルニッケル粉末を添加することにより、特
に急放電性能を向上せしめることができることを知見し
た。その実施の1例を次に説明する。
Using the above-mentioned nickel hydroxide active material mixture of the present invention, various non-sintered nickel electrodes were tested and studied. As a result, nickel powder, preferably carbonyl nickel powder, was further added to this mixture. It was found that the rapid discharge performance can be particularly improved by adding it. An example of the implementation will be described below.

【0022】実施例 前記表1の実施例3に示すZr1.0wt.%及びCo
0.7wt.%を含有する球状タイプの粒子の集団から
成る平均粒径10μm、タップ密度約2.1g/ccを
有する水酸化ニッケル活物質粉末100重量部と平均粒
径CoO粉末8重量部を添加混合して成る活物質合剤粉
末に、更に下記表4に示すように、カーボニルニッケル
粉INCO#255(フィッシャーサイズ2μm以上)
及びINCO#210(フィッシャーサイズ1.3μm
以下)を夫々7重量部添加混合して成る夫々の活物質合
剤に1%CMC水溶液37重量部を添加混練しペースト
状とし、その夫々を厚さ1.1mm、多孔度96%の発
泡ニッケル多孔基板に夫々充填し、加熱乾燥後、一定の
加圧力でプレスして厚さ0.55mm、充填密度2.6
g/ccの非焼結式ニッケル電極を作製した。この2種
の電極を正極とし、前記の実施例と同じ水素吸蔵合金電
極を負極とし、セパレータを介して積層捲回し、その後
も前記の実施例と同様にしてAAサイズ1100mAh
のニッケル・水素蓄電池を夫々作製した。夫々の電池に
ついて、20℃の温度下で、0.2Cの電流で150%
充電し、0℃で3Cの電流で1Vまで放電する急放電試
験を行い、その急放電時の容量を測定し、その値を20
℃で0.2Cの充放電したときのその放電容量に対する
比率を容量維持率として求めた。その結果を下記表4に
示す。尚、比較のため、Ni粉末を添加しない、CoO
のみを8重量%添加した活物質合剤を含む同じ充填密度
を有する前記の表3の実施例2の非焼結式ニッケル電極
を用いて同様に製造した電池について上記と同様に急放
電試験を行った結果を表4に比較例1として示す。
Example Zr 1.0 wt. % And Co
0.7 wt. % Of nickel-type active material powder having an average particle size of 10 μm and a tap density of about 2.1 g / cc, which is composed of a group of spherical type particles containing 10% by weight, and 8 parts by weight of an average particle size CoO powder. As shown in Table 4 below, carbonyl nickel powder INCO # 255 (Fisher size 2 μm or more)
And INCO # 210 (Fisher size 1.3μm
Each of the following) was added and mixed with 7 parts by weight of each active material mixture, and 37 parts by weight of a 1% CMC aqueous solution was added and kneaded to form a paste, each of which had a thickness of 1.1 mm and a porosity of 96% and nickel foam. Each of the porous substrates was filled, heated and dried, and then pressed with a constant pressing force to have a thickness of 0.55 mm and a packing density of 2.6.
A non-sintered nickel electrode with g / cc was produced. These two kinds of electrodes were used as a positive electrode, the same hydrogen storage alloy electrode as in the above-mentioned example was used as a negative electrode, and laminated and wound with a separator interposed therebetween, and thereafter, in the same manner as in the above-mentioned example, AA size 1100 mAh.
The respective nickel-hydrogen storage batteries were manufactured. For each battery, 150% at a temperature of 20 ° C and a current of 0.2C
Charge and perform a rapid discharge test at 0 ° C with a current of 3C to 1V, measure the capacity during the rapid discharge, and set the value to 20.
The ratio to the discharge capacity at the time of charging / discharging at 0.2 C at ° C was determined as the capacity retention rate. The results are shown in Table 4 below. For comparison, no Ni powder was added to CoO.
A battery prepared in the same manner using the non-sintered nickel electrode of Example 2 of Table 3 having the same packing density containing the active material mixture containing only 8% by weight of the active material mixture was subjected to the rapid discharge test in the same manner as above. The results obtained are shown in Table 4 as Comparative Example 1.

【0023】[0023]

【表4】 [Table 4]

【0024】上記表4から明らかなように、本発明の非
焼結式ニッケル電極として、コバルト系添加剤に、更に
ニッケル粉末を添加した場合は、コバルト系添加剤のみ
を添加した場合に比し、低温時の急放電特性が著しく向
上することが判る。尚、このような導電性の添加剤を添
加しない場合は、0℃、2Cでの放電は、殆ど得られな
いことが試験により判った。
As is clear from Table 4, when the nickel powder was further added to the cobalt-based additive as the non-sintered nickel electrode of the present invention, compared to the case where only the cobalt-based additive was added. It can be seen that the rapid discharge characteristic at a low temperature is remarkably improved. In addition, it was found by a test that when such a conductive additive was not added, discharge at 0 ° C. and 2 C was hardly obtained.

【0025】更に、本発明は、上記の本発明の水酸化ニ
ッケル活物質から成る非焼結式ニッケル電極を用いて、
特に高温充電特性と低温急放電特性を向上したアルカリ
蓄電池を提供するもので、そのためには、特にそのアル
カリ電解液としてLiOH0〜4wt.%、KOH20
〜40wt.%から成るアルカリ電解液又はLiOH0
〜4wt.%、KOH+NaOH20〜40%、NaO
H0〜10wt.%から成るアルカリ電解液を用いるこ
とが好ましい。
Furthermore, the present invention uses the non-sintered nickel electrode comprising the above nickel hydroxide active material of the present invention,
In particular, the present invention provides an alkaline storage battery having improved high-temperature charge characteristics and low-temperature rapid discharge characteristics. For that purpose, LiOH 0-4 wt. %, KOH20
-40 wt. % Alkaline electrolyte or LiOH 0
~ 4 wt. %, KOH + NaOH 20-40%, NaO
H0-10 wt. %, It is preferable to use an alkaline electrolyte.

【0026】次に、その詳細な実施例を説明する。 実施例 前記の実施例と同じZr1wt.%とCo0.7wt.
%含有する球状タイプの水酸化ニッケル100重量部に
CoO粉末8重量部とを1%CMC水溶液37重量部を
添加し混練してペースト状とし、これを発泡ニッケル多
孔基板に充填し、乾燥、プレスして非焼結式ニッケル電
極を作製し、これを正極とし、前記の実施例で製造した
と同じ水素吸蔵合金電極を負極としてセパレータを介し
て積層捲回し、これを円筒状缶に収容した後、アルカリ
電解液の組成や濃度を図3,図4,図5,図6示に示す
ように変えた種々のアルカリ電解液を、上記の夫々の電
池缶内に一定量に注入した後、施蓋し密閉し、夫々のニ
ッケル・水素蓄電池を作製した。
Next, a detailed embodiment will be described. Example The same Zr1wt. % And Co 0.7 wt.
% Spherical type nickel hydroxide 100 parts by weight, CoO powder 8 parts by weight, and 1% CMC aqueous solution 37 parts by weight are added and kneaded to form a paste, which is filled in a foamed nickel porous substrate, dried, and pressed. Then, a non-sintered nickel electrode was produced, and this was used as a positive electrode, and the same hydrogen storage alloy electrode as that produced in the above-mentioned examples was laminated and wound as a negative electrode via a separator, and then housed in a cylindrical can. After pouring a certain amount of various alkaline electrolytes having different compositions and concentrations of the alkaline electrolytes as shown in FIGS. 3, 4, 5 and 6 into the battery cans described above, The lid and the lid were sealed, and each nickel-hydrogen storage battery was manufactured.

【0027】上記の夫々の電池について、常温放電試
験、低温急放電試験と高温充電試験を行った。 1)常温放電試験は、20℃において、0.2Cの電流
で150%充電後、0.2Cで1.0Vまで放電した。 2)低温急放電試験は、20℃において、0.2Cの電
流で150%充電後、−10℃において1Cの電流で1
Vまで放電した。 3)高温充電試験は、50℃において、0.2Cの電流
で150%充電した後、20℃において0.2Cで1.
0Vまで放電した。 アルカリ電解液組成がKOH+LiOHの場合及びKO
H+NaOH+LiOHの上記の1),2),3)の夫
々の試験結果は、図3及び図4並びに図5及び図6に夫
々示す通りであった。
Each of the above batteries was subjected to a room temperature discharge test, a low temperature rapid discharge test and a high temperature charge test. 1) In the room temperature discharge test, at 20 ° C., 150% charge was performed at a current of 0.2 C, and then discharge was performed at 0.2 C to 1.0 V. 2) The low-temperature rapid discharge test was carried out at 20 ° C after charging 150% with a current of 0.2C and then at 1 ° C with a current of 1C.
Discharged to V. 3) The high temperature charging test was conducted by charging 150% with a current of 0.2C at 50 ° C, and then at 20 ° C at 0.2C.
It was discharged to 0V. When the alkaline electrolyte composition is KOH + LiOH and KO
The test results of the above 1), 2), and 3) of H + NaOH + LiOH were as shown in FIGS. 3 and 4 and FIGS. 5 and 6, respectively.

【0028】図3〜図6において、%は重量%である。
これらの図から明らかなように、KOH単独、KOH+
LiOHの2成分から成るアルカリ電解液において、K
OH20〜40wt.%、LiOH0〜4wt.%の範
囲において、特に低温放電特性並びに高温充電特性が良
いことが判る。LiOH5wt.%は、KOH20w
t.%の電解液に溶解しないので不適であった。LiO
Hの添加は、強固なZr、Co固溶体を含有するNi
(OH)2 結晶の層間にLi+ イオンが侵入し、結晶に
歪みを与える結果、活性を高め、利用率を向上せしめ
る。KOHの添加は、Ni(OH)2 が放電に必要とす
るOH- イオンの量を規制し、少なすぎるとOH- イオ
ンの供給が不足し、また、多すぎると電解液の粘度が上
昇し、移動速度が遅くなり、供給量が不足することゝな
り、上記の範囲の添加量が適当であった。また、図5及
び図6から明らかなように、KOH+NaOHから成る
アルカリ電解液の場合は、KOH+NaOH20〜40
wt.%の範囲の添加量で、且つNaOHは10wt.
%以下の範囲の添加量において、低温放電特性及び高温
充電特性の両特性を共に良好に維持できることが判る。
更に詳細には、KOH+NaOH20〜40wt.%の
範囲において、NaOHの添加量を増大に伴い高温充電
特性は増大するが、低温放電特性は、その逆で、その添
加量を増大するとき低下傾向となるが、その両特性を良
好に維持するには、NaOHの添加量は10wt.%ま
でにとゞめることが適当であることが認められた。Na
OHの添加は、Ni(OH)2 の酸素過電圧を高める。
これは、Na+ イオンがNi(OH) 2 の結晶表面で酸
素の発生を抑制するからであると考えられる。また、N
+ イオンもNi(OH)2 の結晶中に侵入するが、L
+ イオンより大径のため、H+ (プロトン)の移動を
阻害し、放電活性を低下させる嫌いがあるので、多すぎ
ると放電活性の低下をもたらす。上記の試験の結果、N
aOHは、10wt.%までの添加量が適当であること
が認められた。尚、図5及び図6では、KOH+NaO
Hから成るアルカリ電解液にLiを1wt.%添加した
場合に上記の電池特性を示したが、Liの添加量を0〜
4wt.%の範囲添加した場合でも上記と同様の良好な
低温放電特性並びに高温充電特性を示すことが認められ
た。
In FIGS. 3 to 6,% means% by weight.
As is clear from these figures, KOH alone, KOH +
In alkaline electrolyte consisting of two components of LiOH, K
OH 20-40 wt. %, LiOH 0-4 wt. % Scope
In particular, the low temperature discharge characteristics and high temperature charge characteristics are particularly good
I understand that LiOH 5 wt. % Is KOH20w
t. % Was not suitable because it did not dissolve in the electrolyte. LiO
The addition of H is performed by adding Ni containing a solid Zr and Co solid solution.
(OH)TwoLi between crystal layers+Ions penetrate and enter the crystal
As a result of giving distortion, activity is increased and utilization rate is improved.
You. The addition of KOH is Ni (OH)TwoIs needed for discharge
OH-It regulates the amount of ions, and if it is too small, OH-Io
If the amount of electrolyte supplied is insufficient or too much, the viscosity of the electrolyte will increase.
Rise, the movement speed becomes slow, and the supply amount becomes insufficient.
Therefore, the addition amount within the above range was appropriate. In addition,
And as can be seen from FIG. 6, consisting of KOH + NaOH
In the case of alkaline electrolyte, KOH + NaOH 20-40
wt. %, And NaOH is 10 wt.
% Low temperature discharge characteristics and high temperature
It can be seen that both the charging characteristics can be maintained well.
More specifically, KOH + NaOH 20-40 wt. %of
High temperature charging with increasing amount of NaOH in the range
The characteristics are increased, but the low temperature discharge characteristics are the opposite and
It tends to decrease as the amount of addition increases, but both characteristics are good.
In order to maintain good condition, the addition amount of NaOH is 10 wt. %
It was found that it is appropriate to stop at. Na
Addition of OH is Ni (OH)TwoIncrease oxygen overvoltage.
This is Na+Ions are Ni (OH) TwoAcid on the crystal surface of
It is considered that this is because the generation of elementary substances is suppressed. Also, N
a+Ions are also Ni (OH)TwoEnter the crystal of
i+Because the diameter is larger than that of ions, H+(Proton) transfer
Too much as it hinders it and reduces discharge activity.
Then, the discharge activity is lowered. As a result of the above test, N
aOH is 10 wt. Appropriate amount added up to
Was recognized. In addition, in FIG. 5 and FIG. 6, KOH + NaO
1 wt. Of Li in an alkaline electrolyte containing H. % Added
In this case, the above battery characteristics were shown, but the addition amount of Li was 0 to
4 wt. %, The same good results as above
Recognized to exhibit low temperature discharge characteristics and high temperature charge characteristics
Was.

【0029】更に本発明は、粒子中にCo及びZrを含
有する水酸化ニッケル活物質粉末において、更に高温充
電特性を向上することができる水酸化ニッケル活物質粉
末を提供するもので、前記の粒子中に、更に亜鉛を含有
することを特徴とする。亜鉛の含有量は、1〜7wt.
%の範囲が好ましい。この水酸化ニッケル活物質粉末の
製造法は、前記した粒子中にCo及びZr含有の水酸化
ニッケル活物質粉末の製造方法と同様にして、その非球
状又は球状タイプの水酸化ニッケル活物質粉末を製造す
ることができる。例えば、好ましい球状タイプのものを
製造するには、ニッケル塩水溶液に、所定のアミン塩を
適量溶解して弱アルカリ性の水溶液とし、これに所定量
のコバルト塩、ジルコニウム塩及び硫酸亜鉛、硝酸亜鉛
などの亜鉛塩を添加し溶解させ、撹拌し乍らこれにアル
カリを徐々に添加すれば、水酸化ニッケルが析出生成す
るので、その結晶中に夫々の所定量のコバルト、ジルコ
ニウム及び亜鉛が固溶体として含有した粒子の集団が得
られる。かくして、その後、これを濾過し、水洗、加熱
乾燥し、必要に応じ粉砕することにより、上記の本発明
の球状タイプの水酸化ニッケル活物質粉末が得られる。
The present invention further provides a nickel hydroxide active material powder containing Co and Zr in the particles, which is capable of further improving high temperature charging characteristics. It is characterized in that it further contains zinc. The content of zinc is 1 to 7 wt.
% Range is preferred. The method for producing the nickel hydroxide active material powder is the same as the method for producing the nickel hydroxide active material powder containing Co and Zr in the particles as described above to obtain the non-spherical or spherical type nickel hydroxide active material powder. It can be manufactured. For example, in order to produce a preferable spherical type, an appropriate amount of a predetermined amine salt is dissolved in a nickel salt aqueous solution to form a weakly alkaline aqueous solution, and a predetermined amount of cobalt salt, zirconium salt and zinc sulfate, zinc nitrate, etc. If the zinc salt is added and dissolved, and the alkali is gradually added to this with stirring, nickel hydroxide precipitates and forms, so each of the crystals contains a predetermined amount of cobalt, zirconium and zinc as a solid solution. A population of particles is obtained. Thus, thereafter, the spherical nickel hydroxide active material powder of the present invention is obtained by filtering this, washing with water, heating and drying, and pulverizing if necessary.

【0030】而して、このように得られた水酸化ニッケ
ル活物質粉末の所定量にコバルト系添加剤を添加し、或
いは更にこれにニッケル粉末を添加し、活物質合剤を調
合し、これに1%CMC水溶液などの粘稠液を添加し混
練してペースト状とし、これを発泡ニッケル多孔基板に
充填し、加熱乾燥、プレスすることにより、本発明の非
焼結式ニッケル電極が得られる。而して、この電極を正
極とし、水素吸蔵合金電極を負極と組み合わせ、上記の
実施例と同様にしてニッケル・水素蓄電池などのアルカ
リ蓄電池を製造することができる。負極については、水
素吸蔵電極に限られないことは勿論である。
Then, a cobalt-based additive is added to a predetermined amount of the nickel hydroxide active material powder thus obtained, or nickel powder is further added thereto to prepare an active material mixture. A non-sintered nickel electrode of the present invention can be obtained by adding a viscous liquid such as a 1% CMC aqueous solution to and kneading it into a paste, filling the foamed nickel porous substrate with heat, drying and pressing. . Thus, by using this electrode as a positive electrode and the hydrogen storage alloy electrode as a negative electrode, an alkaline storage battery such as a nickel-hydrogen storage battery can be manufactured in the same manner as in the above embodiment. Needless to say, the negative electrode is not limited to the hydrogen storage electrode.

【0031】Zr、Co及びZnを含有する本発明の活
物質粉末を使用した場合は、次に、ZrとCoのみを含
有する本発明の活物質粉末を使用した場合に比し、高温
充電特性が向上することを実施例により明らかにする。
In the case of using the active material powder of the present invention containing Zr, Co and Zn, next, as compared with the case of using the active material powder of the present invention containing only Zr and Co, high temperature charging characteristics It will be clarified by the examples that

【0032】実施例 多数の容器内に用意した1.6モル/lの硫酸ニッケル
を水に溶解した硫酸ニッケル水溶液の夫々に、25w
t.%アンモニア水を添加し撹拌してニッケルアミン錯
体が生成された3lのpH10.5〜11の硫酸ニッケ
ル水溶液を調製した。この夫々の調製液に、硫酸コバル
ト、硫酸ジルコニウム及び硫酸亜鉛を種々の添加量とモ
ル比で添加し撹拌して溶解し、そのpH10.5〜1
1.0を保持し乍ら、苛性ソーダを徐々に添加し撹拌
し、50℃で全体に均一な反応を進めて、水酸化ニッケ
ルを析出生成させた。その後、これを濾過し、その水酸
化ニッケル析出物を水洗した後、50〜70℃程度で加
熱乾燥して水酸化ニッケル結晶中にZr、Co及びZn
が夫々の割合で固溶体として含有した水酸化ニッケル活
物質を得た。一方、比較のため、出発原料として、硫酸
ジルコニウムを添加しない以外は、上記と同じ製法によ
り、粒子中にコバルト、亜鉛のみを含有する水酸化ニッ
ケル活物質粉末を製造した。また、出発原料として、亜
鉛を添加しない以外は、上記と同じ製法により、粒子中
にコバルトとジルコニウムのみが含有する表1中の実施
例2に相当する水酸化ニッケル活物質粉末を製造した。
Example: For each nickel sulfate aqueous solution prepared by dissolving 1.6 mol / l nickel sulfate in water prepared in a large number of containers, 25 w
t. % Aqueous ammonia was added and stirred to prepare 3 l of a nickel sulfate aqueous solution having a pH of 10.5 to 11 in which a nickel amine complex was formed. Cobalt sulphate, zirconium sulphate and zinc sulphate were added to the respective preparations at various addition amounts and molar ratios and dissolved by stirring to obtain a pH of 10.5 to 1
While maintaining 1.0, caustic soda was gradually added and stirred, and a uniform reaction was allowed to proceed at 50 ° C. to precipitate nickel hydroxide. Then, this is filtered, the nickel hydroxide precipitate is washed with water, and then dried by heating at about 50 to 70 ° C. to form Zr, Co and Zn in the nickel hydroxide crystal.
To obtain a nickel hydroxide active material containing each as a solid solution. On the other hand, for comparison, a nickel hydroxide active material powder containing only cobalt and zinc in the particles was manufactured by the same manufacturing method as above except that zirconium sulfate was not added as a starting material. Further, a nickel hydroxide active material powder corresponding to Example 2 in Table 1 containing only cobalt and zirconium in the particles was produced by the same production method as described above except that zinc was not added as a starting material.

【0033】このように製造した球状タイプの粒子集団
から成る水酸化ニッケル活物質粉末の夫々について、下
記の同じ条件で非焼結式ニッケル電極とこれを用いたア
ルカリ蓄電池を製造した。即ち、各活物質粉末100重
量部にCoO8重量部を添加し、その活物質合剤に1w
t.%CMC水溶液37重量部を添加し混練してペース
ト状とし、これを発泡ニッケル多孔基板に充填、加熱乾
燥、プレスしてニッケル電極とした。このニッケル電極
と水素吸蔵合金電極とをセパレータを介して積層捲回
し、これを円筒缶に収容し、所定量のアルカリ電解液を
注入し、施蓋密封した。アルカリ電解液は、KOH22
wt.%、NaOH7wt.%、LiOH1wt.%を
水に溶解して比重1.33のものを使用した。かくし
て、AAサイズ、1100mAhのニッケル・水素蓄電
池を製造した。
Non-sintered nickel electrodes and alkaline storage batteries using the same were prepared under the same conditions as described below for each of the nickel hydroxide active material powders made of the spherical type particle group thus manufactured. That is, 8 parts by weight of CoO was added to 100 parts by weight of each active material powder, and 1 w was added to the active material mixture.
t. % CMC aqueous solution was added and kneaded to form a paste, which was filled in a foamed nickel porous substrate, heated and dried, and pressed to obtain a nickel electrode. The nickel electrode and the hydrogen-absorbing alloy electrode were laminated and wound with a separator interposed therebetween, which was housed in a cylindrical can, and a predetermined amount of alkaline electrolyte was injected, and the lid was sealed. Alkaline electrolyte is KOH22
wt. %, NaOH 7 wt. %, LiOH 1 wt. % Was dissolved in water and used with a specific gravity of 1.33. Thus, an AA size, 1100 mAh nickel-hydrogen storage battery was manufactured.

【0034】上記のように製造した夫々の電池につい
て、高温充電試験を行った、即ち、50℃において、
0.2Cの電流で150%充電した後20℃で0.2C
の電流で1.0Vまで放電した。その時の放電容量を測
定した。20℃において、0.2Cの電流で150%充
電した後20℃で0.2Cの電流で1.0Vまで放電し
たときの放電容量を100%とし、上記の高温充電試験
での容量維持率%を求めた。
A high temperature charging test was conducted on each of the batteries produced as described above, that is, at 50 ° C.
After charging 150% with 0.2C current, 0.2C at 20 ℃
Was discharged up to 1.0 V. The discharge capacity at that time was measured. At 20 ° C, 150% charge at 0.2C current, and then at 20 ° C discharge to 1.0V at 0.2C current, the discharge capacity is taken as 100%, and the capacity retention rate% in the above high temperature charge test I asked.

【0035】[0035]

【表5】 [Table 5]

【0036】表5から明らかなように、粒子中にZr、
Co及びZnの3成分を含有する水酸化ニッケル活物質
粉末は、粒子中にZrを含有しないCo及びZnの2成
分を含有するもの(従来例)より著しく高温充電特性が
優れ、また、本発明の先の実施例に対応するCo及びZ
rの2成分を含有するもの(比較例)に比し、更に高温
充電特性が向上することが判る。この場合、該粒子中に
Zrの含有率は0.1〜4wt.%、Co0.2〜3w
t.%及びZn1〜7wt.%の範囲で含有するとき、
上記の優れた高温充電特性を保持していた。
As is clear from Table 5, Zr,
The nickel hydroxide active material powder containing three components of Co and Zn has significantly higher high-temperature charging characteristics than those containing two components of Co and Zn that do not contain Zr in the particles (conventional example). And Z corresponding to the previous embodiment of
It can be seen that the high-temperature charging characteristics are further improved as compared with those containing two components of r (Comparative Example). In this case, the Zr content in the particles is 0.1 to 4 wt. %, Co 0.2-3w
t. % And Zn 1 to 7 wt. When contained in the range of%,
The above-mentioned excellent high temperature charging characteristics were retained.

【0037】上記のCo、Zr及びZnを含有する水酸
化ニッケル粒子集団から成る水酸化ニッケル活物質粉末
は、上記のCo及びZnを含有するものと同様に、上記
実施例と同様にして非焼結式ニッケル電極を製造し、ま
たこれを正極としてアルカリ蓄電池を製造することがで
きる。
The nickel hydroxide active material powder composed of the above-mentioned nickel hydroxide particle group containing Co, Zr and Zn was not burned in the same manner as in the above-mentioned Examples, like the above-mentioned powder containing Co and Zn. An alkaline nickel battery can be manufactured by producing a bonded nickel electrode and using this as a positive electrode.

【0038】[0038]

【発明の効果】このように、本願発明によれば、水酸化
ニッケル活物質粉末の粒子中に、コバルト0.2〜5w
t.%及びジルコニウム0.1〜4wt.%を含有する
ので、これを用いて作製した非焼結式ニッケル電極は、
アルカリ蓄電池の正極として使用したとき、その充放電
サイクルによる該粒子の膨潤の抑制効果、従って、電極
の膨潤の抑制効果は、従来のコバルト又は亜鉛を含有す
るものに比し向上し、サイクル寿命の増大し、容量維持
率の向上した電池が得られる。
As described above, according to the present invention, 0.2 to 5 w of cobalt is contained in the particles of the nickel hydroxide active material powder.
t. % And zirconium 0.1-4 wt. %, The non-sintered nickel electrode produced using this contains
When used as the positive electrode of an alkaline storage battery, the effect of suppressing the swelling of the particles due to its charge / discharge cycle, therefore, the effect of suppressing the swelling of the electrode is improved as compared with the conventional one containing cobalt or zinc, and the cycle life is improved. A battery having an increased capacity retention rate can be obtained.

【0039】また、この活物質粉末は、コバルト系添加
剤粉を混入して成る活物質合剤を集電多孔基板に充填
し、加圧して活物質合剤の充填密度を2.4〜2.9g
/ccとするときは、活物質の利用率は向上し、充放電
サイクル寿命の更なる延長をもたらす。
The active material powder is filled with an active material mixture prepared by mixing cobalt-based additive powder in a current collecting porous substrate and pressurized to have a packing density of the active material mixture of 2.4 to 2. .9 g
When it is set to be / cc, the utilization factor of the active material is improved, and the charging / discharging cycle life is further extended.

【0040】更に、活物質合剤に、ニッケル粉を添加し
たものを活物質合剤とし、上記の充填密度2.4〜2.
9g/ccとするときは、活物質の利用率の向上と、充
放電サイクル寿命を延長し、更には、急放電特性の向上
をもたらす。
Furthermore, an active material mixture obtained by adding nickel powder to the active material mixture is used as the active material mixture, and the packing density of 2.4 to 2.
When it is 9 g / cc, the utilization factor of the active material is improved, the charge / discharge cycle life is extended, and further the rapid discharge property is improved.

【0041】また、上記の本発明の活物質粉末を用いて
製造した非焼結式ニッケル電極を正極とし、且つ電解液
としてLiOH0〜4wt.%、KOH20〜40w
t.%から成るアルカリ電解液又はLiOH0〜4w
t.%、KOH+NaOH20〜40%、NaOH0〜
10wt.%から成るアルカリ蓄電池は、低温放電特性
及び高温充電特性の向上をもたらす。
Further, the non-sintered nickel electrode manufactured by using the above-mentioned active material powder of the present invention is used as a positive electrode, and LiOH 0 to 4 wt. %, KOH 20-40w
t. % Alkaline electrolyte or LiOH 0-4w
t. %, KOH + NaOH 20-40%, NaOH 0-
10 wt. % Alkaline storage batteries provide improved low temperature discharge characteristics and high temperature charge characteristics.

【0042】また、上記の粒子中に、更にZnを含有す
る水酸化ニッケル活物質粉末を用いて非焼結式ニッケル
電極を作製するときは、これを正極としたアルカリ蓄電
池は、該電池の高温充電特性を特に向上する。
When a non-sintered nickel electrode is prepared by using a nickel hydroxide active material powder further containing Zn in the above particles, an alkaline storage battery using this as a positive electrode is a high temperature battery. The charging characteristics are particularly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の水酸化ニッケル活物質粉末の球状タ
イプの粒形を示す図面代用電子顕微鏡写真である。
FIG. 1 is a drawing-substitute electron micrograph showing a spherical type particle shape of the nickel hydroxide active material powder of the present invention.

【図2】 本発明の水酸化ニッケル活物質粉末の球状タ
イプの粒形を示す図面代用電子顕微鏡写真である。
FIG. 2 is a drawing-substitute electron micrograph showing a spherical type particle shape of the nickel hydroxide active material powder of the present invention.

【図3】 KOHにLiOHを添加したアルカリ電解液
とアルカリ蓄電池の20℃及び−10℃における放電特
性との関係を示す図である。
FIG. 3 is a diagram showing a relationship between an alkaline electrolyte in which LiOH is added to KOH and discharge characteristics of an alkaline storage battery at 20 ° C. and −10 ° C.

【図4】 KOHにLiOHの添加量を変えたアルカリ
電解液とアルカリ蓄電池の50℃における放電特性との
関係を示す図である。
FIG. 4 is a diagram showing the relationship between the alkaline electrolyte in which the amount of LiOH added is changed to KOH and the discharge characteristics at 50 ° C. of the alkaline storage battery.

【図5】 LiOHの添加量を一定とし、NaOHの添
加量を変えたアルカリ電解液とアルカリ蓄電池の20℃
及び−10℃における放電特性との関係を示す図であ
る。
FIG. 5: 20 ° C. of alkaline electrolyte and alkaline storage battery in which the amount of added LiOH was fixed and the amount of added NaOH was changed.
It is a figure which shows the relationship with the discharge characteristic in -10 degreeC.

【図6】 LiOHの添加量を一定とし、NaOHの添
加量を変えたアルカリ電解液とアルカリ蓄電池の50℃
における放電特性との関係を示す図である。
FIG. 6: 50 ° C. of alkaline electrolyte and alkaline storage battery in which the amount of added LiOH was fixed and the amount of added NaOH was changed.
FIG. 6 is a diagram showing the relationship with the discharge characteristics in FIG.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケル粒子中に、少なくともコ
バルト0.2〜5wt.%及びジルコニウム0.1〜4
wt.%含有することを特徴とする水酸化ニッケル活物
質粉末。
1. Nickel hydroxide particles contain at least 0.2 to 5 wt. % And zirconium 0.1 to 4
wt. % Of nickel hydroxide active material powder.
【請求項2】 水酸化ニッケル粒子中に、更に亜鉛を含
有することを特徴とする請求項1記載の水酸化ニッケル
活物質粉末。
2. The nickel hydroxide active material powder according to claim 1, wherein the nickel hydroxide particles further contain zinc.
【請求項3】 該水酸化ニッケル粒子の形状は、球状タ
イプである請求項1又は2記載の水酸化ニッケル活物質
粉末。
3. The nickel hydroxide active material powder according to claim 1, wherein the shape of the nickel hydroxide particles is a spherical type.
【請求項4】 請求項1,2又は3記載の水酸化ニッケ
ル活物質粉末を集電用多孔基板に充填したことを特徴と
する非焼結式ニッケル電極。
4. A non-sintered nickel electrode, wherein the nickel hydroxide active material powder according to claim 1, 2, or 3 is filled in a porous substrate for current collection.
【請求項5】 請求項3又は4記載の球形タイプの水酸
化ニッケル活物質粉末に、コバルト及びコバルト化合物
のコバルト系添加剤粉末の少なくとも1種を添加混合し
て成る活物質合剤のペーストを、集電用多孔基板に充
填、加圧し、該活物質合剤の充填密度を、2.4〜2.
9g/ccとしたことを特徴とする非焼結式ニッケル電
極。
5. A paste of an active material mixture obtained by adding at least one of cobalt and a cobalt-based additive powder of a cobalt compound to the spherical nickel hydroxide active material powder according to claim 3 or 4. , The porous substrate for current collection is filled and pressurized, and the packing density of the active material mixture is set to 2.4 to 2.
A non-sintered nickel electrode characterized by having 9 g / cc.
【請求項6】 請求項5記載の活物質合剤に、更にニッ
ケル粉末を添加して成る活物質合剤のペーストを、集電
用多孔基板に充填したことを特徴とする請求項5記載の
非焼結式ニッケル電極。
6. The porous substrate for current collection is filled with a paste of an active material mixture obtained by further adding nickel powder to the active material mixture according to claim 5. Non-sintered nickel electrode.
【請求項7】 正極として、請求項3,4,5又は6記
載の非焼結式ニッケル電極を具備し、且つ電解液として
LiOH0〜4wt.%、KOH20〜40wt.%か
ら成るアルカリ電解液を具備したことを特徴とするアル
カリ蓄電池。
7. The non-sintered nickel electrode according to claim 3, 4, 5 or 6 is provided as a positive electrode, and LiOH 0-4 wt. %, KOH 20-40 wt. %, And an alkaline storage battery characterized by being provided with an alkaline electrolyte.
【請求項8】 正極として、請求項3,4,5又は6記
載の非焼結式ニッケル電極を具備し、且つ電解液として
LiOH0〜4wt.%、KOH+NaOH20〜40
%、NaOH0〜10wt.%から成るアルカリ電解液
を具備したことを特徴とするアルカリ蓄電池。
8. The non-sintered nickel electrode according to claim 3, 4, 5 or 6 is provided as a positive electrode, and LiOH 0-4 wt. %, KOH + NaOH 20-40
%, NaOH 0-10 wt. %, And an alkaline storage battery characterized by being provided with an alkaline electrolyte.
JP8019434A 1996-01-10 1996-01-10 Nickel hydroxide active material powder, nonsintered electrode, and alkaline storage battery Pending JPH09190817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8019434A JPH09190817A (en) 1996-01-10 1996-01-10 Nickel hydroxide active material powder, nonsintered electrode, and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8019434A JPH09190817A (en) 1996-01-10 1996-01-10 Nickel hydroxide active material powder, nonsintered electrode, and alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH09190817A true JPH09190817A (en) 1997-07-22

Family

ID=11999190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8019434A Pending JPH09190817A (en) 1996-01-10 1996-01-10 Nickel hydroxide active material powder, nonsintered electrode, and alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH09190817A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017388A1 (en) * 1997-09-30 1999-04-08 Sanyo Electric Co., Ltd. Nickel-hydrogen storage battery
JP2014049210A (en) * 2012-08-30 2014-03-17 Sanyo Electric Co Ltd Alkaline storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017388A1 (en) * 1997-09-30 1999-04-08 Sanyo Electric Co., Ltd. Nickel-hydrogen storage battery
US6472101B1 (en) 1997-09-30 2002-10-29 Sanyo Electric Co., Ltd. Nickel-hydrogen storage battery
JP2014049210A (en) * 2012-08-30 2014-03-17 Sanyo Electric Co Ltd Alkaline storage battery

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
EP0869565A2 (en) Alkaline storage battery
CN109360963A (en) Tertiary cathode material micron-stage sheet-like mono-crystalline structures aggregate and preparation method thereof
JP3232990B2 (en) Alkaline storage battery and method for manufacturing the same
KR20080057313A (en) Nickel-metal hydride battery
CN104241630A (en) Lithium nickel cobalt manganate hollow sphere as well as preparation method and application thereof
JPH10149821A (en) Positive electrode for alkaline storage battery
JP3136668B2 (en) Nickel hydroxide active material powder, nickel positive electrode and alkaline storage battery using the same
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP2947284B2 (en) Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2000077068A (en) Nickel positive electrode for alkaline secondary battery
JPH09190817A (en) Nickel hydroxide active material powder, nonsintered electrode, and alkaline storage battery
JP3077473B2 (en) Alkaline storage battery
US6608465B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH10326616A (en) Alkaline storage battery
JP3543601B2 (en) Alkaline storage battery
JP3506365B2 (en) Nickel positive electrode active material
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JPH1021902A (en) Manufacture of paste type nickel electrode for alkaline secondary battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JP2002175811A (en) Non-sintered nickel cathode for alkali storage battery, it manufacturing method, and alkali storage battery using the cathode
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2000106184A (en) Nickel hydroxide electrode for alkaline storage battery, and the alkaline storage battery using this electrode