JPH04224192A - Shutter for molecular-beam epitaxy device - Google Patents

Shutter for molecular-beam epitaxy device

Info

Publication number
JPH04224192A
JPH04224192A JP40469990A JP40469990A JPH04224192A JP H04224192 A JPH04224192 A JP H04224192A JP 40469990 A JP40469990 A JP 40469990A JP 40469990 A JP40469990 A JP 40469990A JP H04224192 A JPH04224192 A JP H04224192A
Authority
JP
Japan
Prior art keywords
shutter
reservoir
molecular
molecular beam
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP40469990A
Other languages
Japanese (ja)
Inventor
Toshio Fujii
俊夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP40469990A priority Critical patent/JPH04224192A/en
Publication of JPH04224192A publication Critical patent/JPH04224192A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To eliminate the defective opening and closing of a sutter and to stably operate the device for a long period by providing a reservoir at the lower side of the surface of the shutter where the molecular beam comes flying and storing the vapor-deposited molten material in the reservoir to prevent the splashing of the molten material. CONSTITUTION:In this molecular-beam epitaxy device, a shutter 1 provided with a holding rod 5 is arranged on the front surface of an effusion cell (not shown in the figure) set in a liq. nitrogen shroud to block a molecular beam 2, and the growth of an epitaxial crystal is controlled. A reservoir 4 for storing the vapor-deposited molten material 3 as the block of the molecular beam 2 deposited on the shutter 1 surface is arranged at the lower side of the surface of the shutter where the molecular beam 2 comes flying. Consequently, the molten material 3 is not splashed or deposited on the liq. nitrogen shroud, etc., hence the defective opening and closing of the shutter 1 are obviated, and the working rate of the device is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,分子線エピタキシ(M
BE)装置における分子線源シャッタの改良に関する。
[Industrial Application Field] The present invention relates to molecular beam epitaxy (M
BE) relates to improvements in the molecular beam source shutter in the device.

【0002】近年,MBE結晶成長技術は非常に進展し
,高品質なヘテロ構造や超格子構造が再現性良く得られ
るようになった。そして,この成長法により開発された
代表的な素子の一つである高電子移動度トランジスタ(
HEMT)はすでに商品化され,量産されている。
[0002] In recent years, MBE crystal growth technology has made great progress, and high-quality heterostructures and superlattice structures can now be obtained with good reproducibility. One of the representative devices developed using this growth method is the high electron mobility transistor (
HEMT) has already been commercialized and mass produced.

【0003】しかし,超高真空を基本とするMBE成長
装置は,その様な量産化に充分対応できている訳ではな
く,一層の改良による高信頼化が望まれている。
However, the MBE growth apparatus based on ultra-high vacuum is not fully compatible with such mass production, and there is a desire for further improvements to make it more reliable.

【0004】0004

【従来の技術】図3は従来例の説明図である。図におい
て,16は真空チャンバ,17はシャッタ,18はエフ
ュジョンセル,19は分子線,20は液体窒素シュラウ
ド,21は基板, 22は分子線源, 23は蒸着溶融
物, 24はヒーター, 25はサーモカップルである
2. Description of the Related Art FIG. 3 is an explanatory diagram of a conventional example. In the figure, 16 is a vacuum chamber, 17 is a shutter, 18 is a fusion cell, 19 is a molecular beam, 20 is a liquid nitrogen shroud, 21 is a substrate, 22 is a molecular beam source, 23 is a vapor deposition melt, 24 is a heater, and 25 is a thermostat. They are a couple.

【0005】図3(a)に示すように, 従来,MBE
装置のシャッタ17はエフュジョンセル18の部分で発
生した分子線19を遮断する目的で,エフュジョンセル
18の前面(エフュジョンセル18と基板21との間)
に配置されている。
As shown in FIG. 3(a), conventionally, MBE
The shutter 17 of the device is installed in front of the fusion cell 18 (between the fusion cell 18 and the substrate 21) for the purpose of blocking the molecular beam 19 generated in the fusion cell 18.
It is located in

【0006】また,エフュジョンセル18およびシャッ
タ17は各分子線19相互の混ざりによる汚染が生じな
いように液体窒素シュラウド20で仕切られている。通
常,エピタキシャル結晶の膜厚などを高均一に保つため
,各エヒュジョンセル18とシャッタ17(通常6組な
いし7組)は基板21の法線に対して回転対象の位置に
配置されている。
Further, the fusion cell 18 and the shutter 17 are separated by a liquid nitrogen shroud 20 to prevent contamination due to mutual mixing of the molecular beams 19. Normally, in order to maintain a highly uniform film thickness of the epitaxial crystal, each fusion cell 18 and shutter 17 (usually six or seven sets) are arranged at rotationally symmetrical positions with respect to the normal to the substrate 21.

【0007】従って,液体窒素シュラウド20とエフュ
ジョンセル18およびシャッタ17の空間的なスペース
は非常に狭い。
Therefore, the spatial space between the liquid nitrogen shroud 20, the fusion cell 18, and the shutter 17 is very narrow.

【0008】[0008]

【発明が解決しようとする課題】そのため,図3(b)
に1個のエフュジョンセル18近傍を拡大して示すよう
に,シャッタ17を閉じた状態の時に,シャッタ17に
付着した分子線19が,シャッタ17の開閉動作時に液
体窒素シュラウド20の壁などに飛び散って付着堆積し
,その堆積した分子線19の塊である蒸着溶融物23に
シャッタ17が食い込み,シャッタ17の開閉動作に支
障が出て,甚だしい場合にはシャッタ17が開閉しなく
なるという問題点があり,MBE装置を長期間安定に運
転させる上で大きな問題であった。
[Problem to be solved by the invention] Therefore, Fig. 3(b)
As shown in the enlarged view of the vicinity of one fusion cell 18, when the shutter 17 is closed, the molecular beams 19 attached to the shutter 17 are scattered onto the walls of the liquid nitrogen shroud 20 when the shutter 17 is opened and closed. There is a problem in that the shutter 17 bites into the vapor deposition melt 23, which is a mass of the molecular beams 19 that have been deposited and deposited, and the opening and closing operations of the shutter 17 are hindered, and in extreme cases, the shutter 17 may not open or close. , which was a major problem in operating the MBE equipment stably for a long period of time.

【0009】本発明は,シャッタ17に付着した分子線
19の飛び散りを抑え,液体窒素シュラウド20と,エ
フュジョンセル18およびシャッタ17の空間的なスペ
ースが非常に狭い場合においても,シャッタ17の開閉
動作をスムーズに保ち,MBE装置を長期間にわたり安
定に運転させることを目的として提供されるものである
The present invention suppresses the scattering of the molecular beam 19 attached to the shutter 17 and allows the opening/closing operation of the shutter 17 to be performed even when the spatial space between the liquid nitrogen shroud 20, the fusion cell 18, and the shutter 17 is very narrow. This is provided for the purpose of keeping the MBE system running smoothly and stably over a long period of time.

【0010】0010

【課題を解決するための手段】図1は本発明のリザーバ
付きシャッタである。図において,1はシャッタ,2は
分子線,3は蒸着溶融物,4はリザーバ,5はシャッタ
保持棒である。
[Means for Solving the Problems] Fig. 1 shows a shutter with a reservoir according to the present invention. In the figure, 1 is a shutter, 2 is a molecular beam, 3 is a deposited melt, 4 is a reservoir, and 5 is a shutter holding rod.

【0011】シャッタ1に付着した分子線2の飛び散る
状況を詳細に観察することにより, ■シャッタが閉じている状態で,エフュジョンセルから
の放射によりシャッタの温度が,その分子線源の融点以
上になる場合であること(具体的には,インジウム(I
n)やガリウム(Ga)の場合に生じ, 融点の高いア
ルミニウム(Al)では生じないことが経験的に判って
いる。
By observing in detail the scattering situation of the molecular beam 2 attached to the shutter 1, it was found that: (1) With the shutter closed, the temperature of the shutter becomes higher than the melting point of the molecular beam source due to radiation from the fusion cell; (Specifically, indium (I)
It has been empirically determined that this phenomenon occurs with aluminum (Al), which has a high melting point, and does not occur with aluminum (Al), which has a high melting point.

【0012】■付着した分子線が重力により下方に垂れ
集まり, 蒸着溶融物となって或る程度の大きさになっ
た後に飛び散ることが判った。これらのことから, 蒸
着溶融物3を溜め, 且つ, 飛び散りを防止できるよ
うな形状のリザーバ4をシャッタ1の下部に設けること
により, 上記の問題を解決することが出来ることが分
かった。
[0012] It has been found that the attached molecular beams gather downward due to gravity, become a deposited melt, and after reaching a certain size, scatter. From these facts, it has been found that the above-mentioned problems can be solved by providing a reservoir 4 at the bottom of the shutter 1 with a shape that can store the deposited melt 3 and prevent it from scattering.

【0013】即ち, 本発明の目的は, 図1に示すよ
うに,シャッタ1の分子線2の飛来する面の下方に,該
シャッタ1面に付着した蒸着溶融物3を溜めるリザーバ
4を設けることにより達成される。
That is, the object of the present invention is to provide, as shown in FIG. 1, a reservoir 4 below the surface of the shutter 1 from which the molecular beam 2 flies, for storing the evaporated melt 3 adhering to the surface of the shutter 1. This is achieved by

【0014】[0014]

【作用】本発明により,溶けて蒸着溶融物となった分子
線は,シャッタ下方に設けたリザーバに溜まるので,シ
ャッタが閉じられた状態の時に付着した分子線が,シャ
ッタの開閉動作時に液体窒素シュラウド壁等に飛び散り
,付着堆積して,その堆積した分子線の塊にシャッタ板
が食い込み,シャッタが開閉しなくなるという問題点が
なくなった。
[Operation] According to the present invention, the molecular beams that have melted and become vapor-deposited melt accumulate in the reservoir provided below the shutter, so that when the shutter is closed, the molecular beams that have adhered to it are transferred to liquid nitrogen when the shutter is opened and closed. This eliminates the problem of the shutter plate becoming stuck in the mass of molecular beams that scatter and adhere to the shroud wall, etc., and prevent the shutter from opening or closing.

【0015】[0015]

【実施例】図1は本発明のリザーバ付きシャッタ,図2
は本発明のリザーバ付きシャッタを用いたMBE装置で
各半導体層を成長したHEMTの模式断面図である。
[Example] Fig. 1 shows a shutter with a reservoir of the present invention, Fig. 2
1 is a schematic cross-sectional view of a HEMT in which each semiconductor layer is grown using an MBE apparatus using a shutter with a reservoir according to the present invention.

【0016】図において,1はシャッタ,2は分子線,
3は蒸着溶融物,4はリザーバ,5はシャッタ保持棒,
6はn−InGaAs,7はn−In0.52AlO.
48As, 8は二次元電子ガス,9はi−In0.5
3GaO.47As, 10はi−In0.52AlO
.48As, 11はi−In0.53GaO.47A
s, 12は半絶縁性InP 基板,13はゲート, 
14はソース, 15はドレインである。
In the figure, 1 is a shutter, 2 is a molecular beam,
3 is a vapor deposited melt, 4 is a reservoir, 5 is a shutter holding rod,
6 is n-InGaAs, 7 is n-In0.52AlO.
48As, 8 is two-dimensional electron gas, 9 is i-In0.5
3GaO. 47As, 10 is i-In0.52AlO
.. 48As, 11 is i-In0.53GaO. 47A
s, 12 is a semi-insulating InP substrate, 13 is a gate,
14 is a source, and 15 is a drain.

【0017】前述の図1に示したように,シャッタ1の
下方にリザーバ4を設けることにより,前述の図3に示
すMBE装置のエフュジョンセルからInやGa を蒸
発させても, シャッタに衝突した分子線は,シャッタ
面に蒸着溶融物として付着し,シャッタ下方に設けたリ
ザーバに溜まるので,シャッタが閉じられた状態の時に
付着した分子線が,シャッタの開閉動作時に液体窒素シ
ュラウド壁等に飛び散り,付着堆積して,その堆積した
分子線の塊にシャッタ板が食い込み,シャッタが開閉し
なくなるということが無くなった。
As shown in FIG. 1 described above, by providing the reservoir 4 below the shutter 1, even if In and Ga are evaporated from the fusion cell of the MBE apparatus shown in FIG. The molecular beams adhere to the shutter surface as evaporated melt and accumulate in a reservoir provided below the shutter, so when the shutter is closed, the molecular beams that adhere to the shutter are scattered onto the liquid nitrogen shroud wall etc. when the shutter is opened and closed. This eliminates the problem of the shutter plate not being able to open or close due to the stuck and deposited mass of molecular beams getting stuck in the shutter plate.

【0018】本発明のシャッタを用いたMBE装置によ
り,InGaAs/n−AlInAs 構造のHEMT
の成膜を行った一実施例について説明する。In, G
a, Al, 砒素(As), シリコン(Si)の5
種類の物質を分子線源22として,前述の図3に示した
5個のエフュジョンセル18に入れ,各エフュジョンセ
ル18をヒーター24により加熱し,シャッタ17を開
閉して,図2に示す各半導体層を半絶縁性InP 基板
12の上に, 順次, 所望の厚さに積層していく。S
iはn型のドーパントとして,5x1017/cm3の
濃度に半導体層中にドーズする。
By using the MBE device using the shutter of the present invention, a HEMT with an InGaAs/n-AlInAs structure can be
An example in which a film was formed will be described. In, G
a, Al, arsenic (As), silicon (Si) 5
A variety of substances are placed as a molecular beam source 22 into the five fusion cells 18 shown in FIG. They are sequentially laminated to a desired thickness on the semi-insulating InP substrate 12. S
i is an n-type dopant and is doped into the semiconductor layer at a concentration of 5×10 17 /cm 3 .

【0019】分子線源22の温度はInが 750℃,
Ga が950 ℃,Al が1,080 ℃, As
が320 ℃,Si が1,250 ℃とし, 成長中
の真空度5x10−8Torr, 膜の成長速度1.2
 μm/hの条件で成膜を行った。
The temperature of the molecular beam source 22 is 750°C for In.
Ga: 950 ℃, Al: 1,080 ℃, As
is 320 °C, Si is 1,250 °C, the degree of vacuum during growth is 5 x 10-8 Torr, and the growth rate of the film is 1.2.
Film formation was performed under conditions of μm/h.

【0020】各半導体層を積層した基板12は, その
後, リセスを形成し, ゲート13, ソース14,
 ドレイン15の各電極を形成して素子を完成する。こ
のHEMTの半導体層の成膜において, 前述の図1に
示したように,シャッタ1の下方にリザーバ4を設ける
ことにより,MBE装置のエフュジョンセルから融点の
低いInやGaを蒸発させても, シャッタ1に衝突し
た分子線は,シャッタ1の面に蒸着溶融物3として付着
し,シャッタ1の下方に設けたリザーバ4に溜まるので
,シャッタ1が閉じられた状態の時に付着した分子線2
が,シャッタ1の開閉動作時に液体窒素シュラウド壁等
に飛び散り,付着堆積して,その堆積した分子線2の塊
にシャッタ1が食い込み,シャッタ1が開閉しなくなる
ということが全くなくなった。
After that, recesses are formed in the substrate 12 on which each semiconductor layer is laminated, and the gate 13, source 14,
Each electrode of the drain 15 is formed to complete the device. In forming the semiconductor layer of this HEMT, by providing the reservoir 4 below the shutter 1 as shown in FIG. The molecular beams that collide with the shutter 1 adhere to the surface of the shutter 1 as vapor deposited melt 3 and accumulate in the reservoir 4 provided below the shutter 1, so that when the shutter 1 is closed, the attached molecular beams 2
However, when the shutter 1 is opened and closed, the molecular beams 2 are scattered and deposited on the walls of the liquid nitrogen shroud, and the shutter 1 is no longer stuck in the mass of the deposited molecular beams 2 and becomes unable to open or close.

【0021】[0021]

【発明の効果】以上説明したように,本発明によれば,
従来問題となっていたMBE装置のシャッタの開閉不良
を前記の解決策を施すことにより除去でき,MBE装置
を長期間安定に運転させる上で,大きな改善が見られた
[Effect of the invention] As explained above, according to the present invention,
By applying the above solution, the shutter opening/closing failure of the MBE apparatus, which had been a problem in the past, could be eliminated, and a significant improvement was seen in terms of stable operation of the MBE apparatus over a long period of time.

【0022】これにより,本発明はMBE装置の安定に
大きく役立ち,引いては半導体製造装置の稼働率の向上
に寄与するところが大きい。
[0022] As a result, the present invention greatly contributes to stabilizing the MBE apparatus and, in turn, greatly contributes to improving the operating rate of the semiconductor manufacturing apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明のリザーバ付きシャッタ[Figure 1] Shutter with reservoir of the present invention

【図2】 
 本発明のリザーバ付きシャッタを用いたMBE装置で
各半導体層を成長したHEMTの模式断面図
[Figure 2]
A schematic cross-sectional view of a HEMT in which each semiconductor layer is grown using an MBE apparatus using a shutter with a reservoir of the present invention.

【図3】 
 従来例の説明図
[Figure 3]
Explanatory diagram of conventional example

【符号の説明】[Explanation of symbols]

1  シャッタ 2  分子線 3  蒸着溶融物 4  リザーバ 5  シャッタ保持棒 6  n−InGaAs, 7  n−In0.52AlO.48As8  二次元
電子ガス 9  i−In0.53GaO.47As10  i−
In0.52AlO.48As, 11  i−In0
.53GaO.47As12  半絶縁性InP  13  ゲート 14  ソース 15  ドレイン
1 Shutter 2 Molecular beam 3 Vapor deposition melt 4 Reservoir 5 Shutter holding rod 6 n-InGaAs, 7 n-In0.52AlO. 48As8 Two-dimensional electron gas 9 i-In0.53GaO. 47As10 i-
In0.52AlO. 48As, 11 i-In0
.. 53GaO. 47As12 Semi-insulating InP 13 Gate 14 Source 15 Drain

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  シャッタ(1) の分子線(2) の
飛来する面の下方に,該シャッタ(1) 面に付着した
蒸着溶融物(3) を溜めるリザーバ(4) を設けた
ことを特徴とする分子線エピタキシ装置用シャッタ。
Claim 1: A reservoir (4) is provided below the surface of the shutter (1) from which the molecular beam (2) comes, for storing the evaporated melt (3) adhering to the surface of the shutter (1). Shutter for molecular beam epitaxy equipment.
JP40469990A 1990-12-21 1990-12-21 Shutter for molecular-beam epitaxy device Withdrawn JPH04224192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40469990A JPH04224192A (en) 1990-12-21 1990-12-21 Shutter for molecular-beam epitaxy device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40469990A JPH04224192A (en) 1990-12-21 1990-12-21 Shutter for molecular-beam epitaxy device

Publications (1)

Publication Number Publication Date
JPH04224192A true JPH04224192A (en) 1992-08-13

Family

ID=18514352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40469990A Withdrawn JPH04224192A (en) 1990-12-21 1990-12-21 Shutter for molecular-beam epitaxy device

Country Status (1)

Country Link
JP (1) JPH04224192A (en)

Similar Documents

Publication Publication Date Title
EP0248439A1 (en) Field-effect transistor having a delta-doped ohmic contact
JPH03236218A (en) Compound semiconductor substrate and manufacture thereof
DE3211051A1 (en) DEVICE AND METHOD FOR MOLECULAR RAY DEPOSITION ON A VARIETY OF SUBSTRATES
EP0529990B1 (en) Semiconductor laser device and method of manufacturing the same
JPH04224192A (en) Shutter for molecular-beam epitaxy device
US5091335A (en) MBE growth technology for high quality strained III-V layers
JP3326704B2 (en) Method of manufacturing III / V compound semiconductor device
Zytkiewicz et al. Epitaxial lateral overgrowth of GaAs: effect of doping on LPE growth behaviour
EP0499294A1 (en) Method of molecular epitaxial growth of single crystal layers of compound semiconductors
US5432124A (en) Method of manufacturing compound semiconductor
GB2035686A (en) Method of making semiconductor devices by epitaxial deposition and apparatus for making the same
JP2599767B2 (en) Solution growth equipment
RU2534106C1 (en) Method of obtaining big-volume monocrystals of gallium antimonide with low dislocation density
JPH07193007A (en) Epitaxial growth method
EP0175436A2 (en) Semiconductor processing
JPH0352434B2 (en)
JPS62115820A (en) Molecular beam crystal growth device
JPH0238442Y2 (en)
JP2737155B2 (en) (III)-(V) Method of doping n-type compound semiconductor
JP2773339B2 (en) Liquid phase epitaxial growth method
JP4006721B2 (en) Method for growing mixed crystal semiconductor single crystal
JP4010439B2 (en) Semiconductor growth method
JPH06263587A (en) Molecular beam epitaxial growth apparatus
Airaksinen Dopant Incorporation, Desorption and Migration in MBE Grown InP and AlxGa1-xAs/GaAs
Herbots et al. Ion Beam Deposition of Materials At 40–200 Ev: Effect of Ion Energy And Substrate Temperature On Interface, Thin Film And Damage Formation

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312