JPH06263587A - Molecular beam epitaxial growth apparatus - Google Patents

Molecular beam epitaxial growth apparatus

Info

Publication number
JPH06263587A
JPH06263587A JP7276593A JP7276593A JPH06263587A JP H06263587 A JPH06263587 A JP H06263587A JP 7276593 A JP7276593 A JP 7276593A JP 7276593 A JP7276593 A JP 7276593A JP H06263587 A JPH06263587 A JP H06263587A
Authority
JP
Japan
Prior art keywords
shutter
molecular beam
growth
growth chamber
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7276593A
Other languages
Japanese (ja)
Inventor
Kazuhiro Akamatsu
和弘 赤松
Misao Takakusaki
操 高草木
Tsutomu Ozaki
勉 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP7276593A priority Critical patent/JPH06263587A/en
Publication of JPH06263587A publication Critical patent/JPH06263587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a shutter mechanism causing little leakage of element through the shutter, enabling the growth of an epitaxial film having excellent characteristics in high vacuum, capable of decreasing the cleaning frequency of the shutter and enabling the growth of crystal at high throughput by providing a position-correction mechanism for adjusting the gap between a cell divider and a shutter blade surface from the outside of the growth chamber. CONSTITUTION:The growth chamber 10 of an epitaxial growth apparatus is maintained to a high vacuum of about 10E to 10 Torr. The wall of the growth chamber 10 is provided with usually about 5 sets of molecular beam source cells 20. The crucible 21 has opened bottom and a molecular beam is radiated toward a substrate. The mixing of the radiated molecular beams is prevented by a cell divider 30. A shutter blade 40 is placed between the opening of the crucible 21 and the substrate in such a manner as to be movable with a shutter- driving mechanism 50 to a position to expose the radiation face of the molecular beam. The shutter-driving mechanism 50 is fixed to the growth chamber 10 through a position-correction mechanism 60.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体などのエ
ピタキシャル成長に用いられる分子線エピタキシャル装
置に関するものであり、特には、分子線を遮断するため
のシャッター機構の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molecular beam epitaxy apparatus used for epitaxial growth of compound semiconductors, and more particularly to improvement of a shutter mechanism for blocking molecular beams.

【0002】[0002]

【従来の技術】分子線エピタキシャル(MBE)法は、
超高真空中で分子線を基板上に輻射することでエピタキ
シャル成長を行う方法であり、成長膜の厚さおよび組成
の制御性に優れたエピタキシャル成長方法である。一般
に、成長膜の厚さおよび組成の制御は、分子線を発生さ
せるセル(分子線セル)の開口部にシャッター機構を設
け、分子線をオンオフすることで行っている。
2. Description of the Related Art The molecular beam epitaxial (MBE) method is
This is a method of performing epitaxial growth by irradiating a molecular beam on a substrate in an ultrahigh vacuum, and is an epitaxial growth method with excellent controllability of the thickness and composition of the grown film. Generally, the thickness and composition of the growth film are controlled by providing a shutter mechanism at the opening of a cell (molecular beam cell) for generating a molecular beam and turning the molecular beam on and off.

【0003】このため、シャッター機構の動作および構
造は、膜厚、組成の再現性に大きく影響する。また、シ
ャッターによるしゃへいが充分でない場合、特に砒素な
どの比較的蒸気圧の高い元素の分子線セルに備えられた
シャッターの場合には、過剰な分子線が成長室内に放出
されて真空度が悪化し、エピタキシャル成長膜の特性を
悪化させる。
Therefore, the operation and structure of the shutter mechanism greatly affects the reproducibility of film thickness and composition. In addition, when the shutter is not sufficiently shielded, especially in the case of a shutter provided in a molecular beam cell of an element having a relatively high vapor pressure such as arsenic, an excessive molecular beam is released into the growth chamber to deteriorate the degree of vacuum. However, the characteristics of the epitaxial growth film are deteriorated.

【0004】従来のシャッター機構は、分子線セルの開
口部(輻射面)に設けられ、輻射面に対して平行移動す
るシャッターブレードと各分子線セルの輻射面を仕切っ
ているセルデバイダーとから構成され、シャッターブレ
ードをソレノイドにより真空容器外から移動させること
ができる。閉じた状態でのシャッターブレードとセルデ
バイダーとの間隔は、分子線セルからの分子線の漏れを
少なくするためになるべく狭くすることが望ましい。
The conventional shutter mechanism is composed of a shutter blade provided in the opening (radiation surface) of the molecular beam cell and moving in parallel to the radiation surface, and a cell divider partitioning the radiation surface of each molecular beam cell. The shutter blade can be moved from outside the vacuum container by the solenoid. It is desirable that the distance between the shutter blade and the cell divider in the closed state is made as narrow as possible in order to reduce the leakage of the molecular beam from the molecular beam cell.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このシ
ャッターブレードとセルデバイダーとの間隔を狭くして
完全に密閉することは困難である。この間隔を狭くする
と、これらの表面に分子線セルから放出される元素が析
出するため、シャッターブレードとセルデバイダーの間
隔を埋めてしまい、シャッターブレードが移動できなく
なる。このような場合、高真空容器の成長室を開放して
シャッターを掃除することが必要となり、再度エピタキ
シャル成長に必要な高真空を得るためには長時間が必要
となり、スループットが著しく低下する。
However, it is difficult to make the gap between the shutter blade and the cell divider narrow and to completely seal the cell. If this distance is narrowed, elements released from the molecular beam cell are deposited on these surfaces, so that the distance between the shutter blade and the cell divider is filled, and the shutter blade cannot move. In such a case, it is necessary to open the growth chamber of the high vacuum container and clean the shutter, and it takes a long time to obtain the high vacuum required for the epitaxial growth again, and the throughput is significantly reduced.

【0006】本発明は上記の欠点を防ぐためになされた
もので、シャッターからの元素の漏れが少なく、高真空
下で特性の優れたエピタキシャル膜の成長が可能で、ま
た、シャッターの清掃の頻度が低く、高いスループット
で成長が可能なシャッター機構の提供を目的としてい
る。
The present invention has been made in order to prevent the above-mentioned drawbacks. The element leakage from the shutter is small, an epitaxial film having excellent characteristics can be grown under a high vacuum, and the frequency of cleaning the shutter is high. The objective is to provide a shutter mechanism that can grow at low and high throughput.

【0007】[0007]

【課題を解決するための手段】本発明は、(a)高真空に
排気される成長室と、(b)該成長室に設けられた分子線
源セルと、(c)該分子線源セルの輻射面の近傍に固定さ
れているセルデバイダーと、(d)該分子線源セルの輻射
面を覆う位置と覆わない位置に移動することのできるシ
ャッターブレードと、(e)前記セルデバイダーと前記シ
ャッターブレードの間隔を前記成長室の外部から調整可
能な位置補正機構とを含むことを特徴とするものであ
る。なお、分子線源セルは、砒素などの比較的蒸気圧の
高い元素を原料とする場合に特に有効である。
The present invention provides (a) a growth chamber evacuated to a high vacuum, (b) a molecular beam source cell provided in the growth chamber, and (c) the molecular beam source cell. A cell divider fixed in the vicinity of the radiation surface of (d) a shutter blade that can be moved to a position where the radiation surface of the molecular beam source cell is covered and a position where it is not covered, and (e) the cell divider and the A position correction mechanism capable of adjusting the interval between the shutter blades from the outside of the growth chamber is included. The molecular beam source cell is particularly effective when an element having a relatively high vapor pressure such as arsenic is used as a raw material.

【0008】[0008]

【作用及び効果】セルデバイダーとシャッターブレード
間の間隔を成長室の外部から調整できる位置補正機構を
含むので、セルデバイダーやシャッターブレード上に原
料元素が付着した際に、両者の距離を成長室外から広げ
ることができ、両者が接触して破損等を生じることはな
い。また、常に両者の間隔を調整でき、エピタキシャル
成長時にもこの間隔を充分に狭くしておけるので、原料
元素のもれも少ない。したがって、長期間にわたり連続
した成長が可能であり、また、清浄な高真空中でエピタ
キシャル成長が可能であるのでその成長膜の特性も優れ
る。
[Operation and effect] Since the distance between the cell divider and the shutter blade can be adjusted from the outside of the growth chamber, a position correction mechanism is included, so when the source element adheres to the cell divider or shutter blade, the distance between them can be adjusted from outside the growth chamber. It can be unfolded, and the two will not come into contact with each other to cause damage. Also, the distance between the two can be adjusted at all times, and this distance can be made sufficiently narrow even during epitaxial growth, so there is little leakage of the raw material elements. Therefore, continuous growth is possible for a long period of time, and epitaxial growth is possible in a clean high vacuum, so that the characteristics of the grown film are excellent.

【0009】[0009]

【実施例】実施例であるエピタキシャル成長装置のシャ
ッター機構をその概念図である図1((a)は正面図、
(b)は側面図)を用いて以下詳細に説明する。
EXAMPLE FIG. 1 ((a) is a front view showing a shutter mechanism of an epitaxial growth apparatus which is an example)
(B) is a side view), which will be described in detail below.

【0010】エピタキシャル成長装置の成長室10は、
真空ポンプが備えられ、10E−10Torr程度の高真空
に保持されている。成長室10の壁面には、分子線源セ
ル20が設けられている。分子線源セル20は、成長す
るエピタキシャル膜の組成の数以上、通常5組程度が備
えられている。分子線源セル20は、Al、Ga、I
n、Asなどの原料元素を収納し、円錐形でその底面が
開口しているるつぼ21、そのるつぼ21を加熱するヒ
ータなどから構成されている。ヒータにより原料元素は
その融点以上に加熱され、るつぼ21の開口から基板方
向に分子線を輻射する。なお、基板は、加熱機構を有す
る基板ホルダー上に固定されている。
The growth chamber 10 of the epitaxial growth apparatus is
A vacuum pump is provided and maintained at a high vacuum of about 10E-10 Torr. A molecular beam source cell 20 is provided on the wall surface of the growth chamber 10. The molecular beam source cell 20 is provided with more than the composition of the growing epitaxial film, usually about 5 sets. The molecular beam source cell 20 is made of Al, Ga, I
It is composed of a conical crucible 21 having an open bottom surface, a heater for heating the crucible 21, and the like. The raw material element is heated to a temperature higher than its melting point by the heater, and a molecular beam is radiated from the opening of the crucible 21 toward the substrate. The substrate is fixed on a substrate holder having a heating mechanism.

【0011】各分子線源セル20のるつぼ21の開口か
ら輻射される分子線が混ざらないように分子線を分離す
るためのセルデバイダー30が設けられている。セルデ
バイダー30は、Taなどの高融点金属からなり、成長
室10の分子線源セル20の近傍に固定されている。る
つぼ21の開口と基板の間には、シャッターブレード4
0が設けられている。図1では、シャッターが閉じた状
態を示しており、分子線の輻射面であるるつぼ21の開
口は、シャッターブレード40とセルデバイダー30に
より覆われており、分子線は基板に到達しない。シャッ
ターブレード40は、成長室10の壁面に設けられたシ
ャッター駆動機構50により分子線の輻射面に平行な方
向に輻射面を覆わない位置にまで移動することで、各分
子線セル20からの分子線をオン−オフすることができ
る。シャッター駆動機構50は、真空外に設けられた電
磁石51を電気的に駆動することにより真空室内におか
れたソレノイドスラグ52を移動させ、そのソレノイド
スラグ52に連結されているシャッターブレード40を
目的の位置に動かすことができる。
A cell divider 30 is provided for separating the molecular beams so that the molecular beams radiated from the opening of the crucible 21 of each molecular beam source cell 20 are not mixed. The cell divider 30 is made of a refractory metal such as Ta and is fixed near the molecular beam source cell 20 in the growth chamber 10. The shutter blade 4 is provided between the opening of the crucible 21 and the substrate.
0 is provided. In FIG. 1, the shutter is closed, and the opening of the crucible 21, which is the radiation surface of the molecular beam, is covered by the shutter blade 40 and the cell divider 30, and the molecular beam does not reach the substrate. The shutter blade 40 is moved by the shutter driving mechanism 50 provided on the wall surface of the growth chamber 10 in a direction parallel to the radiation surface of the molecular beam to a position where the radiation surface is not covered, so that the molecular beam from each molecular beam cell 20 is moved. The line can be turned on and off. The shutter drive mechanism 50 moves the solenoid slug 52 placed in the vacuum chamber by electrically driving an electromagnet 51 provided outside the vacuum, and aims at the shutter blade 40 connected to the solenoid slug 52. Can be moved to a position.

【0012】シャッター駆動機構50は、位置補正機構
60を介して成長室10に固定されている。位置補正機
構60は、メタルベローズシール61で連結された一対
のフランジ62と、そのフランジ62間の位置を調整で
きる調整ねじ63から構成されている。したがって、成
長室10に設けられた覗き窓からシャッターブレード4
0とセルデバイダー30の間隔を観察しながら、位置補
正機構60の調整ねじ63により適切な位置に設定する
ことが可能となる。なお、位置補正機構60は、成長室
10とシャッター駆動機構50との位置関係を成長室1
0の真空を保ったまま動かすことができれば、他の機構
を用いてもよい。
The shutter drive mechanism 50 is fixed to the growth chamber 10 via a position correction mechanism 60. The position correction mechanism 60 includes a pair of flanges 62 connected by a metal bellows seal 61 and an adjusting screw 63 that can adjust the position between the flanges 62. Therefore, the shutter blade 4 can be viewed from the viewing window provided in the growth chamber 10.
While observing the distance between 0 and the cell divider 30, it becomes possible to set the position appropriately by the adjusting screw 63 of the position correcting mechanism 60. The position correction mechanism 60 determines the positional relationship between the growth chamber 10 and the shutter driving mechanism 50.
Other mechanisms may be used as long as they can be moved while maintaining a vacuum of 0.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例であるエピタキシャル成長装置のシャッ
ター機構の概念図((a)は正面図、(b)は側面図)
である。
FIG. 1 is a conceptual diagram of a shutter mechanism of an epitaxial growth apparatus that is an embodiment ((a) is a front view and (b) is a side view).
Is.

【符号の説明】[Explanation of symbols]

10 成長室 20 分子線源セル 21 るつぼ 30 セルデバイダー 40 シャッターブレード 50 シャッター駆動機構 51 電磁石 52 ソレノイドスラグ 60 位置補正機構 61 メタルベローズシール 62 フランジ 63 調整ねじ 10 growth chamber 20 molecular beam source cell 21 crucible 30 cell divider 40 shutter blade 50 shutter drive mechanism 51 electromagnet 52 solenoid slug 60 position correction mechanism 61 metal bellows seal 62 flange 63 adjustment screw

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (a)高真空に排気される成長室と、(b)該
成長室に設けられた分子線源セルと、(c)該分子線源セ
ルの輻射面の近傍に固定されているセルデバイダーと、
(d)該分子線源セルの輻射面を覆う位置と覆わない位置
に移動することのできるシャッターブレードと、(e)前
記セルデバイダーと前記シャッターブレードの間隔を前
記成長室の外部から調整可能な位置補正機構とを含むこ
とを特徴とする分子線エピタキシャル成長装置。
1. A growth chamber that is evacuated to a high vacuum, (b) a molecular beam source cell provided in the growth chamber, and (c) is fixed near the radiation surface of the molecular beam source cell. Cell divider,
(d) a shutter blade that can be moved to a position that covers the radiation surface of the molecular beam source cell and a position that does not cover the radiation surface, and (e) the distance between the cell divider and the shutter blade can be adjusted from outside the growth chamber. A molecular beam epitaxial growth apparatus comprising a position correction mechanism.
JP7276593A 1993-03-09 1993-03-09 Molecular beam epitaxial growth apparatus Pending JPH06263587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7276593A JPH06263587A (en) 1993-03-09 1993-03-09 Molecular beam epitaxial growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7276593A JPH06263587A (en) 1993-03-09 1993-03-09 Molecular beam epitaxial growth apparatus

Publications (1)

Publication Number Publication Date
JPH06263587A true JPH06263587A (en) 1994-09-20

Family

ID=13498800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7276593A Pending JPH06263587A (en) 1993-03-09 1993-03-09 Molecular beam epitaxial growth apparatus

Country Status (1)

Country Link
JP (1) JPH06263587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000196A1 (en) * 1986-07-08 1988-01-14 Nissan Motor Co., Ltd. Spirooxazine compounds, photosensitive materials using them, and process for forming them
WO1989007104A1 (en) * 1988-02-08 1989-08-10 Toray Industries, Inc. Novel spirooxazine compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000196A1 (en) * 1986-07-08 1988-01-14 Nissan Motor Co., Ltd. Spirooxazine compounds, photosensitive materials using them, and process for forming them
WO1989007104A1 (en) * 1988-02-08 1989-08-10 Toray Industries, Inc. Novel spirooxazine compounds

Similar Documents

Publication Publication Date Title
JPH06263587A (en) Molecular beam epitaxial growth apparatus
GB2170043A (en) Apparatus for the growth of semiconductor crystals
US5432124A (en) Method of manufacturing compound semiconductor
JP2526036B2 (en) Shutter structure of molecular beam epitaxy equipment
JPH05887A (en) Molecular beam crystal growing device
JPH0790569A (en) Sputtering device
JPS6132414A (en) Thin film forming equipment
JPH0769787A (en) Molecular beam epitaxial device
JPH03142921A (en) Manufacturing device for iii-v compound semiconductor thin film
JPH0352434B2 (en)
JPH057251Y2 (en)
JPH05182910A (en) Molecular beam epitaxtially growing method
JPS61261295A (en) Thin film growing device
JPH034516A (en) Molecular beam source
JPH09110594A (en) Heterogeneous epitaxial growth of aluminum oxide single crystal film on silicon substrate and device used for the method
JPH0352435B2 (en)
JPS6294920A (en) Source for generating molecular beam
JPH04303921A (en) Semiconductor thin-film manufacturing apparatus
JPS62190831A (en) Molecular beam epitaxy apparatus
JPS62144320A (en) Manufacture of super-lattice semiconductor
JPH07288230A (en) Molecular-beam epitaxy apparatus
JPH02254713A (en) Molecular beam generator
JPH05201792A (en) Device for producing thin film crystal
JPH0152889B2 (en)
JP2000226295A (en) Epitaxial device using molecular beam