JPS62144320A - Manufacture of super-lattice semiconductor - Google Patents

Manufacture of super-lattice semiconductor

Info

Publication number
JPS62144320A
JPS62144320A JP28645485A JP28645485A JPS62144320A JP S62144320 A JPS62144320 A JP S62144320A JP 28645485 A JP28645485 A JP 28645485A JP 28645485 A JP28645485 A JP 28645485A JP S62144320 A JPS62144320 A JP S62144320A
Authority
JP
Japan
Prior art keywords
thin film
superlattice
manufacturing
semiconductor
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28645485A
Other languages
Japanese (ja)
Inventor
Hideaki Iwano
岩野 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP28645485A priority Critical patent/JPS62144320A/en
Publication of JPS62144320A publication Critical patent/JPS62144320A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a super-lattice semiconductor characterized by a large area and steep composition change at an interface with good reproducibility, by turning ON and OFF the projection of optical energy so that the optical energy is not projected in growing a first thin film and the optical energy is projected in growing the second thin film, in two kinds of compound semiconductor thin films constituting a super lattice. CONSTITUTION:A constant temperature bath 120 is filled with trimethylgallium TMG, and a constant temperature bath 121 is filled with trimethylaluminum TMA. A substrate 109 is mounted on a carbon susceptor 110 and undergo induction heating to 500-800 deg.C by a high frequency power source 111. At first, a Ga0.9Al0.1As thin film is grown to 10-100Angstrom by an MOCVD method. Then, under this state, light from an ultraviolet light source 101 is directly projected on the surface of the substrate by opening an optical shutter 133. Thus, decomposition of the TMA is accelerated by the ultraviolet light, and GaAlAs having much Al composition is grown. A super-lattice semiconductor can be manufactured only by turning ON and OFF the optical energy. Therefore, steepness at an interface can be ensured, and an ideal super-lattice semiconductor can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超格子半導体の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a superlattice semiconductor.

〔発明の概要〕[Summary of the invention]

本発明は、lngの異なる2種の化合物半導体薄膜を交
互に繰り返し積層して成る超格子半導体の製造方法にお
いて、成長用基板の表面に、成長原料のいずれかに光吸
収される波長の光を照射すると異なる組成の薄膜が形成
される為に、超格子半導体を構成する2種の化合物半導
体薄膜のうち、一方の薄膜成長中に光エネルギーの照射
を行なわず、もう一方の薄膜成長中に光エネルギーの照
射を行なうという、光エネルギーの照射のオンオフを繰
り返し行なうことで、超格子半導体を製造することによ
り、超格子界面の組成の変化が急峻となり、超格子を構
成する極薄膜の膜厚制御が容易となり、理想的超格子に
近い半導体を製造可能としたものである。
The present invention provides a method for manufacturing a superlattice semiconductor in which two types of compound semiconductor thin films with different lngs are alternately and repeatedly stacked. When irradiated, thin films with different compositions are formed, so of the two types of compound semiconductor thin films that make up the superlattice semiconductor, no light energy is irradiated during the growth of one thin film, and no light energy is applied during the growth of the other thin film. By repeatedly turning on and off the irradiation of light energy to produce a superlattice semiconductor, the composition of the superlattice interface changes sharply, making it possible to control the thickness of the ultra-thin film that makes up the superlattice. This makes it easy to manufacture semiconductors with a near-ideal superlattice.

〔従来の技術〕[Conventional technology]

従来の超格子半導体の製造方法は、分子線エピタキシー
法(以下MBE法と記す)あるいはMOCvD法等の気
相成長法で行なわれていた。MBE法では、蒸発源のシ
ャッターの開閉により超格子薄膜の組成変化を制御する
ものであった。
Conventional methods for manufacturing superlattice semiconductors have been carried out by vapor phase growth methods such as molecular beam epitaxy (hereinafter referred to as MBE method) or MOCvD method. In the MBE method, changes in the composition of the superlattice thin film were controlled by opening and closing the shutter of the evaporation source.

またMOC!VD法等の熱分解化学気相成長法では、原
料ガスの流量比を急峻に切シ換えることにより超格子半
導体の製造が行なわれていた。
MOC again! In pyrolytic chemical vapor deposition methods such as the VD method, superlattice semiconductors have been manufactured by abruptly switching the flow rate ratio of raw material gases.

たとえばMO(1!VD法による場合を第1図を用いて
説明する。従来のMOCVD法の場合に超格子構造を形
成するには、たとえばGaAtAsとGaASの超格子
の場合、(120)のトリメチルガリウム(以下TMG
と記す)を(123)マス70− コン)ローラで流量
制御した水素ガスを用いて電磁弁(M4)を通して、ロ
ータリーポンフ(151) L 流シ、i タフスフ0
−コントローラ−(122)で流量制御されたアルシン
(ASHs  )ガスを反応管(10B)中に流し、成
膜開始時に弁(114)を閉じて弁(1j5)を開放し
てTMGを反応管中に導入しGaAθ薄膜を10〜10
0久成長させる。その後、あらかじめ、弁(116)を
通して流していた(121)のトリメチルアルミニウム
(以下TMAと記す)を弁(117)を開放してTMA
も(108)の中に導入してGaA4As薄膜を10〜
100^形成する。この一連の操作を何回も繰り返すこ
とにより、超格子構造薄膜を製造するものであった。
For example, the case of the MO(1!VD method will be explained using FIG. 1. In the case of the conventional MOCVD method, in order to form a superlattice structure, for example, in the case of a superlattice of GaAtAs and GaAS, the trimethyl Gallium (hereinafter referred to as TMG)
(denoted as ) (123) Mass 70- Con) Pass the solenoid valve (M4) using hydrogen gas whose flow rate is controlled by a roller, and transfer it to the rotary pump (151) L Flow, i Tough Flow 0
- Arsine (ASHs) gas whose flow rate is controlled by the controller (122) is flowed into the reaction tube (10B), and at the start of film formation, the valve (114) is closed and the valve (1j5) is opened to introduce TMG into the reaction tube. GaAθ thin film was introduced into 10~10
Let it grow for 0 years. Thereafter, the trimethylaluminum (121) (hereinafter referred to as TMA) that had been previously flowed through the valve (116) was released into the TMA by opening the valve (117).
(108) to form a GaA4As thin film from 10~
Form 100^. By repeating this series of operations many times, a superlattice structure thin film was manufactured.

〔発明が解決しようとする問題点及び目的〕しかし前述
の従来技術では、まずMBE法の場合、急峻は組成変化
を持った界面の形成が可能であるが、高真空容器が必要
であり、成膜までに長時間を要し、量産性にとぼしい、
また大面積に均一な成膜を行なうことが困難であるとい
った問題点を有する。
[Problems and Objectives to be Solved by the Invention] However, in the prior art described above, first, in the case of the MBE method, it is possible to form an interface with a steep compositional change, but it requires a high vacuum container and is difficult to form. It takes a long time to form a film, making it difficult to mass-produce.
Another problem is that it is difficult to uniformly form a film over a large area.

また前述のHocvD法による場合にはガス流量の切り
換えによって組成比の異なる薄膜を形成するため、ガス
流量切シ換え時にガス配管内部や反応管内部に残した原
料ガス成分が成膜に関与し、界面における組成の急峻な
変化が保証されず、電気的光学的特性の良好な半導体を
再現性良く実現することが困難であるといった問題点を
有している。
In addition, in the case of the HocvD method described above, thin films with different composition ratios are formed by switching the gas flow rate, so raw gas components left inside the gas piping or reaction tube when changing the gas flow rate are involved in film formation. The problem is that a sharp change in composition at the interface is not guaranteed, making it difficult to realize a semiconductor with good electro-optical properties with good reproducibility.

更に、前述の方法では、ガス切換えの操作が煩雑である
ため再現性に乏しいといった問題点を有している。
Furthermore, the above-described method has the problem of poor reproducibility due to the complicated gas switching operation.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、大面積に均一な超格子半導体を
、界面の組成変化が急峻であり、且つ再現性よく得られ
るための製造方法を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to manufacture a superlattice semiconductor that is uniform over a large area, has a steep compositional change at the interface, and can be obtained with good reproducibility. It's about providing a method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の超格子半導体の製造方法は、超格子を構成する
2種の化合物半導体薄膜のうち、第1の薄膜の成長には
光エネルギーの照射を行なわず、第2の薄膜の成長には
光エネルギーの照射を行ない、以下同様の光エネルギー
の照射のオン、オフを繰り返すことによって成膜するこ
とを特徴とする。
In the method for manufacturing a superlattice semiconductor of the present invention, of the two types of compound semiconductor thin films constituting the superlattice, the growth of the first thin film is not irradiated with optical energy, and the growth of the second thin film is irradiated with light energy. The method is characterized in that a film is formed by irradiating energy and then repeating the same on and off irradiation of light energy.

〔作用〕[Effect]

本発明の上記の構成によれば、原料ガスの分解が光エネ
ルギーで促進され、光照射時と光を照射しない場合の薄
膜中の元素組成比が変化する。
According to the above configuration of the present invention, the decomposition of the source gas is promoted by light energy, and the elemental composition ratio in the thin film changes between when light is irradiated and when no light is irradiated.

従って、たとえばMOC!VD法の場合には、原料ガス
の流量は一定にしておき、光エネルギーの照射は、光シ
ヤツターを用いてオン、オフをすれば良いので、ガス流
の切換えなしで容易に組成比の異なる薄膜の成長が可能
であり、且つ光のオンオフは、極めて短時間で行なうこ
とが可能であるので界面の組成変化の急峻性は保証され
るのである〔実施例〕 第1図は本発明の実施例における超格子半導体製造装置
の主要構成図であって、(120)の恒温槽にはTMG
が、(121)の恒温槽にはTMAが充填されている。
Therefore, for example, MOC! In the case of the VD method, the flow rate of the raw material gas is kept constant, and the irradiation of light energy can be turned on and off using an optical shutter, so it is easy to create thin films with different composition ratios without changing the gas flow. can be grown, and the light can be turned on and off in an extremely short time, so the steepness of the compositional change at the interface is guaranteed [Example] Figure 1 shows an example of the present invention. It is a main configuration diagram of a superlattice semiconductor manufacturing apparatus in (120), in which a TMG is installed in a constant temperature oven.
However, the constant temperature bath (121) is filled with TMA.

(128)の水素ガスボンベから水素ガスを供給し、(
10B)の反応管に導入する。(127)のA 8 E
I3ガスボンベからAsH,ガスを(10B)の反応管
に導入する。
Supply hydrogen gas from the hydrogen gas cylinder at (128),
10B) into the reaction tube. (127) A 8 E
AsH gas is introduced into the reaction tube (10B) from the I3 gas cylinder.

基板(109)はカーボンサセプター(110)上に設
置され、(111)の高周波電源により500℃〜80
0℃に誘導加熱されている。従来のMOC!VD法の通
りの成長手順で、G a O,9Ato、tAs薄膜を
10〜100^成長し、そのままの状態で(101)の
紫外光源(本実施例の場合には、ArFエキシマ−を発
振媒体とするエキシマ−レーザ(発振波長195 n 
m )及びK r O,tエキシマ−を発振媒体とする
エキシマ−レーザ(発振波長222 n m )光を用
いた)の光を(133)の光シヤツターを開とすること
で基板表面に直接照射する。すると、TMAの分解が紫
外光によって促進され、At組成の多いGaAtAs中
が成長を開始する。
The substrate (109) is placed on the carbon susceptor (110) and heated to 500°C to 80°C by the high frequency power supply (111).
It is induction heated to 0°C. Traditional MOC! G a O, 9Ato, tAs thin film is grown 10 to 100 times using the same growth procedure as the VD method, and in that state, a (101) ultraviolet light source (in the case of this example, ArF excimer is used as the oscillation medium) is used. excimer laser (oscillation wavelength 195 n
By opening the optical shutter of (133), the light of an excimer laser (using light with an oscillation wavelength of 222 nm) using an excimer as an oscillation medium is irradiated directly onto the substrate surface. do. Then, the decomposition of TMA is promoted by ultraviolet light, and growth begins in GaAtAs, which has a high At composition.

第2図には196%mエキシマ−レーザを照射した場合
のGaAtAs中のA1組成とレーザ光量の関係を示す
。第3図には2223?FLエキシマ−レーザを照射し
た場合のGaAAAsのA1組成比とレーザ光量の関係
を示す。いずれの場合も、At組成はレーザ光照射時の
方が大きい。また222%mのレーザ光の場の場合には
、TMAの吸収係数がTMGのそれに比べて大きいので
、At組成比は大きく変化する。
FIG. 2 shows the relationship between the A1 composition in GaAtAs and the amount of laser light when irradiated with a 196% m excimer laser. 2223 in Figure 3? The relationship between the A1 composition ratio of GaAAAs and the amount of laser light when irradiated with FL excimer laser is shown. In either case, the At composition is greater during laser beam irradiation. Further, in the case of a laser beam field of 222% m, the absorption coefficient of TMA is larger than that of TMG, so the At composition ratio changes greatly.

第4図は、本実施例の装置において、ガス流量を切シー
換えてG a O,9A t o、t A s/G a
 o、5AAo、sAsの界面の組成の急峻性を調べた
場合と、2225mレーザ光のオンオフによって形成し
て、同一組成界面の急峻性を比較したものである。レー
ザ光照射による場合の方が界面の急峻性が改善されてい
ることが判る。
FIG. 4 shows that in the apparatus of this embodiment, the gas flow rate is switched to obtain G a O, 9 A to, t A s/G a
This figure compares the steepness of the compositional interfaces of o, 5AAo, and sAs, and the steepness of interfaces of the same composition formed by turning on and off a 2225m laser beam. It can be seen that the steepness of the interface is improved by laser light irradiation.

本実施例では、MOOVD法によるGaAs/GaAt
Ag超格子の場合を述べたが、同様の製造方法はInG
aA11l系あるいはInGaP系など他のU−V族半
導体超格子の実現に有効であることは当然である。
In this example, GaAs/GaAt was formed by MOOVD method.
Although we have described the case of Ag superlattice, a similar manufacturing method can be used for InG
It goes without saying that this method is effective in realizing other UV group semiconductor superlattices such as aA11l system or InGaP system.

またm−v族に限らず、■−■族、■−族系の超格子半
導体の製造にも有効であることは当然のことである。
It goes without saying that it is also effective in producing not only m-v group superlattice semiconductors but also ■-■ group and ■- group superlattice semiconductors.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、光エネルギーのオン
オフのみで超格子半導体の製造が可能であるため、界面
の急峻性が保証でき、理想的超格子半導体の製造が可能
であるという効果を有する。その結果、超格子半導体を
使って半導体レーザを製造した場合、低閾値、短波長発
振、高信順性のレーザの製作が可能である。
As described above, according to the present invention, it is possible to manufacture a superlattice semiconductor simply by turning on and off light energy, so the steepness of the interface can be guaranteed, and the effect that an ideal superlattice semiconductor can be manufactured is achieved. have As a result, when a semiconductor laser is manufactured using a superlattice semiconductor, it is possible to manufacture a laser with a low threshold, short wavelength oscillation, and high reliability.

更に膜厚の制御が容易であるため、発振波長の選択が、
膜厚のコントロールによって可能である。
Furthermore, since the film thickness is easy to control, the selection of the oscillation wavelength is
This is possible by controlling the film thickness.

更に、HFiMT等の2次元電子ガスを応用した高速ス
イッチング素子の特性向上にも役立つものである。
Furthermore, it is useful for improving the characteristics of high-speed switching elements that apply two-dimensional electron gas, such as HFiMT.

更に、大面積に均一に成膜可能がOVD法を適用できる
ので、量産性、歩留りを向上することができる。
Furthermore, since the OVD method can be applied to uniformly form a film over a large area, mass productivity and yield can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超格子半導体製造方法による製造装置
の主要構成図である。  □ 第2図はGaAtAs薄膜中のht原子数濃度と195
%m紫外光レーザ光蓋との関係図である第3図はGaA
tAs薄膜中のAA原子数濃度と222am紫外光レー
ザ光量との関係図である范4図はGaA7As薄膜界面
のAL原子数濃度の膜厚方向の分布図である。 (101)・・・・・・紫外光源 (104)・・・・・・反射ミラー (107)・・・・・・合成石英窓 (108)・・・・・・反応管 (109)・・・・・・単結晶基板 (1j1)・・・・・・高周波電源 (112)〜(119)・・・・・・電磁パルプ(12
0)、(121)・・・・・・有機金属化合物(122
)〜(126)・・・・・・マス70−コントローラ (150ン、(131)・−・・・ロータリーポ°ンプ
(1,35)・・・・・・光シャッター以  上 出願人 セイコーエプソン株式会社 代理人 弁理士最上務(他1名ン [相] tJJ各J牛算Δ本嘘達jし五1;よろへ込装置。1享
1戒圀 /六1夕し蟹グ1ル レーデ尤量と一−へvLE図第2
区 第3図 月!7!(ス) ひユAρA、薄膜恭命めAノh)数濃度。 11irsさ部分ん目 第4図
FIG. 1 is a main configuration diagram of a manufacturing apparatus according to the superlattice semiconductor manufacturing method of the present invention. □ Figure 2 shows the concentration of ht atoms in a GaAtAs thin film and 195
Figure 3, which is a relationship diagram with the %m ultraviolet laser light lid, shows the relationship between GaA
Figure 4, which is a relationship diagram between the AA atomic number concentration in the tAs thin film and the 222 am ultraviolet laser light intensity, is a distribution diagram of the AL atomic number concentration at the interface of the GaA7As thin film in the film thickness direction. (101)...Ultraviolet light source (104)...Reflection mirror (107)...Synthetic quartz window (108)...Reaction tube (109)... ...Single crystal substrate (1j1) ...High frequency power supply (112) to (119) ...... Electromagnetic pulp (12
0), (121)...Organometallic compound (122
) to (126)...Mass 70-controller (150 units, (131)...Rotary pump (1,35)...Optical shutter and above Applicant: Seiko Epson Co., Ltd. Agent Patent Attorney Mogami (1 other person) Likelihood and 1-vLE diagram 2nd
Ward number 3 moon! 7! (S) HiyuAρA, thin film kyoumeme Anoh) Number concentration. 11irs Part 4 Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)エネルギーバンドギャップ(以下Egと記す)の
異なる2種の化合物半導体薄膜を交互に繰り返し積層し
て成る超格子半導体を熱分解化学気相成長法で成膜する
超格子半導体の製造方法において、前記2種の化合物半
導体薄膜のうち、第1の薄膜の成長には光エネルギーの
照射を行なわず、第2の薄膜の成長には光エネルギーの
照射を行ない、以下、同様の光エネルギーの照射のオン
,オフを、繰り返すことによって成膜することを特徴と
する超格子半導体の製造方法。
(1) A method for manufacturing a superlattice semiconductor in which a superlattice semiconductor formed by alternately and repeatedly stacking two types of compound semiconductor thin films with different energy band gaps (hereinafter referred to as Eg) is deposited by pyrolysis chemical vapor deposition. Of the two types of compound semiconductor thin films, the growth of the first thin film was not irradiated with light energy, and the growth of the second thin film was irradiated with light energy; A method for manufacturing a superlattice semiconductor, characterized in that a film is formed by repeatedly turning on and off.
(2)前記光エネルギーの波長範囲が紫外光領域であり
、且つ前記化合物半導体薄膜の成長原料のうちいずれか
に光吸収され得る波長であることを特徴とする特許請求
の範囲第1項記載の超格子半導体の製造方法。
(2) The wavelength range of the light energy is in the ultraviolet light region, and is a wavelength that can be absorbed by any of the growth materials of the compound semiconductor thin film. A method for manufacturing superlattice semiconductors.
(3)前記熱分解化学気相成長法が、有機金属化合物を
原料とする気相成長法(以下MOCVD法と記す)であ
ることを特徴とする特許請求の範囲第1項記載の超格子
半導体の製造方法。
(3) The superlattice semiconductor according to claim 1, wherein the pyrolytic chemical vapor deposition method is a vapor phase growth method (hereinafter referred to as MOCVD method) using an organometallic compound as a raw material. manufacturing method.
(4)前記光エネルギーの照射が、成長用単結晶基板に
直接照射されることを特徴とする特許請求の範囲第1項
記載の超格子半導体の製造方法。
(4) The method for manufacturing a superlattice semiconductor according to claim 1, wherein the light energy is irradiated directly onto a growth single crystal substrate.
(5)前記光エネルギーの光源が、レーザ光源であるこ
とを特徴とする特許請求の範囲第1項記載の超格子半導
体の製造方法。
(5) The method for manufacturing a superlattice semiconductor according to claim 1, wherein the light source of the optical energy is a laser light source.
JP28645485A 1985-12-19 1985-12-19 Manufacture of super-lattice semiconductor Pending JPS62144320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28645485A JPS62144320A (en) 1985-12-19 1985-12-19 Manufacture of super-lattice semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28645485A JPS62144320A (en) 1985-12-19 1985-12-19 Manufacture of super-lattice semiconductor

Publications (1)

Publication Number Publication Date
JPS62144320A true JPS62144320A (en) 1987-06-27

Family

ID=17704598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28645485A Pending JPS62144320A (en) 1985-12-19 1985-12-19 Manufacture of super-lattice semiconductor

Country Status (1)

Country Link
JP (1) JPS62144320A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631025A (en) * 1986-06-20 1988-01-06 Seiko Epson Corp Manufacture of semiconductor superlattice
JPH06123863A (en) * 1991-07-09 1994-05-06 Seitetsu Gakuen Manufacture of optical switch element having intrinsic multiplex well layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631025A (en) * 1986-06-20 1988-01-06 Seiko Epson Corp Manufacture of semiconductor superlattice
JPH06123863A (en) * 1991-07-09 1994-05-06 Seitetsu Gakuen Manufacture of optical switch element having intrinsic multiplex well layer

Similar Documents

Publication Publication Date Title
JPS63132421A (en) Epitaxial growth method for compound semiconductor
JPS6134927A (en) Growing process of compound semiconductor single crystal thin film
JPS62144320A (en) Manufacture of super-lattice semiconductor
JPS6134922A (en) Manufacture of super lattice semiconductor device
JP3182584B2 (en) Compound thin film forming method
JPS62138390A (en) Molecular beam epitaxy
JPH0292891A (en) Molecular beam epitaxial growth process and apparatus therefor
JPS61260622A (en) Growth for gaas single crystal thin film
JP2641539B2 (en) Method for manufacturing semiconductor device
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JPH05226257A (en) Vapor growth method and photo assisted vapor growth apparatus
JP2620546B2 (en) Method for producing compound semiconductor epitaxy layer
JP2567228B2 (en) Epitaxial growth method for semiconductor crystals
JP2743431B2 (en) Compound semiconductor vapor growth method and apparatus
JPH0459699A (en) Production of longitudinal semiconductor superlattice
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPH01282199A (en) Production of thin zinc sulfide film
JPH04363699A (en) Manufacturing of x-ray mirror
JPS6245107A (en) Formation of semiconductor thin-film
JPH01251609A (en) Manufacture of compound semiconductor
JPH04212415A (en) Vapor growth method for semiconductor crystal
JPH04254499A (en) Production of compound semiconductor crystal
JPS6134930A (en) Growing process of selective type crystal
JPH04170397A (en) Production of gallium nitride thin film
JPH0442891A (en) Production of semiconductor thin film