JPS631025A - Manufacture of semiconductor superlattice - Google Patents

Manufacture of semiconductor superlattice

Info

Publication number
JPS631025A
JPS631025A JP14453586A JP14453586A JPS631025A JP S631025 A JPS631025 A JP S631025A JP 14453586 A JP14453586 A JP 14453586A JP 14453586 A JP14453586 A JP 14453586A JP S631025 A JPS631025 A JP S631025A
Authority
JP
Japan
Prior art keywords
semiconductor
superlattice
thin film
excimer laser
semiconductor superlattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14453586A
Other languages
Japanese (ja)
Inventor
Hiroshi Komatsu
博志 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14453586A priority Critical patent/JPS631025A/en
Publication of JPS631025A publication Critical patent/JPS631025A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a semiconductor superlattice excellent in the sharpness of an interface, by applying ultraviolet excitation intermittently onto the surface of a semiconductor thin film in the course of an organic metal vapor growth. CONSTITUTION:A prescribed material gas 202 is made to flow onto the surface of a GaAs substrate 201 of a temperature T0 and Alx1Ga1-x1As 203 is prepared by thermal decomposition. Successively, ArF medium excima laser 204 of wavelength 193 nm applied onto the thin film 203 to prepare Alx2Ga1-x2As 205. Next, Alx1Ga1-x1As 206 is prepared under the same condition as in the first process, and subsequently the excima laser 204 is applied again so as to superpose Alx2 Ga1-x2As 207 thereon. By repeating these processes, a multilayer semiconductor superlattice can be formed. According to this constitution, a superlattice region of a tow-dimensional distribution is formed by selecting a region of ultraviolet irradiation, and thus a buried-type electron well laser and the like can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 不発明は半導体超格子の製造方法に関する。[Detailed description of the invention] [Industrial application field] The invention relates to a method of manufacturing a semiconductor superlattice.

〔従来の技術〕[Conventional technology]

半4′体超格子は、物理的性質(例えば禁、5]j帝雇
や格子定aなど〕の相異なる二種類以上の半導体超薄膜
を積層したもので、バルク半導体にはない光学的、電気
的に全く新しい特性をもったものである。半導体超格子
を構成するそれぞれの半導体超薄膜の膜厚は通常数百オ
ンゲスドーム以下である。このような極薄の膜厚を持っ
た半導体超格子の製造技術には原子層レベルでの膜厚制
d性が要求される。従来の半導体超格子の製造方法には
、”半導体超格子の物理と応用″(日本物理学会編:培
風館)に紹介されているように、有機金属気相成長法(
Mocvn法とも言う)や分子線エピタキシャル法(M
Bffi法とも言う)などがある。
A semi-4' superlattice is a stack of two or more types of ultra-thin semiconductor films with different physical properties (e.g., 5) dilatation, lattice constant, etc.), and has optical properties not found in bulk semiconductors. It has completely new electrical properties.The thickness of each ultra-thin semiconductor film that makes up a semiconductor superlattice is usually less than a few hundred Angus domes.A semiconductor superlattice with such an ultra-thin film thickness The manufacturing technology requires film thickness control at the atomic layer level.The conventional manufacturing method of semiconductor superlattices is introduced in "Physics and Applications of Semiconductor Superlattices" (edited by the Physical Society of Japan, Baifukan). Metal-organic vapor phase epitaxy (
(also called Mocvn method) and molecular beam epitaxial method (M
(also called the Bffi method).

MOCVD法は、半導体を構成する元素のアルキル化合
物あるいは水素化物を原料として用い、これらのガス原
料を気相にて半導体基板辰面に導入し、熱分解Vζよっ
て反応偵を埋積きせエピタキシャル成長させる技術であ
り、超格子の製造はガス原料を切り換えて行なっていた
。MBL法は半導体を構成する元素の単体を高真空中で
加熱し、半導体基板上VC蒸涜してエピタキシャル成長
させる技術である。MBE法による超格子の製造はシャ
ッターの開閉で行なっていた。
The MOCVD method is a technology that uses alkyl compounds or hydrides of elements that make up semiconductors as raw materials, introduces these gaseous raw materials in a gas phase onto the top surface of a semiconductor substrate, and embeds reactants through thermal decomposition Vζ to produce epitaxial growth. The superlattice was manufactured by changing the gas source. The MBL method is a technology in which a single element constituting a semiconductor is heated in a high vacuum, and VC is ablated onto the semiconductor substrate to cause epitaxial growth. Superlattice manufacturing using the MBE method was performed by opening and closing a shutter.

〔発明が解決しようとする間1点〕 しかし、前述の従来技術のうちMOOVD法については
、超格子を構成する超薄膜どおしの界面の急峻性は、ガ
ス原料の切フ換えで決定されるが、MOCVD装置の反
応管内に対流があったり、数棟類のガス切換時にガス切
換えマニホールドに時間遅れがあるなどして界面の急峻
性が悪くなるという問題点があった。MBE法Vζつい
ては、MBIC装置自体が高価格でランニングコストが
かかることから量産性が悪いという欠点や、成長した薄
膜中にクラスターが形成され、そのクラスターの大きざ
で超格子の膜厚寸法が制限されてしまうといった間、編
点があった。
[One point while the invention attempts to solve the problem] However, in the MOOVD method among the conventional techniques mentioned above, the steepness of the interface between the ultra-thin films constituting the superlattice is determined by switching the gas source. However, there were problems in that the steepness of the interface deteriorated due to convection in the reaction tube of the MOCVD device and a time delay in the gas switching manifold when switching gases between several buildings. Regarding the MBE method Vζ, the drawback is that the MBIC device itself is expensive and has high running costs, making it difficult to mass-produce, and clusters are formed in the grown thin film, and the size of the clusters limits the film thickness of the superlattice. There was a knitting point while it was being done.

そこで本発明の目的はMOCVD装置程度の量産性全維
持したまま、界面の急峻性に優れた半導体超格子を容易
に製造できる半導体超格子の製造方法を提供するところ
にある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a semiconductor superlattice that can easily manufacture a semiconductor superlattice with excellent interface steepness while maintaining all the mass productivity comparable to an MOCVD apparatus.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の半導体超格子の↓遣方法は、有機金属気相成長
法による半導体薄膜のエピタキシャル成長催中に、該半
導体薄膜表面に断続的に紫外線を照射する紫外・′涙切
起工程を含むことを特徴としている。
The method for forming a semiconductor superlattice of the present invention includes an ultraviolet irradiation step in which the surface of the semiconductor thin film is intermittently irradiated with ultraviolet rays during the epitaxial growth of the semiconductor thin film by metalorganic vapor phase epitaxy. It is a feature.

〔作用〕[Effect]

牛導体#膜の一つであるアルミニワムーカリウムーひ素
(A4GaAs  とも言う)結晶のMOOt7D法に
よるエピタキシャル成長途中に、牛→本基板表面に紫外
線(この場合エキシマレーザ)を照射するとエピタキシ
ャル層中のアルミニウム組成が増加する。このとす、膜
厚方向のアルミニウム組成比の遷$唱すなわち界面の急
峻性は、/1寸外線照射切換時間と牛導体薄嗅の成長速
度との噴で与えら1しる。紫外線照射切換時間かエキシ
マレーザの最短パルス間隔として5ミリ秒であり、−男
手導体薄膜の成長速度d:t+ocvo法の楠合−般的
に1秒当り10オングストロ一ム程度であるから、前述
の定義より遷移幅ばcl、05オングストローム提要と
なる。この値は1原子省(1原子層はAtGaAsの場
合約2.8オングストローム〕より十分に小さな値であ
るから、したがって、本発明の方法によると界面の急峻
性全単原子層以下で制御可能となる。
During the epitaxial growth of an aluminum conductor film, aluminum arsenic (also called A4GaAs), using the MOOt7D method, when the surface of the substrate is irradiated with ultraviolet rays (excimer laser in this case), the aluminum in the epitaxial layer is composition increases. In this case, the evolution of the aluminum composition ratio in the film thickness direction, that is, the steepness of the interface, is given by the changeover time of external radiation irradiation by 1 inch and the growth rate of the conductor. The ultraviolet irradiation switching time or the shortest pulse interval of the excimer laser is 5 milliseconds, and - the growth rate of the conductor thin film d: t + Kusunoki of the ocvo method - is generally about 10 angstroms per second, so the above-mentioned According to the definition, the transition width is cl, 05 angstroms. This value is sufficiently smaller than one atomic layer (one atomic layer is about 2.8 angstroms in the case of AtGaAs), and therefore, according to the method of the present invention, it is possible to control the steepness of the interface to less than a total monoatomic layer. Become.

〔実施例〕〔Example〕

原料としてトリメチルガリウム(以下TMGと略す)、
トリメチルアルミニウム(以下TMAと略す〕およびア
ルシン(以下AsH3と略す)を使用し、これらの原料
を高温下に置かれた半導体基板上で熱分解することによ
シAtGaAθ系半導体#膜をエピタキシャル成長させ
るいわゆる有機金属気相成長法において、成長した半導
体薄膜のM組成比Xは、気山中のTMG、TMAおよび
成長温度によって稍度よくコントロールでさる。このよ
うな有機金属気相成長法によるA4GaAe系半導体薄
膜のエピタキシャル成長途中で、牛導体薄膜炙面に波長
193nmのArF’媒体エキシマレーザを照射すると
TMAは光励起によって分解が促進され、エキシマレー
ザを照射している部分の気相中のM組成比が実効的に増
加するとともに、エキシマレーザ照射部のAjGaAs
半導体薄膜表面での表面光化学反応によりMのとり込み
率が増加するため、エキシマレーザ照射部のAtGaA
s半導体薄膜中のM■成比はエキシマレーザ非照射部の
成組成比と比較して大きくなる。この様子を第1図に示
す。第1因のグラフの横軸は成長@度、縦軸はAjG 
   A8半纏体薄模中のM組成比Xal−x である。回線aばArp媒体エキシマレーザ非照射部の
様子を承し、曲@b:はエキシマレーザ照射部の様子を
示している。図中に示す成艮@度T。
Trimethyl gallium (hereinafter abbreviated as TMG) as a raw material,
The so-called epitaxial growth method uses trimethylaluminum (hereinafter abbreviated as TMA) and arsine (hereinafter abbreviated as AsH3) and thermally decomposes these raw materials on a semiconductor substrate placed under high temperature to epitaxially grow an AtGaAθ-based semiconductor film. In the organometallic vapor phase epitaxy method, the M composition ratio X of the grown semiconductor thin film is precisely controlled by the TMG and TMA in the gaseous material and the growth temperature. During epitaxial growth, when the heated surface of the conductor thin film is irradiated with an ArF' medium excimer laser with a wavelength of 193 nm, the decomposition of TMA is promoted by optical excitation, and the M composition ratio in the gas phase in the area irradiated with the excimer laser becomes effective. As the amount of AjGaAs in the excimer laser irradiation area increases,
Since the M uptake rate increases due to the surface photochemical reaction on the semiconductor thin film surface, AtGaA in the excimer laser irradiated area increases.
The M2 composition ratio in the s semiconductor thin film is larger than the composition ratio of the non-excimer laser irradiated area. This situation is shown in FIG. The horizontal axis of the graph of the first factor is growth@degree, and the vertical axis is AjG
This is the M composition ratio Xal-x in the A8 semi-integrated thin model. The line a shows the state of the Arp medium where the excimer laser is not irradiated, and the song @b: shows the state of the excimer laser irradiated part. Seiwa @ degree T shown in the figure.

では、エキシマレーザ非照射部のA!組成比がXiであ
るのに対し、エキシマレーザ照射部のAZ、[成比ばx
2であり、X2>XIの関係にあることから、エキシマ
レーザ照射部のM組成比が犬きくなることがわかろつ第
1凶に示したエキシマレーザ照射の特性全考慮し、第2
図に本発明の半導体超格子の製1告方法の一実施例を示
す。第2図(a)は半・4体超格子の2J造方法の13
1段階?示す凶であり、成長温度To  ンこカロ熱さ
れたGaAs  単砧晶基板201の表面ICT M 
G 、 T M A 、 A BH3オjびキャリアガ
スとしての水素(以下[(2と略す〕を含む原料ガス2
02を流し、熱分解によってM組成比がXlのAtxI
 Ga1−xAs半導体薄膜203ftエピタキシャル
成長している工程を示している。
Now, A! While the composition ratio is Xi, the AZ of the excimer laser irradiation part, [composition ratio x
2, and there is a relationship of X2 >
The figure shows an embodiment of the method for manufacturing a semiconductor superlattice according to the present invention. Figure 2(a) shows 13 of the 2J construction method for half-4-body superlattice.
1st stage? The surface ICT of the GaAs monocrystalline substrate 201 is heated at a growth temperature To.
Raw material gas 2 containing G, TMA, A BH3 and hydrogen as a carrier gas (hereinafter abbreviated as 2)
AtxI with an M composition ratio of Xl is produced by thermal decomposition.
It shows the process of epitaxial growth of 203 ft of Ga1-xAs semiconductor thin film.

第2図(a)に示した第1段階は有機金属気相成長法に
よるエピタキシャル成長工程である。第2図(b)は半
導体超格子の製造方法の爾2段階を示す図である。第2
段階は、第2圀(a)に示した第1段階の成長条件の下
で、半導体薄膜をエピタキシギル成長しながら波長19
3 nmのArF媒体エキシマレーザを半導体薄膜表面
に照射する工程である。
The first stage shown in FIG. 2(a) is an epitaxial growth process by metal organic vapor phase epitaxy. FIG. 2(b) is a diagram showing the second step of the method for manufacturing a semiconductor superlattice. Second
In the step, under the growth conditions of the first step shown in the second section (a), a semiconductor thin film is epitaxially grown while a wavelength of 19.
This is a step in which the surface of the semiconductor thin film is irradiated with a 3 nm ArF medium excimer laser.

嬉2図(b) において、エキシマレーザ204を照射
すると、M組成比がx2のAtx2 Ga、−xAa半
導体博模205がエピタキシャル成長する。エキシマレ
ーザ照射するとA!組成比がx2になるのは第1図に示
すグラフより明らかである。第2図(e)は半導体超格
子の製造方法の第3段階金示す図である。第3段階は第
1段階と全く同様の条YFで成長する工程である。した
がってA1.組成比がXIのAtX4 GILJ  X
I AII+半導体薄膜206がエピタキシャル5!j
、長される。第21J(d)は半導体超格子の製造方法
の第4段階を示す図である。第4段階では再びエキシマ
レーザ204が照射され、成長条件は第2段階と全く同
様である。したがってu;m酸比がx2のA tX2 
G al  X A L3  半導体薄膜207がエピ
タキシャル成長される。さらに第3段階の工程および箒
4段階の工程を〈υ返し行なえば多層の半導体超格子を
形成できる。
In Figure 2 (b), when the excimer laser 204 is irradiated, an Atx2 Ga, -xAa semiconductor 205 with an M composition ratio of x2 is epitaxially grown. A when excimer laser irradiates! It is clear from the graph shown in FIG. 1 that the composition ratio is x2. FIG. 2(e) is a diagram showing the third step of the method for manufacturing a semiconductor superlattice. The third stage is a process of growing YF strips, which is exactly the same as the first stage. Therefore A1. AtX4 GILJ X with composition ratio XI
I AII + semiconductor thin film 206 is epitaxial 5! j
, lengthened. 21J(d) is a diagram showing the fourth step of the method for manufacturing a semiconductor superlattice. In the fourth stage, the excimer laser 204 is irradiated again, and the growth conditions are exactly the same as in the second stage. Therefore, A tX2 with u;m acid ratio x2
A G al X A L3 semiconductor thin film 207 is epitaxially grown. Furthermore, by repeating the third step and the fourth step, a multilayer semiconductor superlattice can be formed.

娼5図に本発明により作製した半導体超格子の断面図を
示す。第2図(a)〜(d)に示した実施例に従って、
有機金員:気相成長法による半導体薄膜のエピタキシャ
ル成長途中に、断、統帥に紫外線を照射する紫外線励起
工程によって第3図に示す多1−の半導体薄膜より成る
牛導体′Iii浴子を作製した。
FIG. 5 shows a cross-sectional view of a semiconductor superlattice fabricated according to the present invention. According to the embodiment shown in FIGS. 2(a) to (d),
Organic metal: During the epitaxial growth of a semiconductor thin film using the vapor phase growth method, an ultraviolet ray excitation process was performed in which UV was irradiated on the top and bottom of the conductor to produce a yukata consisting of a multilayer semiconductor thin film as shown in Fig. 3. .

成長条件は成長温度が670 C,成長圧力100To
rr、  T M G流量α5 secm、 T M 
A流−t O−58CCm、 A8 H3流″i18 
o sccm 、全ガス流i5s’LMとし、(100
)2°(+ff  to(110)GaAs単結晶基板
を用いた。この条件下で成長速度は約五4μm / h
 rであった。エキシマレーザ照射の条件は、波長が1
93nm、1パルス当りのエネルギーが80 m:f/
d、  ぐ)返し周波数が100Fiz。
The growth conditions are a growth temperature of 670 C and a growth pressure of 100 To.
rr, T M G flow rate α5 secm, T M
A flow-t O-58CCm, A8 H3 flow''i18
o sccm , total gas flow i5s'LM, (100
) 2° (+ff to (110)) GaAs single crystal substrate was used. Under this condition, the growth rate was approximately 54 μm/h
It was r. The conditions for excimer laser irradiation are that the wavelength is 1
93 nm, energy per pulse is 80 m:f/
d, g) Return frequency is 100Fiz.

平均の光出力が8W/−である。エキシマレーザ照射は
アパーチャの開閉によって行なったが、アパーチャの開
閉に要する時間は10m5ecであった。
The average light output is 8W/-. Excimer laser irradiation was performed by opening and closing an aperture, and the time required to open and close the aperture was 10 m5ec.

以上の条件の下でエキシマレーザ照射時間を5秒、非照
射時間を5秒に設定して、照射した層数を4としてAt
GaAs系半導体超格子の裏作を行なった。
Under the above conditions, the excimer laser irradiation time was set to 5 seconds, the non-irradiation time was set to 5 seconds, and the number of irradiated layers was set to 4.
We performed preliminary work on a GaAs-based semiconductor superlattice.

第3図に作製した半導体超格子の断面図を示す。FIG. 3 shows a cross-sectional view of the fabricated semiconductor superlattice.

GaAs単結晶基板501の底面にエキシマレーザ照射
しないM組数′毘がX1=129、膜厚が50オングス
トロームのALg −290ap・ylkB半4体τ4
膜302とエキシマレーザ照射した成組酸比がx2=α
38、膜厚が50オングストロームの鳩、38Ga0.
6!和半導体薄膜305を償j領しである。この半導体
超格子の各薄膜間の4移幅は、反射スペクトルのエネル
ギービーク値から推定して10オングストローム以下で
あることがわかった。
The bottom surface of the GaAs single crystal substrate 501 is not irradiated with excimer laser. The number of M pairs 'bi is X1 = 129, and the film thickness is 50 angstroms.
The composition acid ratio of the film 302 and the excimer laser irradiation is x2=α
38, pigeon with a film thickness of 50 angstroms, 38Ga0.
6! The Japanese semiconductor thin film 305 is used for compensation. It was found that the 4-shift width between each thin film of this semiconductor superlattice was estimated from the energy peak value of the reflection spectrum to be 10 angstroms or less.

ここにあげた実施タリではAjGaAs  系中導体超
格子について述べたが、本発明はその他のInGaAs
系、GaAsP  系、工nGaP  系などのl[−
’/族化合物半導体およびZnSSe  系、Zn5e
Ta系、Cd[(gTe系などのn−■族化合物半導体
、カルコパイライト系半導体等の材料から成る半導体超
格子の製造にも適用できる。また、紫外線としてArF
4に、体エキシマレーザを使用したが、この他にKrF
媒体エキシマレーザxecL媒体エキシマレーザ、水銀
ランプなどを使用しても良い。
In the implementation example presented here, the AjGaAs medium conductor superlattice was described, but the present invention applies to other InGaAs
l[-
'/group compound semiconductors and ZnSSe series, Zn5e
It can also be applied to the production of semiconductor superlattices made of materials such as Ta-based, Cd[(gTe-based, etc.) n-■ group compound semiconductors, and chalcopyrite-based semiconductors.
In 4, a body excimer laser was used, but in addition to this, KrF
Medium excimer laser xecL A medium excimer laser, a mercury lamp, etc. may be used.

〔発明の効果〕〔Effect of the invention〕

本発明には次のような幼果がある。 The present invention includes the following young fruits.

(1)  原料ガスの切り換えで;tく、元のりJり換
えによって半導体超格子を作゛・ρするので、超格子界
面の急峻性に優れたものが作製可能であり、IQ:I−
+ガスの切り換え機(4が必要ないので、製造装置が簡
単で安価にできる。
(1) Since a semiconductor superlattice is created by changing the raw material gas and switching the source, it is possible to create a superlattice with excellent steepness at the interface, and IQ:I-
+ Gas switching machine (4) is not required, so the manufacturing equipment is simple and inexpensive.

(2)紫外域を照射する頭載を選択的にすれば、半導体
超格子を作製する・4域を曲内で選択でさ、二次的な分
布金持たせら7″L/S0その結果埋込み望・、(子井
戸半導体ンーザ寺の旨度なデバイスや新しい材料の作製
が可能にある。
(2) By selectively irradiating the head in the ultraviolet region, a semiconductor superlattice can be created. 4 regions can be selected within the song, and a secondary distribution of gold can be applied to 7"L/S0, resulting in embedding. Hopefully, it will be possible to create devices and new materials that are as effective as Koido semiconductors.

(3)照射する紫外線の強度を変えると組成を連続的に
変調することができる。したがって、GR工N−8ol
(半導体レーザ等のデバイス作製が容易となる。
(3) By changing the intensity of the irradiated ultraviolet rays, the composition can be continuously modulated. Therefore, GR engineering N-8ol
(It becomes easier to manufacture devices such as semiconductor lasers.

【図面の簡単な説明】[Brief explanation of drawings]

第1因は、AAGaAs系半導体薄膜中のA1組成比の
エキシマレーザ照射部とエキシマレーザ非照射部の相異
全示したグラフである。 第2図(a)〜(d)は本発明による半導体超格子の製
造方法の実施例を41から第4段階までの工程別に示し
た図である。 201    ・・・oaAs単AΔ晶基板202  
  ・・・原料ガス 205 、206−−・AtxlGal−As半導体薄
膜204    ・・・エキシマレーザ 205 、207 ・−Atx2Gal −x2 As
半導体薄膜第3図は本発明により作製した半導体超格子
の断面図を示している。 301  ・・・GaA3単結晶基板 502  − A4.2gGag、71A8半導体薄膜
303   °” A4 ・3B G ao、6z A
s    ’以   上
The first factor is a graph showing all the differences between the excimer laser irradiated part and the excimer laser non-irradiated part of the A1 composition ratio in the AAGaAs semiconductor thin film. FIGS. 2(a) to 2(d) are diagrams showing an embodiment of the method for manufacturing a semiconductor superlattice according to the present invention, step by step, from step 41 to step 4. 201...oaAs single AΔ crystal substrate 202
... Raw material gas 205, 206--AtxlGal-As semiconductor thin film 204...Excimer laser 205, 207...Atx2Gal-x2 As
Semiconductor Thin Film FIG. 3 shows a cross-sectional view of a semiconductor superlattice fabricated according to the present invention. 301 ... GaA3 single crystal substrate 502 - A4.2gGag, 71A8 semiconductor thin film 303°" A4 ・3B Gao, 6z A
s' or more

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも二種類以上の半導体超薄膜を積層して
成る半導体超格子の製造方法において、有機金属気相成
長法による半導体薄膜のエピタキシャル成長途中に、該
半導体薄膜表面に断続的に紫外線を照射する紫外線励起
工程を含むことを特許とする半導体超格子の製造方法。
(1) In a method for manufacturing a semiconductor superlattice formed by laminating at least two or more types of semiconductor ultra-thin films, the surface of the semiconductor thin film is intermittently irradiated with ultraviolet rays during the epitaxial growth of the semiconductor thin film by metal organic vapor phase epitaxy. A patented method for manufacturing a semiconductor superlattice that includes an ultraviolet excitation process.
(2)前記紫外線としてエキシマレーザを用いることを
特徴とする特許請求の範囲第1項に記載の半導体超格子
の製造方法。
(2) The method for manufacturing a semiconductor superlattice according to claim 1, characterized in that an excimer laser is used as the ultraviolet light.
JP14453586A 1986-06-20 1986-06-20 Manufacture of semiconductor superlattice Pending JPS631025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14453586A JPS631025A (en) 1986-06-20 1986-06-20 Manufacture of semiconductor superlattice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14453586A JPS631025A (en) 1986-06-20 1986-06-20 Manufacture of semiconductor superlattice

Publications (1)

Publication Number Publication Date
JPS631025A true JPS631025A (en) 1988-01-06

Family

ID=15364569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14453586A Pending JPS631025A (en) 1986-06-20 1986-06-20 Manufacture of semiconductor superlattice

Country Status (1)

Country Link
JP (1) JPS631025A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237066A (en) * 1985-08-05 1987-02-18 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Power source circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833826A (en) * 1981-08-22 1983-02-28 Nippon Telegr & Teleph Corp <Ntt> Vapor phase epitaxial growth
JPS61222219A (en) * 1985-03-28 1986-10-02 Canon Inc Manufacture of multilayer thin film structure
JPS62144320A (en) * 1985-12-19 1987-06-27 Seiko Epson Corp Manufacture of super-lattice semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833826A (en) * 1981-08-22 1983-02-28 Nippon Telegr & Teleph Corp <Ntt> Vapor phase epitaxial growth
JPS61222219A (en) * 1985-03-28 1986-10-02 Canon Inc Manufacture of multilayer thin film structure
JPS62144320A (en) * 1985-12-19 1987-06-27 Seiko Epson Corp Manufacture of super-lattice semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237066A (en) * 1985-08-05 1987-02-18 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Power source circuit
JPH0328154B2 (en) * 1985-08-05 1991-04-18 Intaanashonaru Bijinesu Mashiinzu Corp

Similar Documents

Publication Publication Date Title
US5250148A (en) Process for growing GaAs monocrystal film
JPS6134927A (en) Growing process of compound semiconductor single crystal thin film
JPS6134923A (en) Growing device of semiconductor crystal
JPS631025A (en) Manufacture of semiconductor superlattice
JP2773849B2 (en) Vapor phase growth method and photoexcited vapor phase epitaxy apparatus
JPH1187689A (en) Manufacture of quantum dot
JP2840381B2 (en) (III)-Crystal growth method for group V compound semiconductor and crystal growth apparatus used in this method
JP3668802B2 (en) Thin film formation method by atomic layer growth
JP3335671B2 (en) Method of forming quantum wires and quantum boxes by atomic layer growth
JPS61260622A (en) Growth for gaas single crystal thin film
JP3182584B2 (en) Compound thin film forming method
JPH01215014A (en) Growth of semiconductor crystal
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPS62232919A (en) Crystal growth
JP2603121B2 (en) Method of forming compound semiconductor thin film
JPH04306821A (en) Compound semiconductor crystal growth method
JPS6134987A (en) Manufacture of semiconductor laser
JPS63200585A (en) Manufacture of quantum well laser
JPH0529635B2 (en)
JP2571127B2 (en) Semiconductor thin film forming apparatus and semiconductor multilayer film forming method
JPS5984417A (en) Iii-v family mixed crystalline semiconductor device
JP3134315B2 (en) Method for selective growth of compound semiconductor crystal
JPH05234968A (en) Gas-etching method for iii-v compound semiconductor
JPS63253619A (en) Manufacture of semiconductor superlattice
JPS62183110A (en) Manufacture of iii-v compound semiconductor thin film