JPH057251Y2 - - Google Patents

Info

Publication number
JPH057251Y2
JPH057251Y2 JP3379188U JP3379188U JPH057251Y2 JP H057251 Y2 JPH057251 Y2 JP H057251Y2 JP 3379188 U JP3379188 U JP 3379188U JP 3379188 U JP3379188 U JP 3379188U JP H057251 Y2 JPH057251 Y2 JP H057251Y2
Authority
JP
Japan
Prior art keywords
molecular beam
shutter
source
epitaxial growth
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3379188U
Other languages
Japanese (ja)
Other versions
JPH0222371U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3379188U priority Critical patent/JPH057251Y2/ja
Publication of JPH0222371U publication Critical patent/JPH0222371U/ja
Application granted granted Critical
Publication of JPH057251Y2 publication Critical patent/JPH057251Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【考案の詳細な説明】 〔概要〕 分子線エピタキシヤル成長装置に関し、 分子線源の開口部の前に設けられているシヤツ
タのシヤツタ動作を円滑に行うことを目的とし、 分子線源の開口部の前に設けられているシヤツ
タの開口動作終了位置に加熱源を設け、該シヤツ
タの開口時に加熱源に通電し、加熱する機構を備
えて分子線エピタキシヤル成長装置を構成する。
[Detailed explanation of the invention] [Summary] Regarding a molecular beam epitaxial growth apparatus, the purpose of this invention is to smoothly perform the shutter operation of the shutter provided in front of the opening of the molecular beam source. A molecular beam epitaxial growth apparatus is constructed by providing a heating source at the end position of the opening operation of a shutter provided in front of the shutter, and having a mechanism for heating the heating source by energizing it when the shutter is opened.

〔産業上の利用分野〕[Industrial application field]

本考案は分子線エピタキシヤル成長装置の改良
に関する。
The present invention relates to improvements in molecular beam epitaxial growth equipment.

ICやLSIなどの集積回路や半導体レーザなどの
光素子の形成に使用されている半導体材料にはシ
リコン(Si)やゲルマニウム(Ge)のような単
体半導体以外にガリウム砒素(GaAs)、インジ
ウム燐(InP)のような化合物半導体がある。
Semiconductor materials used to form integrated circuits such as ICs and LSIs and optical devices such as semiconductor lasers include elemental semiconductors such as silicon (Si) and germanium (Ge), as well as gallium arsenide (GaAs) and indium phosphide ( There are compound semiconductors such as InP).

そして、後者の場合、単結晶薄膜の成長は分子
線エピタキシヤル成長装置や液相エピタキシヤル
成長装置を使用して行われている。
In the latter case, the single crystal thin film is grown using a molecular beam epitaxial growth apparatus or a liquid phase epitaxial growth apparatus.

〔従来の技術〕[Conventional technology]

第2図は分子線エピタキシヤル成長装置におけ
る電子線源と被処理基板との関係を示す概念図で
あつて、10-10torr程度の高真空に排気してある
真空チヤンバ1の中には複数の分子線源2,2′
と、これに対応して被処理基板3とが設けられて
いる。
FIG . 2 is a conceptual diagram showing the relationship between an electron beam source and a substrate to be processed in a molecular beam epitaxial growth apparatus. Molecular beam source 2, 2'
A substrate 3 to be processed is provided correspondingly.

こゝで、分子線源2,2′を複数個設ける理由
は化合物半導体を構成するそれぞれの構成元素を
分子線の形で照射する線源と不純物元素を照射す
る線源を必要とするからであり、図はGaAsから
なる被処理基板3にGaの分子線源2とAsの分子
線源2′とからGaの分子線とAsの分子線を1:
1の原子量比に照射し、GaAsからなる被処理基
板3の上にGaAsの単結晶薄膜をエピタキシヤル
成長させる場合を示している。
The reason why a plurality of molecular beam sources 2 and 2' are provided is that a source for irradiating each of the constituent elements constituting the compound semiconductor in the form of a molecular beam and a source for irradiating impurity elements are required. In the figure, a Ga molecular beam and an As molecular beam are emitted from a Ga molecular beam source 2 and an As molecular beam source 2' onto a substrate 3 made of GaAs.
A case is shown in which a single crystal thin film of GaAs is epitaxially grown on a substrate 3 to be processed made of GaAs by irradiation to an atomic weight ratio of 1.

そのためには、照射する分子の平均自由工程を
大きくするために真空チヤンバ1の中を超高真空
に保つ必要があり、排気系としてソープシヨンポ
ンプやイオンポンプを使用し、エピタキシヤル成
長膜の成長速度を厳密にコントロールしながら分
子線照射を行つている。
To do this, it is necessary to maintain an ultra-high vacuum in the vacuum chamber 1 in order to increase the mean free path of the molecules to be irradiated, and a soap pump or ion pump is used as an exhaust system to reduce the growth of the epitaxially grown film. Molecular beam irradiation is performed while strictly controlling the speed.

すなわち、被処理基板3を載置した基板ホルダ
4は裏面に備えたヒータ5により加熱するよう構
成されているが、これを囲んで図示を省略したシ
ユラウドが設けられており、ガスの発生による真
空度の低下を防いでいる。
That is, the substrate holder 4 on which the substrate 3 to be processed is mounted is configured to be heated by the heater 5 provided on the back surface, but a shroud (not shown) is provided surrounding this, and the vacuum caused by the generation of gas is provided. This prevents the degree of deterioration.

また、分子線源2,2′は線源となる原料6を
入れる坩堝7を囲んでヒータ、反射板、シユラウ
ドなどがあり、また照射量をコントロールするた
めのシヤツタ8が設けられている。
Further, the molecular beam sources 2, 2' are equipped with a heater, a reflector, a shroud, etc. surrounding a crucible 7 containing a raw material 6 serving as a radiation source, and are also provided with a shutter 8 for controlling the irradiation amount.

第1図は本考案に係る分子線源の断面図である
が、左半分の本体部14およびシヤツタ8につい
ては従来と変わるところはない。
FIG. 1 is a sectional view of the molecular beam source according to the present invention, and the left half main body 14 and shutter 8 are the same as the conventional one.

すなわち、坩堝7を囲んでタンタル(Ta)な
どからなるヒータ9があり、その外側にはタンタ
ル(Ta)からなる反射板10を備えてセルが構
成され、その外側にシユラウド11が配置さられ
ている。また、坩堝7の前方にはシヤツタ8があ
り、分子線の照射量をコントロールしている。
That is, there is a heater 9 made of tantalum (Ta) or the like surrounding the crucible 7, a cell is configured with a reflector 10 made of tantalum (Ta), and a shroud 11 is placed outside of the heater 9. There is. Further, a shutter 8 is provided in front of the crucible 7 to control the amount of molecular beam irradiation.

こゝで、シヤツタ8のシヤツタ機構には同図に
示すように回転軸12を中心として回転させる回
転導入器と直線状にスライドさせる直線導入器と
があり、共に真空チヤンバの外から操作するよう
構成されている。
As shown in the figure, the shutter mechanism of the shutter 8 includes a rotating introducer that rotates around the rotating shaft 12 and a linear introducer that slides in a straight line, both of which are operated from outside the vacuum chamber. It is configured.

さて、分子線エピタキシヤル成長は厳密に照射
量をコントロールして行うことから、ヒータ9に
より坩堝7が加熱されて分子線照射が行われる状
態となつてもシヤツタ8で坩堝7を覆い、処理条
件が整うと共に複数の分子線源2,2′に備えら
れているシヤツタ8を一斉に開いて被処理基板3
に対して分子線照射を行つている。
Now, since molecular beam epitaxial growth is performed by strictly controlling the irradiation dose, even when the crucible 7 is heated by the heater 9 and molecular beam irradiation is performed, the crucible 7 is covered with the shutter 8 and the processing conditions are controlled. At the same time, the shutters 8 provided in the plurality of molecular beam sources 2 and 2' are opened all at once to release the substrate 3 to be processed.
Molecular beam irradiation is performed on the

そのために、シヤツタ8が分子線照射を遮蔽し
ている時間中は原料元素はシヤツタ8の内側に蒸
着し堆積することになる。
Therefore, during the time when the shutter 8 is shielding molecular beam irradiation, the raw material elements are vapor-deposited and deposited inside the shutter 8.

このため、シヤツタ8の重量は次第に増して動
作が鈍くなり、また融点が29.78℃と低いGaのよ
うな低融点元素を照射する場合は分子線源からの
熱によりシヤツタ8に蒸着したGaは溶けており、
通常シヤツタ8は傾斜して設けられているために
Gaは一方向に流れ、液滴状となつている。
For this reason, the weight of the shutter 8 gradually increases and its operation becomes slow. Also, when irradiating a low melting point element such as Ga, which has a low melting point of 29.78°C, the Ga deposited on the shutter 8 will melt due to the heat from the molecular beam source. and
Since the shutter 8 is normally installed at an angle,
Ga flows in one direction and forms droplets.

この状態でシヤツタ8が開くと、液滴状のGa
はシユラウド11により熱が奪われる結果として
凝固し、シヤツタ8と分子線セルとの間隔が1〜
10mm程度と狭いために場合によつては凝固部が分
子線セルに当たり閉じることができないと云う問
題が起こる。
When the shutter 8 is opened in this state, droplet-shaped Ga
solidifies as a result of heat being taken away by the shroud 11, and when the distance between the shutter 8 and the molecular beam cell is 1~
Because it is narrow, about 10 mm, there may be a problem that the coagulation part hits the molecular beam cell and cannot be closed.

また、Gaのような低融点でない元素を照射す
る場合でも、シヤツタ8の重量が増し、シヤツタ
動作が遅くなる。
Furthermore, even when irradiating an element such as Ga that does not have a low melting point, the weight of the shutter 8 increases and the shutter operation becomes slow.

これらのことから、シヤツタ動作を安定化する
ことが必要であつた。
For these reasons, it was necessary to stabilize the shutter operation.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

以上記したように分子線エピタキシヤル成長装
置の電子線源に設けられているシヤツタは分子線
源の動作中であつてシヤツタ動作中は分子線の照
射を受け、照射元素の堆積が起こつているので、
シヤツタの動作速度が遅くなり、場合によつては
動作しなくなることが問題である。
As mentioned above, the shutter installed in the electron beam source of a molecular beam epitaxial growth device is irradiated with molecular beams during the operation of the molecular beam source, and deposition of the irradiated elements occurs. So,
The problem is that the operating speed of the shutter becomes slow, and in some cases it stops operating.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は真空チヤンバの中に設けた複数の
分子線源を加熱し、該分子線源に対向して設けら
れている被処理基板に分子線を照射し、被処理基
板上に該分子よりなる薄膜を形成する結晶成長装
置において、分子線源の前に設けられているシヤ
ツタの開口動作終了位置に加熱源を設け、前記シ
ヤツタの開口時に加熱源に通電し、加熱する機構
を備えた分子線エピタキシヤル成長装置の使用に
より解決することができる。
The above problem can be solved by heating multiple molecular beam sources installed in a vacuum chamber, irradiating the molecular beam onto a substrate to be processed that is placed opposite to the molecular beam source, and releasing the molecules onto the substrate to be processed. In a crystal growth apparatus for forming a thin film of molecular beams, a heating source is provided at the end position of the opening operation of a shutter provided in front of a molecular beam source, and the heating source is energized and heated when the shutter is opened. This problem can be solved by using a line epitaxial growth device.

〔作用〕[Effect]

本考案はシヤツタを加熱し、シヤツタの堆積物
を蒸発飛散させることによりこの問題を解決する
ものである。
The present invention solves this problem by heating the shutter to evaporate and scatter the deposits on the shutter.

こゝで、シヤツタを加熱する方法としてはシヤ
ツタ自体にヒータを設けることも考えられるが、
分子線エピタキシヤル成長装置は超格子構造をと
る化合物半導体のエピタキシヤル成長など、一原
子層の成長を問題とする用途に使用するため、シ
ヤツタの動作速度は0.1〜0.2秒程度が必要であ
り、この点からシヤツタの自重を増すことは好ま
しくない。
One possible way to heat the shutter would be to install a heater in the shutter itself, but
Molecular beam epitaxial growth equipment is used for applications that require single-atomic layer growth, such as epitaxial growth of compound semiconductors with a superlattice structure, so the operating speed of the shutter must be approximately 0.1 to 0.2 seconds. From this point of view, it is not desirable to increase the weight of the shutter.

そこで、本考案はシヤツタの開口動作終了位置
に加熱源を設け、分子線形成元素が堆積したシヤ
ツタが到着すると加熱源に通電して加熱するよう
にしたものである。
Therefore, in the present invention, a heating source is provided at the end position of the shutter opening operation, and when the shutter on which the molecular beam-forming element is deposited arrives, the heating source is energized to heat the shutter.

こゝで、シヤツタの動作機構には回転導入器と
直線導入器とがあり、前者はシヤツタが円弧を描
くよう動作し、後者は直線状に前後に移動する機
構であるが、何れも開口動作終了位置に加熱源を
設ければよい。
There are two types of shutter operating mechanisms: a rotating introducer and a linear introducer.The former allows the shutter to move in an arc, and the latter moves the shutter back and forth in a straight line. A heating source may be provided at the end position.

なお、加熱源によりヒータを加熱する場合にヒ
ータに堆積している元素は蒸着飛散し、被処理基
板に付着し、分子線源本体部よりの分子線と混合
し、成長速度を乱すことが懸念されるが、シヤツ
タ8に堆積している材料はシヤツタ8の内側であ
り、被処理基板と反対方向であるため、かゝる恐
れはない。
In addition, when heating the heater with a heat source, there is a concern that the elements deposited on the heater will scatter, adhere to the substrate to be processed, and mix with the molecular beam from the molecular beam source main body, disturbing the growth rate. However, since the material deposited on the shutter 8 is on the inside of the shutter 8 and in the opposite direction to the substrate to be processed, there is no risk of this happening.

〔実施例〕〔Example〕

第1図は回転導入器13を備えた本体部14の
傍らに加熱源15を設けた分子線源の断面図であ
る。
FIG. 1 is a cross-sectional view of a molecular beam source in which a heating source 15 is provided beside a main body 14 equipped with a rotating introducer 13.

こゝで、加熱源15は真空チヤンバの側壁16
の上で回転導入器13を挟んで本体部14と反対
位置に設けられている。
Here, the heating source 15 is connected to the side wall 16 of the vacuum chamber.
It is provided at a position opposite to the main body part 14 on both sides of the rotation introducer 13 .

そして、この実施例の場合、耐熱性絶縁基板1
6の上にヒータ18があり、その周囲は反射板1
9があつて、加熱効果を挙げている。
In the case of this embodiment, the heat-resistant insulating substrate 1
There is a heater 18 on top of the heater 6, and around it there is a reflector 1.
9, indicating a heating effect.

そして、分子線エピタキシヤル成長装置の稼動
中に回転導入器13がシヤツタ開放のために回転
動作をし、開口動作終了位置すなわち加熱源15
の直上にきて停止したとき、図示を省略したスイ
ツチ機構によりヒータ18への通電が始まりシヤ
ツタ8の内面を加熱する。
During operation of the molecular beam epitaxial growth apparatus, the rotating introducer 13 rotates to open the shutter, and the opening operation ends, that is, the heating source 15
When the shutter 8 reaches a position directly above the shutter 8 and stops, a switch mechanism (not shown) starts energizing the heater 18 and heats the inner surface of the shutter 8.

このような方法をとることによりシヤツタ8に
堆積した原料元素は蒸発除去することができ、速
いシヤツタ速度を保つことができる。
By using such a method, the raw material elements deposited on the shutter 8 can be removed by evaporation, and a high shutter speed can be maintained.

なお、シヤツタとして直線導入器を用いる場合
も同様に開口動作終了位置に加熱源を設ければよ
い。
Note that when a linear introducer is used as a shutter, a heating source may be similarly provided at the end position of the opening operation.

〔考案の効果〕[Effect of idea]

本考案の実施よりシヤツタの動作速度を当初の
値に保つことができ、これにより超格子構造をも
つ化合物半導体の場合であつてもエピタキシヤル
成長を精度よく行うことができる。
By implementing the present invention, the operating speed of the shutter can be maintained at its original value, thereby making it possible to perform epitaxial growth with high accuracy even in the case of a compound semiconductor having a superlattice structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る分子線源の断面図、第2
図は分子線エピタキシヤル成長の概念図、であ
る。 2,2′は分子線源、3は被処理基板、7は坩
堝、8はシヤツタ、9,18はヒータ、10,1
9は反射板、11はシユラウド、13は回転導入
器、14は本体部、15は加熱源、である。
Figure 1 is a sectional view of the molecular beam source according to the present invention, Figure 2 is a cross-sectional view of the molecular beam source according to the present invention.
The figure is a conceptual diagram of molecular beam epitaxial growth. 2, 2' are molecular beam sources, 3 is a substrate to be processed, 7 is a crucible, 8 is a shutter, 9, 18 is a heater, 10, 1
9 is a reflector, 11 is a shroud, 13 is a rotating introducer, 14 is a main body, and 15 is a heating source.

Claims (1)

【実用新案登録請求の範囲】 真空チヤンバ1の中に設けた複数の分子線源
2,2′を加熱し、該分子線源2,2′に対向して
設けられている被処理基板3に分子線を照射し、
被処理基板3の上に該分子よりなる薄膜を形成す
る結晶成長装置において、 分子線源2,2′の前に設けられているシヤツ
タ8の開口動作終了位置に加熱源15を設け、前
記シヤツタ8の開口時に加熱源15に通電し、加
熱する機構を備えたことを特徴とする分子線エピ
タキシヤル成長装置。
[Claims for Utility Model Registration] A plurality of molecular beam sources 2 and 2' provided in a vacuum chamber 1 are heated, and a substrate to be processed 3 provided opposite to the molecular beam sources 2 and 2' is heated. Irradiate with molecular beam,
In a crystal growth apparatus for forming a thin film made of the molecules on a substrate 3 to be processed, a heat source 15 is provided at the end position of the opening operation of the shutter 8 provided in front of the molecular beam sources 2, 2', 8. A molecular beam epitaxial growth apparatus characterized by comprising a mechanism for energizing and heating a heating source 15 when the opening of the molecular beam epitaxial growth apparatus 8 is performed.
JP3379188U 1988-03-16 1988-03-16 Expired - Lifetime JPH057251Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3379188U JPH057251Y2 (en) 1988-03-16 1988-03-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3379188U JPH057251Y2 (en) 1988-03-16 1988-03-16

Publications (2)

Publication Number Publication Date
JPH0222371U JPH0222371U (en) 1990-02-14
JPH057251Y2 true JPH057251Y2 (en) 1993-02-24

Family

ID=31260496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3379188U Expired - Lifetime JPH057251Y2 (en) 1988-03-16 1988-03-16

Country Status (1)

Country Link
JP (1) JPH057251Y2 (en)

Also Published As

Publication number Publication date
JPH0222371U (en) 1990-02-14

Similar Documents

Publication Publication Date Title
GB2130252A (en) An effusion evaporation cell for an apparatus for vacuum coating by evaporation
JPH0834180B2 (en) Method for growing compound semiconductor thin film
JPH01135529A (en) Surface modification of body using electromagnetic radiation
JPH057251Y2 (en)
JP3964367B2 (en) Molecular beam epitaxial growth apparatus and control method thereof
GB2170043A (en) Apparatus for the growth of semiconductor crystals
JPH03142921A (en) Manufacturing device for iii-v compound semiconductor thin film
KR100466825B1 (en) Fabricating Technology for Thin Film Deposition system using pulsed Laser
JP2719283B2 (en) Knudsen cell for low temperature
JPS61220414A (en) Apparatus for generating molecular beam
JPH05887A (en) Molecular beam crystal growing device
JPS6272113A (en) Molecular beam crystal growth device
JP2778137B2 (en) Thin film forming method and apparatus
JPH034516A (en) Molecular beam source
JPH0527501Y2 (en)
JPH06263587A (en) Molecular beam epitaxial growth apparatus
JPH0516399B2 (en)
JPS61186472A (en) Apparatus for producing non-crystalline film deposited by evaporation
JPS6358918A (en) Furnace shutter for molecular beam source
JPH0769787A (en) Molecular beam epitaxial device
JPH03150290A (en) Crystal growth apparatus
JPS62287616A (en) Shutter structure of molecular beam epitaxial apparatus
JPS6120513B2 (en)
JPH0138910Y2 (en)
JPH04303921A (en) Semiconductor thin-film manufacturing apparatus