JPH02254713A - Molecular beam generator - Google Patents

Molecular beam generator

Info

Publication number
JPH02254713A
JPH02254713A JP7613189A JP7613189A JPH02254713A JP H02254713 A JPH02254713 A JP H02254713A JP 7613189 A JP7613189 A JP 7613189A JP 7613189 A JP7613189 A JP 7613189A JP H02254713 A JPH02254713 A JP H02254713A
Authority
JP
Japan
Prior art keywords
molecular beam
raw material
crucible
cylindrical body
beam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7613189A
Other languages
Japanese (ja)
Inventor
Hitoshi Negishi
均 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7613189A priority Critical patent/JPH02254713A/en
Publication of JPH02254713A publication Critical patent/JPH02254713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To make it possible to charge a liquid type raw material into a downward molecular beam generated by a method wherein a crucible, which is integrally formed with a molecular beam generating cylindrical body part and a conical part having an aperture from which the molecular beam is emitted to outside, is provided. CONSTITUTION:A crucible 4, which is formed by integrally constructing a cylindrical body part 4a with which a raw material 3 is heated up and generates a molecular beam, and a conical part 4c having an aperture 4b from which heated molecular beam will be emitted to outside, is provided. As a result, a liquid raw material 3 can be stored downward, and the contamination of the raw material by the flakes generating when a shutter is opened or closed can be prevented, and a high quality epitaxial growth can be conducted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体の分子線エピタキシャル結晶成長(MB
E)に用いる分子線発生装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to molecular beam epitaxial crystal growth (MB) of semiconductors.
E) Regarding the molecular beam generator used for.

〔従来の技術〕[Conventional technology]

第3図に従来の分子線発生装置を示す、第3図に示す分
子線発生装置は超高真空の成長室内に設置され、ヒータ
1でるつぼ4を加熱し、該るつぼ4内の分子線原料3を
蒸発させてるつぼ4内から外部へ分子線を発生させる構
造になっていた。また、ヒータ1の加熱温度は熱電対2
による検出信号に基づいて制御されている。
FIG. 3 shows a conventional molecular beam generator. The molecular beam generator shown in FIG. 3 is installed in an ultra-high vacuum growth chamber, heats a crucible 4 with a heater 1, The structure was such that a molecular beam was generated from inside the crucible 4, which evaporated 3, to the outside. Also, the heating temperature of heater 1 is the same as that of thermocouple 2.
It is controlled based on the detection signal by.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第3図において、従来の上向きの分子線発生装置を用い
て例えばGaを原料として、結晶を成長した場合、公知
の楕円状の表面欠陥が結晶上に多数発生する。これは、
原料であるGaソースの沸騰に起因しており、この表面
欠陥を低減することはMBE成長の大きな課題である。
In FIG. 3, when a crystal is grown using, for example, Ga as a raw material using a conventional upward molecular beam generator, many well-known elliptical surface defects are generated on the crystal. this is,
This is caused by boiling of the raw material Ga source, and reducing these surface defects is a major challenge in MBE growth.

前述した従来の分子線発生装置ではるつぼが上向きであ
るために突沸が起こりやすく表面欠陥を低減するのは困
難であった。さらに液体状の原料のために上向きの分子
線発生装置にしか入れることができず、シャッター開閉
時にシャッターに付着していたフレークが原料上に落ち
原料を汚染するという欠点もあった。
In the conventional molecular beam generator described above, since the crucible faces upward, bumping is likely to occur and it is difficult to reduce surface defects. Furthermore, since the raw material is in liquid form, it can only be fed into the molecular beam generator facing upwards, and when the shutter is opened and closed, flakes adhering to the shutter fall onto the raw material and contaminate the raw material.

〔発明の従来技術に対する相違点〕[Differences between the invention and the prior art]

上述した従来の分子線発生装置に対し、本発明は液体状
原料を下向きの分子線発生装置にチャージすることがで
き、さらに、シャッター開閉時に起こるフレークによる
原料汚染を防止し、また、原料としてGaを用いた場合
に結晶表面に発生する欠陥を低減できるという相違点を
有する。
In contrast to the above-mentioned conventional molecular beam generator, the present invention can charge a liquid raw material into the downward molecular beam generator, furthermore, prevents raw material contamination due to flakes that occur when opening and closing the shutter, and also uses Ga as a raw material. The difference is that defects generated on the crystal surface can be reduced when using .

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するため、本発明に係る分子線発生装置
は分子線を発生させる円筒状胴部と、その分子線を外部
に放出する拡径された開口をもつ円錐部とを一体構造と
したるつぼを有するものである。
In order to achieve the above object, the molecular beam generator according to the present invention has an integral structure of a cylindrical body for generating molecular beams and a conical part having an enlarged diameter opening for emitting the molecular beams to the outside. It has a crucible.

〔実施例〕〔Example〕

以下、本発明の実施例を図により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

(実施例1) 第1図は本発明の実施例1を示す断面図である。(Example 1) FIG. 1 is a sectional view showing a first embodiment of the present invention.

図において9本発明は、原料3を加熱し1分子線を発生
させる円筒状胴部4aと、その分子線をさらに加熱して
外部に放出する拡径された開口4bをもつ円錐部4cと
を一体構造としたるつぼ4を装備したものである0円錐
部4cは円筒状胴部4aの上縁部分で連通し、その間口
4bは前傾方向に拡径されている。また、前記円錐部4
cの開口口縁部にはヒータ1を備付けである。2は熱電
対である。
In the figure, the present invention includes a cylindrical body portion 4a that heats the raw material 3 to generate a single molecular beam, and a conical portion 4c having an enlarged diameter opening 4b that further heats the molecular beam and releases it to the outside. The 0-conical part 4c, which is equipped with the crucible 4 having an integral structure, communicates with the upper edge portion of the cylindrical body part 4a, and the diameter of the opening 4b thereof is enlarged in the forward direction. Further, the conical portion 4
A heater 1 is installed at the edge of the opening c. 2 is a thermocouple.

実施例において、るつぼ4はパイロリティック窒化ホウ
素(PBN)で作られ、るつぼ4の中にある原料3は熱
電対2で制御されたヒータ1で加熱されて分子線となっ
て放出される0例えば、原料としてGaを用いると、 
Gaの液面から沸騰により生じる粒子はるつぼ1の外部
に出ることがなく、GaAsを成長させた場合、表面欠
陥数は従来の分子線発生装置で行うと、1000個/d
であったものが172の500個/dになった。また、
るっぽ4の開口4bを下向きにして設置することが可能
であり、シャッター開閉時に起こるフレーク落下による
Gaソース汚染はなくなり、結晶の質が大巾に向上した
In the embodiment, the crucible 4 is made of pyrolytic boron nitride (PBN), and the raw material 3 in the crucible 4 is heated by a heater 1 controlled by a thermocouple 2 and released as a molecular beam. , when Ga is used as a raw material,
Particles generated by boiling from the Ga liquid level do not come out of the crucible 1, and when growing GaAs, the number of surface defects is 1000/d when grown using a conventional molecular beam generator.
The number decreased from 172 to 500 pieces/d. Also,
It is possible to install the Ruppo 4 with the opening 4b facing downward, eliminating Ga source contamination due to falling flakes that occur when the shutter is opened and closed, and the quality of the crystals is greatly improved.

(実施例2) 第2図は本発明の実施例2tt示す断面図である。(Example 2) FIG. 2 is a sectional view showing Example 2tt of the present invention.

図において、るつぼ4はパイロリティック窒化ホウ素(
PBN)で作られ、るっぽ4の円筒状胴部4a中にある
原料3は熱電対2によって制御されたヒータ1によって
加熱され分子線を発生する。この分子線は円錐部4cに
接した熱電対2で制御されたヒータ1によりさらに加熱
されるつぼ4の外に放出されていく。
In the figure, crucible 4 is made of pyrolytic boron nitride (
A raw material 3 made of PBN) in the cylindrical body 4a of the Lupo 4 is heated by a heater 1 controlled by a thermocouple 2 to generate molecular beams. This molecular beam is emitted to the outside of the pot 4 where it is further heated by the heater 1 controlled by the thermocouple 2 in contact with the conical portion 4c.

本実施例は円錐部4cと円筒状胴部4aとを独立に加熱
ができるため、分子線の制御性を向上できるという神意
がある。
In this embodiment, since the conical portion 4c and the cylindrical body portion 4a can be heated independently, there is a divine intention that the controllability of the molecular beam can be improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は原料を加熱し、分子線を発
生させる円筒状胴部と、その分子線をさらに加熱し外に
放出する拡径された開口を形成した円錐部とを一体構造
としたるつぼを有することにより、液体原料を下向きに
入れることができ。
As explained above, the present invention has an integral structure that includes a cylindrical body that heats the raw material and generates molecular beams, and a conical portion that has an enlarged diameter opening that further heats the molecular beams and releases them to the outside. By having a dripping crucible, liquid raw materials can be poured downward.

下向きのためにシャッター開閉時に起こるフレークによ
る原料汚染を防ぐことができ、高品質のエビを成長させ
ることができる。さらに、原料としてGaを用いた場合
、沸騰による表面欠陥をなくすことができ、素子の作製
上、歩留りを大巾に上昇させることができるという効果
がある。
Due to the downward orientation, it is possible to prevent raw material contamination due to flakes that occur when opening and closing the shutter, and it is possible to grow high-quality shrimp. Furthermore, when Ga is used as a raw material, surface defects due to boiling can be eliminated, and yields can be greatly increased in device manufacturing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1を示す断面図、第2図は本発
明の実施例2を示す断面図、第3図は従来例を示す断面
図である。 1・・・ヒータ       2・・・熱電対3・・・
原料       4・・・るつぼ4a・・・円筒状胴
部 4c・・・円錐部 4b・・・開口
FIG. 1 is a sectional view showing a first embodiment of the present invention, FIG. 2 is a sectional view showing a second embodiment of the present invention, and FIG. 3 is a sectional view showing a conventional example. 1... Heater 2... Thermocouple 3...
Raw material 4... Crucible 4a... Cylindrical body 4c... Conical part 4b... Opening

Claims (1)

【特許請求の範囲】[Claims] (1)分子線を発生させる円筒状胴部と、その分子線を
外部に放出する拡径された開口をもつ円錐部とを一体構
造としたるつぼを有することを特徴とする分子線発生装
置。
(1) A molecular beam generating device characterized by having a crucible having an integral structure of a cylindrical body for generating molecular beams and a conical portion having an enlarged diameter opening for emitting the molecular beams to the outside.
JP7613189A 1989-03-28 1989-03-28 Molecular beam generator Pending JPH02254713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7613189A JPH02254713A (en) 1989-03-28 1989-03-28 Molecular beam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7613189A JPH02254713A (en) 1989-03-28 1989-03-28 Molecular beam generator

Publications (1)

Publication Number Publication Date
JPH02254713A true JPH02254713A (en) 1990-10-15

Family

ID=13596391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7613189A Pending JPH02254713A (en) 1989-03-28 1989-03-28 Molecular beam generator

Country Status (1)

Country Link
JP (1) JPH02254713A (en)

Similar Documents

Publication Publication Date Title
US6786969B2 (en) Method and apparatus for producing single crystal, substrate for growing single crystal and method for heating single crystal
JP2000264795A (en) Apparatus and method for producing silicon carbide single crystal
JPH05139882A (en) Molecular beam source
JPH02254713A (en) Molecular beam generator
JPH01153595A (en) Molecular beam production apparatus
Takahashi et al. The origins and elimination of oval defects in GaAs layers grown by molecular beam epitaxy
JP2526036B2 (en) Shutter structure of molecular beam epitaxy equipment
JPH06263587A (en) Molecular beam epitaxial growth apparatus
US20240044044A1 (en) Crystal growth device and method for growing a semiconductor
JPH0352434B2 (en)
JPH04274316A (en) Cell for molecular beam epitaxy
JPH05887A (en) Molecular beam crystal growing device
JPH06172083A (en) Molecular beam epitaxial growth method and crucible to be used therefor
JPH01131096A (en) Molecular beam generator
JPS6272113A (en) Molecular beam crystal growth device
JPS63122211A (en) Molecular beam generating device
JPH09115834A (en) Molecular beam evaporation source cell
JPS63282190A (en) Molecular beam crystal growth device
JPS62115820A (en) Molecular beam crystal growth device
JPH04111730U (en) Molecular beam epitaxy equipment
JPH0685388B2 (en) Molecular beam epitaxial growth system
JPH097947A (en) Molecular beam cell
JPH03208886A (en) Molecular beam crystal growing device
JPH04206712A (en) Molecular beam epitaxy apparatus
JPH02279587A (en) Cell for molecular beam epitaxy