JPH09115834A - Molecular beam evaporation source cell - Google Patents

Molecular beam evaporation source cell

Info

Publication number
JPH09115834A
JPH09115834A JP29065095A JP29065095A JPH09115834A JP H09115834 A JPH09115834 A JP H09115834A JP 29065095 A JP29065095 A JP 29065095A JP 29065095 A JP29065095 A JP 29065095A JP H09115834 A JPH09115834 A JP H09115834A
Authority
JP
Japan
Prior art keywords
molecular beam
evaporation source
mesh
beam evaporation
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29065095A
Other languages
Japanese (ja)
Inventor
Misao Takakusaki
操 高草木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP29065095A priority Critical patent/JPH09115834A/en
Publication of JPH09115834A publication Critical patent/JPH09115834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the micro particles of molecular beam evaporation source material from causing defect on the surface of epitaxial layer even when the residual quantity of material is small by providing a mesh at the molecular beam ejection port of molecular beam evaporation source cell in a molecular beam epitaxial growth system employing a solid state material. SOLUTION: The molecular beam evaporation source cell comprises a crucible 2 having an opening, a heater 3, a heat shield 4, a cell cap 1 and a thermocouple 6 wherein a material metal is placed in the crucible 2. A mesh 7 made of Ta is inserted between the crucible 2 and cell cap 1. The mesh 7 is a disc having same diameter as the crucible 2 and the size of mesh is 500μm. Ta is selected as a mesh material because of it high melting point, low degassing and easy machining. In order to attain a molecular beam intensity of conventional cell using the inventive mesh 7, cell temperature must be set higher by about 60 deg.C and thereby the mesh 7 is set to be heated independently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、分子線エピタキシ
ャル成長装置の分子線蒸発源セルに関するものであり、
分子線蒸発源原料の微粒子によるエピタキシャル層表面
の欠陥の低減を図るための改良に関するものである。特
にその分子線蒸発源の固体原料がAsである分子線蒸発源
セルに関するものである。
TECHNICAL FIELD The present invention relates to a molecular beam evaporation source cell of a molecular beam epitaxial growth apparatus,
The present invention relates to an improvement for reducing defects on the surface of an epitaxial layer due to fine particles of a molecular beam evaporation source material. In particular, it relates to a molecular beam evaporation source cell in which the solid material of the molecular beam evaporation source is As.

【0002】[0002]

【従来の技術】半導体基板上に超薄膜を形成する結晶成
長方法として、分子線エピタキシャル成長方法が最近注
目され研究されている。分子線エピタキシャル成長は超
高真空下で原料となる物質を蒸発させ加熱した基板上に
目的の結晶を成長する方法であり、分子線エピタキシャ
ル成長方法を用いたデバイスとして、高電子移動度トラ
ンジスタ(HEMT)等が実用化されている。
2. Description of the Related Art As a crystal growth method for forming an ultra-thin film on a semiconductor substrate, a molecular beam epitaxial growth method has recently attracted attention and has been studied. Molecular beam epitaxy is a method of evaporating a raw material under ultra-high vacuum to grow a target crystal on a heated substrate.As a device using the molecular beam epitaxy method, a high electron mobility transistor (HEMT), etc. Has been put to practical use.

【0003】分子線エピタキシャル成長法で成長したエ
ピタキシャル層の表面には微小な突起やディンプル状の
表面欠陥が見られ、その原因等が研究されている。この
表面欠陥を原因別に分類すると、(1)分子線蒸発源原料
の固体の微粒子による欠陥、(2)分子線蒸発源の原料中
の酸化物やスピッティングによる原料に起因するオーバ
ル欠陥と呼ばれる欠陥、(3)基板の転位に起因する欠陥
の3つに分類される。
Minute protrusions and dimple-like surface defects are found on the surface of the epitaxial layer grown by the molecular beam epitaxial growth method, and the cause thereof has been studied. These surface defects are classified according to their causes: (1) defects due to solid fine particles of the molecular beam evaporation source raw material, (2) defects called oval defects due to oxides in the raw material of the molecular beam evaporation source and raw materials due to spitting , (3) Three types of defects caused by dislocations in the substrate.

【0004】これらの表面欠陥は、デバイス作製後の特
性においてピンチオフ特性の劣化等の原因となり、歩留
りの低下をもたらす。(2)の欠陥については分子線蒸発
源セルの温度分布の工夫により低減できることが知られ
ている。また、(3)については基板の面方位のオフ角度
等により低減できることが知られている。
These surface defects cause deterioration of the pinch-off characteristics in the characteristics after device fabrication, resulting in a decrease in yield. It is known that the defect (2) can be reduced by devising the temperature distribution of the molecular beam evaporation source cell. It is known that (3) can be reduced by the off-angle of the surface orientation of the substrate.

【0005】(1)の分子線蒸発源原料に起因する欠陥
は、分子線蒸発源原料の金属を坩堝に合わせた形状のイ
ンゴットとすることにより、従来のフレーク状の形状の
原料を用いた場合よりも低減することができることが知
られている。しかし、連続してエピタキシャル成長を繰
り返し、分子線蒸発源原料の残りが少なくなってきた場
合には、分子線蒸発源原料のインゴットが崩れ、フレー
ク状の分子線蒸発源原料を用いていた時と同様に(1)の
欠陥が発生しやすくなる。通常、分子線蒸発源原料がこ
のような状態になった時は分子線蒸発源原料の再チャー
ジを行う。しかし、分子線蒸発源セル内にかなりの量の
分子線蒸発源原料が残っており、分子線蒸発源原料の使
用効率の点でコスト高の原因にもなる。
The defect caused by the raw material of the molecular beam evaporation source of (1) is caused by using the conventional flake-shaped raw material by making the metal of the raw material of the molecular beam evaporation source into an ingot having a shape matched to the crucible. It is known that it can be reduced more than. However, when the epitaxial growth is repeated continuously and the remaining amount of the molecular beam evaporation source raw material decreases, the ingot of the molecular beam evaporation source raw material collapses, and it is the same as when using the flaky molecular beam evaporation source raw material. The defect (1) is likely to occur. Normally, when the raw material of the molecular beam evaporation source is in such a state, the raw material of the molecular beam evaporation source is recharged. However, a considerable amount of the molecular beam evaporation source raw material remains in the molecular beam evaporation source cell, which causes a high cost in terms of use efficiency of the molecular beam evaporation source raw material.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の欠点を
解決するためになされたもので、原料の残量が残り少な
くなってきた場合でも分子線蒸発源原料の微粒子による
エピタキシャル層の表面欠陥を防ぎ、また、分子線蒸発
源原料を最後まで有効に利用できる分子線蒸発源セルを
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks. Even when the remaining amount of the raw material becomes low, the surface defects of the epitaxial layer due to the fine particles of the molecular beam evaporation source raw material are eliminated. Another object of the present invention is to provide a molecular beam evaporation source cell which can prevent and effectively use the molecular beam evaporation source raw material to the end.

【0007】[0007]

【課題を解決するための手段】分子線エピタキシャル成
長では、分子線蒸発源原料が固体金属原料の場合、固体
金属原料の昇華により分子線を形成している。フレーク
状のこの金属原料を真空中で加熱すると、加熱によりこ
の金属原料は次第に細かなフレークへと分解してゆく。
分子線蒸発源原料の微粒子はこの分解時に飛散し、その
一部が結晶成長しようとしている基板に到達して表面欠
陥となる。例えば、分子線エピタキシャル成長により成
長させたGaAsエピタキシャル層の表面には大きさが数10
μm〜数100μmのAsの微粒子が埋め込まれた状態で観察
される。
In the molecular beam epitaxial growth, when the molecular beam evaporation source raw material is a solid metal raw material, the molecular beam is formed by sublimation of the solid metal raw material. When the flaky metal raw material is heated in a vacuum, the metal raw material is gradually decomposed into fine flakes by heating.
The fine particles of the molecular beam evaporation source raw material are scattered during this decomposition, and a part of the fine particles reaches the substrate where the crystal is about to grow and becomes a surface defect. For example, the surface of a GaAs epitaxial layer grown by molecular beam epitaxial growth has a size of several tens.
It is observed in a state in which As microparticles of μm to several 100 μm are embedded.

【0008】本発明者は、このような固体金属原料が細
かくなる過程での微粒子の発生を考慮して分子線蒸発源
セルの構造について鋭意検討した結果、微粒子が基板に
到達しないように分子線蒸発源原料と基板との間に微粒
子に対する遮蔽板を設けることにより、分子線蒸発源原
料の微粒子によるエピタキシャル層の表面欠陥を低減で
きることを見い出した。すなわち、本発明は、固体原料
を用いた分子線エピタキシャル成長装置における分子線
蒸発源セルにおいて、分子線蒸発源セルの分子線の噴出
口にメッシュを設けたことを特徴とする分子線蒸発源セ
ルであり、また、メッシュ部分を単独で加熱できる機構
を付与したことを特徴とする分子線蒸発源セルである。
さらには、その固体原料がAsまたはSbであることを特徴
とする分子線蒸発源セルである。
The present inventor diligently studied the structure of the molecular beam evaporation source cell in consideration of the generation of fine particles in the course of such fine solid metal raw material, and as a result, the molecular beam was prevented from reaching the substrate. It has been found that the surface defect of the epitaxial layer due to the fine particles of the molecular beam evaporation source raw material can be reduced by providing the shielding plate for the fine particles between the evaporation source raw material and the substrate. That is, the present invention is a molecular beam evaporation source cell in a molecular beam epitaxial growth apparatus using a solid material, in the molecular beam evaporation source cell, characterized in that a mesh is provided at the ejection port of the molecular beam of the molecular beam evaporation source cell. In addition, the molecular beam evaporation source cell is characterized by being provided with a mechanism capable of independently heating the mesh portion.
Furthermore, the molecular beam evaporation source cell is characterized in that the solid raw material is As or Sb.

【0009】[0009]

【発明の実施の形態】メッシュの位置は基板と分子線蒸
発源の原料との間に設けることが必要であるが、他の分
子線を遮蔽しないようにするため、分子線蒸発源セルの
分子線の噴出口に取付ける。さらに、成膜時にはメッシ
ュも分子線蒸発源原料と同時に加熱されるため、析出に
よるメッシュの詰まりもある程度防止できる。メッシュ
の大きさは、0.01mm以上1mm以下が望ましい。メッシュ
の大きさが1mmより大きいと微粒子の飛散防止の効果が
なくなり、0.01mm未満であると微粒子の飛散防止の効果
はあるが十分な分子線の強度を得るのが困難となる。ま
た、メッシュの材質としては、脱ガスの少ない、原料と
反応しない材質を用いる。例えば、pBN(熱分解窒化硼
素)やTaやMo等の材質を用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The position of the mesh needs to be provided between the substrate and the raw material of the molecular beam evaporation source, but in order not to shield other molecular beams, the molecular beam of the molecular beam evaporation source cell Attach to the spout of the wire. Furthermore, since the mesh is heated at the same time as the molecular beam evaporation source material during film formation, clogging of the mesh due to precipitation can be prevented to some extent. The mesh size is preferably 0.01 mm or more and 1 mm or less. If the mesh size is larger than 1 mm, the effect of preventing scattering of fine particles is lost, and if it is less than 0.01 mm, there is an effect of preventing scattering of fine particles, but it is difficult to obtain sufficient molecular beam strength. As the material of the mesh, a material that is less outgassed and does not react with the raw material is used. For example, a material such as pBN (pyrolytic boron nitride), Ta or Mo can be used.

【0010】また、メッシュの詰まりを効果的に防止す
るためにメッシュ部分だけを単独で加熱できるような加
熱機構を付与しても構わない。例えば、表面にpG(熱分
解グラファイト)で被覆し導電層を設け更にその表面をp
BNで被覆したpBNや、Taや、Mo製のメッシュを用いこれ
に通電することでメッシュ部分を単独に加熱することが
できる。
Further, in order to effectively prevent clogging of the mesh, a heating mechanism capable of heating only the mesh portion may be provided. For example, coating the surface with pG (pyrolytic graphite) and providing a conductive layer
A mesh made of pBN coated with BN, Ta, or Mo is used, and the mesh portion can be independently heated by energizing the mesh.

【0011】この分子線蒸発源セルは、基本的に固体で
昇華させて分子線が得られる分子線蒸発源原料に関して
効果がある。例えば、AsのほかSb等の分子線蒸発源原料
で用いることができる。
This molecular beam evaporation source cell is basically effective for a molecular beam evaporation source raw material that can be sublimated as a solid to obtain a molecular beam. For example, in addition to As, it can be used as a molecular beam evaporation source material such as Sb.

【0012】[0012]

【実施例】【Example】

(実施例)本発明による実施例を図1に示す。分子線蒸
発源セルは開口部を有する坩堝2、加熱ヒータ3、熱シ
ールド4、セルキャップ1、熱電対6から構成されてお
り、坩堝2の中に原料である金属が入れられている。坩
堝2とセルキャップ1の間には、Taで作製したメッシュ
7を挿入した。メッシュ7の形は図2に示すように、坩
堝3のつばと同じ径の円板とし、メッシュの大きさは50
0μmとした。ここで、材質にTaを選んだのは高融点金属
で脱ガスが少なく加工が容易なためである。尚、このメ
ッシュ7により、従来のセルで得られていた時と同じ分
子線強度を得るためには60℃程度セル温度を高く設定す
る必要があった。必要に応じてメッシュ7を単独で加熱
できるように、メッシュ7は電流を流せるような機構と
した(図1には図示せず)。
(Embodiment) An embodiment according to the present invention is shown in FIG. The molecular beam evaporation source cell is composed of a crucible 2 having an opening, a heater 3, a heat shield 4, a cell cap 1 and a thermocouple 6, and a metal as a raw material is put in the crucible 2. A mesh 7 made of Ta was inserted between the crucible 2 and the cell cap 1. As shown in FIG. 2, the mesh 7 is a disk having the same diameter as the brim of the crucible 3, and the mesh size is 50.
It was set to 0 μm. Here, Ta is selected as the material because it is a refractory metal and degassing is small and processing is easy. In addition, in order to obtain the same molecular beam intensity as that obtained in the conventional cell by using the mesh 7, it was necessary to set the cell temperature high by about 60 ° C. The mesh 7 has a mechanism through which an electric current can flow so that the mesh 7 can be independently heated as needed (not shown in FIG. 1).

【0013】この分子線蒸発源セルを用い、以下の成膜
条件でGaAsエピタキシャル膜を分子線エピタキシャル成
長を連続して繰り返し行なった。 (成膜条件) 基板 ; GaAs基板 基板温度 ; 600℃ 成長速度 ; 1.0μm/h 分子線強度; 1.0×10-3Pa(ヌードイオンゲージによる
分子線に対応する蒸気圧)
Using this molecular beam evaporation source cell, molecular beam epitaxial growth of a GaAs epitaxial film was continuously repeated under the following film forming conditions. (Film forming conditions) Substrate: GaAs substrate Substrate temperature: 600 ° C. Growth rate: 1.0 μm / h Molecular beam intensity: 1.0 × 10 -3 Pa (vapor pressure corresponding to molecular beam by nude ion gauge)

【0014】その結果、Asの残量、成膜回数の増加によ
るAs原料の形状の変化によらず、GaAsエピタキシャル膜
上にAs微粒子による欠陥は観察されなかった。また、メ
ッシュ7に一定の電流を流しメッシュ7を加熱を行ない
ながら同様にGaAsエピタキシャル膜の分子線エピタキシ
ャル成長を行なった場合も、同様な結果であった。
As a result, no defect due to As fine particles was observed on the GaAs epitaxial film regardless of the change in the shape of the As raw material due to the increase in the remaining amount of As and the number of film formations. Similar results were obtained when the GaAs epitaxial film was similarly subjected to molecular beam epitaxial growth while a constant current was applied to the mesh 7 to heat the mesh 7.

【0015】(比較例)図3は従来の分子線蒸発源セル
の例である。セルは開口部を有する坩堝2と加熱ヒータ
3、熱シールド4、セルキャップ1から構成されてお
り、坩堝2の中に原料である金属が入れられている。こ
のセルを用いて、実施例1と同様な条件でGaAsエピタキ
シャル膜の分子線エピタキシャル成長を繰返し行なっ
た。
(Comparative Example) FIG. 3 shows an example of a conventional molecular beam evaporation source cell. The cell is composed of a crucible 2 having an opening, a heater 3, a heat shield 4, and a cell cap 1. A metal as a raw material is put in the crucible 2. Using this cell, molecular beam epitaxial growth of a GaAs epitaxial film was repeated under the same conditions as in Example 1.

【0016】その結果、エピタキシャル成長を繰返し行
なうに従い、GaAsエピタキシャル膜上にAs微粒子による
欠陥が発生するGaAsエピタキシャル膜が増加した。従っ
て、従来のセルでは坩堝の中の微小なAs粒子が分子線と
同時に基板に直接当るため、GaAsエピタキシャル膜上の
表面欠陥の発生を防止できない。
As a result, as the epitaxial growth was repeated, the number of GaAs epitaxial films in which defects due to As fine particles were generated on the GaAs epitaxial film increased. Therefore, in the conventional cell, since the minute As particles in the crucible directly hit the substrate simultaneously with the molecular beam, it is impossible to prevent the generation of surface defects on the GaAs epitaxial film.

【0017】[0017]

【発明の効果】以上説明したように、本発明による分子
線蒸発源セルを用いることにより、分子線蒸発源原料の
微粒子によるエピタキシャル膜上の表面欠陥が低減され
る。また、分子線蒸発源原料の量、形状によらず、安定
して低い欠陥密度のエピタキシャル層を得ることが可能
なため、分子線蒸発源原料を最後まで有効に利用でき
る。
As described above, by using the molecular beam evaporation source cell according to the present invention, surface defects on the epitaxial film due to the fine particles of the molecular beam evaporation source raw material can be reduced. Further, the epitaxial layer having a low defect density can be stably obtained irrespective of the amount and shape of the molecular beam evaporation source raw material, so that the molecular beam evaporation source raw material can be effectively used until the end.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による分子線蒸発源セルの一例を示した
図である。
FIG. 1 is a diagram showing an example of a molecular beam evaporation source cell according to the present invention.

【図2】本発明による分子線蒸発源セルのメッシュ板の
一例を示した図である。
FIG. 2 is a diagram showing an example of a mesh plate of a molecular beam evaporation source cell according to the present invention.

【図3】従来の分子線蒸発源セルの一例を示した図であ
る。
FIG. 3 is a diagram showing an example of a conventional molecular beam evaporation source cell.

【符号の説明】[Explanation of symbols]

1:セルキャップ 2:坩堝 3:加熱ヒータ 4:熱シールド 5:セルベースプレート 6:熱電対 7:メッシュ 1: Cell cap 2: Crucible 3: Heater 4: Heat shield 5: Cell base plate 6: Thermocouple 7: Mesh

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】固体原料を用いた分子線エピタキシャル成
長装置における分子線蒸発源セルにおいて、分子線蒸発
源セルの分子線の噴出口にメッシュを設けたことを特徴
とする分子線蒸発源セル。
1. A molecular beam evaporation source cell in a molecular beam epitaxial growth apparatus using a solid material, wherein a molecular beam evaporation source cell is provided with a mesh at a molecular beam ejection port.
【請求項2】前記メッシュ部分を単独で加熱できる機構
を付与したことを特徴とする請求項1記載の分子線蒸発
源セル。
2. The molecular beam evaporation source cell according to claim 1, wherein a mechanism for independently heating the mesh portion is provided.
【請求項3】前記固体原料がAsまたはSbであることを特
徴とする請求項1または請求項2に記載の分子線蒸発源
セル。
3. The molecular beam evaporation source cell according to claim 1 or 2, wherein the solid raw material is As or Sb.
JP29065095A 1995-10-13 1995-10-13 Molecular beam evaporation source cell Pending JPH09115834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29065095A JPH09115834A (en) 1995-10-13 1995-10-13 Molecular beam evaporation source cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29065095A JPH09115834A (en) 1995-10-13 1995-10-13 Molecular beam evaporation source cell

Publications (1)

Publication Number Publication Date
JPH09115834A true JPH09115834A (en) 1997-05-02

Family

ID=17758722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29065095A Pending JPH09115834A (en) 1995-10-13 1995-10-13 Molecular beam evaporation source cell

Country Status (1)

Country Link
JP (1) JPH09115834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122949A1 (en) * 2006-03-23 2007-11-01 Ngk Insulators, Ltd. Apparatus for producing nitride single crystal
JP2013202490A (en) * 2012-03-28 2013-10-07 Nec Corp Filter and filtering device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122949A1 (en) * 2006-03-23 2007-11-01 Ngk Insulators, Ltd. Apparatus for producing nitride single crystal
US8231729B2 (en) 2006-03-23 2012-07-31 Ngk Insulators, Ltd. Apparatus for producing nitride single crystal
JP5177557B2 (en) * 2006-03-23 2013-04-03 日本碍子株式会社 Nitride single crystal manufacturing equipment
JP2013202490A (en) * 2012-03-28 2013-10-07 Nec Corp Filter and filtering device

Similar Documents

Publication Publication Date Title
US5348703A (en) Vapor deposition apparatus and method
JPS5941510B2 (en) Beryllium oxide film and its formation method
JPH06105779B2 (en) Semiconductor device and manufacturing method thereof
JP3180207B2 (en) Composite structure for electronic component and method of manufacturing the same
Fan et al. Zone‐melting recrystallization of 3‐in.‐diam Si films on SiO2‐coated Si substrates
JPH09115834A (en) Molecular beam evaporation source cell
JP3212522B2 (en) Pyrolytic boron nitride crucible for molecular beam epitaxy
US3925146A (en) Method for producing epitaxial thin-film fabry-perot cavity suitable for use as a laser crystal by vacuum evaporation and product thereof
JP3070021B2 (en) Molecular beam cell and molecular beam epitaxy equipment for Si
Harada et al. Epitaxial growth of Ag deposited on air-cleaved MgO (100) surface by molecular beam deposition
US20100316874A1 (en) Fabrication method of bismuth single crystalline nanowire
JPH0558775A (en) Molecular-beam epitaxy device
US5132247A (en) Quantum effective device and process for its production
US5134091A (en) Quantum effective device and process for its production
JP3323522B2 (en) Molecular beam cell
Köster et al. Contact reactions between amorphous silicon and single-crystal metallic films
US6440562B1 (en) Tungsten super fine particle and method for producing the same
Cline Silicon thin films formed on an insulator by recrystallization
JPS5912015B2 (en) semiconductor equipment
Mori et al. Effect of current flow direction on the heteroepitaxial growth of InSb films on Ge/Si (001) substrate heated by direct current
Tode et al. Hot-Target Laser Ablation is Critical for β-FeSi 2 Growth on Si without Fragments
JPS63190164A (en) Vacuum deposition method
JPS606091B2 (en) semiconductor equipment
Xiong et al. Liquid‐metal‐mediated homoepitaxial film growth of Ge at low temperature
Mori et al. Growth temperature effect on the heteroepitaxy of InSb films on a Si (00l) substrate covered with Ge islands