JPH0238442Y2 - - Google Patents

Info

Publication number
JPH0238442Y2
JPH0238442Y2 JP14240284U JP14240284U JPH0238442Y2 JP H0238442 Y2 JPH0238442 Y2 JP H0238442Y2 JP 14240284 U JP14240284 U JP 14240284U JP 14240284 U JP14240284 U JP 14240284U JP H0238442 Y2 JPH0238442 Y2 JP H0238442Y2
Authority
JP
Japan
Prior art keywords
substrate
groove
substrate holder
metal wire
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14240284U
Other languages
Japanese (ja)
Other versions
JPS6157515U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14240284U priority Critical patent/JPH0238442Y2/ja
Publication of JPS6157515U publication Critical patent/JPS6157515U/ja
Application granted granted Critical
Publication of JPH0238442Y2 publication Critical patent/JPH0238442Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 本考案は分子線エピタキシヤル(MBE)成長
装置に関する。
[Detailed description of the invention] (a) Industrial application field The present invention relates to a molecular beam epitaxial (MBE) growth apparatus.

(ロ) 従来の技術 現在、分子線エピタキシヤル(MBE)法は結
晶性の良好性、不純物濃度の制御の容易性、膜厚
制御の容易性等からGaAs(ガリウム砒素)をは
じめとする−化合物半導体の成長、および従
来の気相、液相等の成長方法では成長が困難であ
つたZnSe(ジンクセレン)等の−化合物半導
体の成長に用いられている。
(b) Conventional technology At present, the molecular beam epitaxial (MBE) method is applied to compounds such as GaAs (gallium arsenide) due to its good crystallinity, ease of controlling impurity concentration, and ease of controlling film thickness. It is used for the growth of semiconductors and -compound semiconductors such as ZnSe (zinc selenium), which are difficult to grow using conventional vapor phase or liquid phase growth methods.

第1図は特願昭57−225732号に記載された
MBE装置を原理的に示したものである。バツク
グランド真空度10-10Torr以下に排気した真空容
器内に、基板部1と第1〜第3セル2a〜2cと
が対向配置されこれらの間に主シヤツタ3と個別
シヤツタ4a〜4cが介在されている。
Figure 1 was described in Japanese Patent Application No. 57-225732.
This shows the principle of the MBE device. In a vacuum container evacuated to a background vacuum level of 10 -10 Torr or less, the substrate section 1 and the first to third cells 2a to 2c are arranged facing each other, with the main shutter 3 and individual shutters 4a to 4c interposed between them. has been done.

基板部1はヒータ機構を備えた基板ホルダ5
と、その上にIn(インジウム)メタル6により貼
着された例えばGaAs基板7とからなる。第1〜
第3セル2a〜2cは、例えば夫々るつぼ8a〜
8c内にZn、Se、Gaを個別に収納しており、そ
の周囲にるつぼ加熱用ヒータ9を有し、又各るつ
ぼ温度検出用熱電対10を備えている。
The substrate part 1 is a substrate holder 5 equipped with a heater mechanism.
and, for example, a GaAs substrate 7 adhered thereon with an In (indium) metal 6. 1st~
The third cells 2a to 2c are, for example, crucibles 8a to 8a, respectively.
Zn, Se, and Ga are individually housed in the chamber 8c, and a heater 9 for heating the crucible is provided around the crucible, and a thermocouple 10 for detecting the temperature of each crucible is provided.

上記MBE装置自体では、基板7や各セルの温
度を制御すると共に、各シヤツタ4a〜4cを適
宜開閉することにより、GaAs基板7上にZnSe単
結晶薄膜が成長する。
In the MBE apparatus itself, a ZnSe single crystal thin film is grown on the GaAs substrate 7 by controlling the temperature of the substrate 7 and each cell and opening and closing each shutter 4a to 4c as appropriate.

(ハ) 考案が解決しようとする問題点 このような装置では基板7と基板ホルダ5とを
In6等で貼着しているため、基板7を基板ホルダ
5から分離するには基板7及び基板ホルダ5全体
をInの融点以上に昇温して基板7と基板ホルダ5
との間に例えばカミソリ等の薄い金属板を挿入す
る等の方法で行なつていた。然るに斯る方法では
挿入された金属板の端部が基板7に当接し損傷を
与えたり、不所望に上記金属板が基板7表面に接
触して斯る基板7を汚染するという問題があつ
た。
(c) Problems to be solved by the invention In such a device, the substrate 7 and the substrate holder 5 are
Since the substrate 7 is attached with In6 or the like, in order to separate the substrate 7 from the substrate holder 5, the entire temperature of the substrate 7 and substrate holder 5 must be raised to above the melting point of In.
This was done by inserting a thin metal plate, such as a razor, between the two. However, in such a method, the end of the inserted metal plate comes into contact with the substrate 7 and causes damage, or the metal plate undesirably contacts the surface of the substrate 7 and contaminates the substrate 7. .

(ニ) 問題点を解決するための手段 本考案は斯る点に鑑みてなされたもので、その
構成的特徴は基板ホルダの基板を固着する一主面
に溝を形成すると共に該溝内に着脱自在に金属線
を挿入したことにある。
(d) Means for solving the problems The present invention has been made in view of the above points, and its structural features include forming a groove on one main surface of the substrate holder to which the substrate is fixed, and forming a groove in the groove. The reason is that a metal wire is inserted in a removable manner.

(ホ) 作用 この構成の基板ホルダから基板を分離させるに
はIn等の固着材を溶融させた状態で金属線の一端
を上方へ持ち上げることにより基板全体に力が加
わることになり、基板ホルダから基板を分離でき
る。
(E) Effect To separate the substrate from the substrate holder with this configuration, by lifting one end of the metal wire upwards while melting the adhesive such as In, force is applied to the entire substrate, and the substrate holder is separated from the substrate holder. The substrate can be separated.

(ヘ) 実施例 第2図a及びbは本考案の一実施例における基
板ホルダ11を示す平面図及びaの−線断面
図であり、第3図は本考案の一実施例における金
属線12の平面図である。
(f) Embodiment FIGS. 2a and 2b are a plan view showing the substrate holder 11 in an embodiment of the present invention, and a cross-sectional view taken along the line "a" in FIG. 3, and FIG. FIG.

具体的には上記基板ホルダ11は例えばモリブ
デンからなり第2図aに示す如くその基板固着面
には略王字状に溝13が形成され、その一端は幅
広部14となつている。また、上記金属線12は
上記ホルダと同様にモリブデンからなり、その形
状は上記溝13の形状と同一の王字状をなす。
Specifically, the substrate holder 11 is made of, for example, molybdenum, and as shown in FIG. 2A, a substantially square-shaped groove 13 is formed on its substrate fixing surface, and one end of the groove 13 is a wide portion 14. Further, the metal wire 12 is made of molybdenum like the holder, and its shape is the same as the shape of the groove 13.

更に上記金属線12は上記溝13に着脱自在に
挿入されかつ第4図に示す如く、その挿入状態に
おいてその表面が溝13上部に突出しないように
する必要があり、従つて例えば金属線12の直径
が1mmであるとき上記溝13の巾及び深さは1mm
以上としまた上記幅広部14の幅は例えばピンセ
ツト等で上記挿入された金属線12をつまめる程
度の広さとする。
Furthermore, the metal wire 12 is inserted into the groove 13 in a removable manner, and as shown in FIG. When the diameter is 1 mm, the width and depth of the groove 13 are 1 mm.
In addition, the width of the wide portion 14 is set to be wide enough to pinch the inserted metal wire 12 with, for example, tweezers.

斯る基板ホルダ11及び金属線12を用いた装
置を用いた際の基板の固着は上記金属線12を上
記基板ホルダ11の溝13内に挿入した状態で少
なくとも上記幅広部14が露出した状態で基板を
基板ホルダ11の固着面にIn等で固着する。ま
た、基板を基板ホルダ11より分離する際には第
5図に示す如く上記幅広部14に位置する金属線
12を力点として図中矢印方向に持ち上げること
により、基板15は一端を支えとして上方へ浮き
上がることとなり分離できる。
When a device using such a substrate holder 11 and metal wire 12 is used, the substrate is fixed when the metal wire 12 is inserted into the groove 13 of the substrate holder 11 and at least the wide portion 14 is exposed. The substrate is fixed to the fixed surface of the substrate holder 11 using In or the like. Further, when separating the substrate from the substrate holder 11, as shown in FIG. 5, by lifting the metal wire 12 located in the wide portion 14 in the direction of the arrow in the figure as a point of force, the substrate 15 is lifted upward using one end as a support. It will float and can be separated.

尚、本実施例では上記溝13の形状を王字状と
したが、本考案はこれに限定されるものではな
く、らせん状や網目状であつても良い。
In this embodiment, the shape of the groove 13 is a square shape, but the present invention is not limited to this, and the groove 13 may have a spiral shape or a mesh shape.

(ト) 考案の効果 本考案の分子線エピタキシヤル装置では基板を
基板ホルダから分離するに際して、予め基板直下
に配された金属線を上方に持ち上げるだけで良い
ので、基板に損傷や汚染を与えることなく簡単に
分離が行える。
(g) Effects of the invention In the molecular beam epitaxial apparatus of the invention, when separating the substrate from the substrate holder, it is only necessary to lift the metal wire placed immediately below the substrate in advance, so there is no possibility of damaging or contaminating the substrate. Separation can be easily performed without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す模式図、第2図乃至第5
図は本考案の一実施例を示し、第2図a及び第3
図は平面図、第2図bは断面図、第4図は要部拡
大断面図、第5図は斜視図である。 11……基板ホルダ、12……金属線、13…
…溝、15……基板。
Figure 1 is a schematic diagram showing a conventional example, Figures 2 to 5
The figures show one embodiment of the present invention, and Figures 2a and 3
The figure is a plan view, FIG. 2b is a sectional view, FIG. 4 is an enlarged sectional view of a main part, and FIG. 5 is a perspective view. 11...Substrate holder, 12...Metal wire, 13...
...Groove, 15...Substrate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 基板ホルダに基板を固定し該基板上に分子線を
用いて結晶を成長せしめるための装置であつて、
上記基板ホルダの上記基板を固着する一主面には
溝が形成されると共に該溝内には着脱自在に金属
線が挿入されていることを特徴とする分子線エピ
タキシヤル成長装置。
An apparatus for fixing a substrate to a substrate holder and growing a crystal on the substrate using a molecular beam,
A molecular beam epitaxial growth apparatus characterized in that a groove is formed in one main surface of the substrate holder to which the substrate is fixed, and a metal wire is detachably inserted into the groove.
JP14240284U 1984-09-20 1984-09-20 Expired JPH0238442Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14240284U JPH0238442Y2 (en) 1984-09-20 1984-09-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14240284U JPH0238442Y2 (en) 1984-09-20 1984-09-20

Publications (2)

Publication Number Publication Date
JPS6157515U JPS6157515U (en) 1986-04-17
JPH0238442Y2 true JPH0238442Y2 (en) 1990-10-17

Family

ID=30700724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14240284U Expired JPH0238442Y2 (en) 1984-09-20 1984-09-20

Country Status (1)

Country Link
JP (1) JPH0238442Y2 (en)

Also Published As

Publication number Publication date
JPS6157515U (en) 1986-04-17

Similar Documents

Publication Publication Date Title
Fan et al. Lateral epitaxy by seeded solidification for growth of single‐crystal Si films on insulators
US6110279A (en) Method of producing single-crystal silicon carbide
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
JPH0238442Y2 (en)
JP4253974B2 (en) SiC single crystal and growth method thereof
JP3491430B2 (en) Single crystal manufacturing equipment
EP0335453B1 (en) Process for obtaining a single crystal heteroepitaxial ternary layer on a binary layer and crucible therefor
JPS5893222A (en) Preparation of semiconductor single crystal film
JPS63282190A (en) Molecular beam crystal growth device
JPH0527500Y2 (en)
JP2599767B2 (en) Solution growth equipment
US4233614A (en) Light emitting diode
JP2023145595A (en) Indium phosphide substrate and semiconductor epitaxial wafer
JP2750307B2 (en) Method for producing InP single crystal
Bardsley Important electronic materials
JP2730970B2 (en) Semiconductor film forming method
JPH0512297Y2 (en)
JPS59116193A (en) Growth method of crystal
JPS589578B2 (en) Optical semiconductor device and its manufacturing method
JPS55165689A (en) Preparation of light emission semiconductor device
JPH0444222A (en) Manufacture of algaas monocrystalline substrate
JPH0571558B2 (en)
Witt et al. Growth of Cadmium Telluride under Controlled Heat Transfer Conditions.
TAMURA et al. Growth of ZnSe Films on GaAs, Quartz and Glass Substrates by an Ion Beam Deposition Technique
JPH03265595A (en) Inp epitaxial wafer