JPH0444222A - Manufacture of algaas monocrystalline substrate - Google Patents

Manufacture of algaas monocrystalline substrate

Info

Publication number
JPH0444222A
JPH0444222A JP15043890A JP15043890A JPH0444222A JP H0444222 A JPH0444222 A JP H0444222A JP 15043890 A JP15043890 A JP 15043890A JP 15043890 A JP15043890 A JP 15043890A JP H0444222 A JPH0444222 A JP H0444222A
Authority
JP
Japan
Prior art keywords
crystal
algaas
gaas
solution
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15043890A
Other languages
Japanese (ja)
Inventor
Hiroaki Okagawa
広明 岡川
Kunihiro Hattori
服部 邦裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP15043890A priority Critical patent/JPH0444222A/en
Publication of JPH0444222A publication Critical patent/JPH0444222A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the need of removing substrate, reduce the epitaxial growing time and semiconductor device manufacturing cost, and prevent semiconductor wafers from bending by bringing a solid matter containing GaAs, Al, and impurities into contact with a Ga solution containing GaAs, Al, and impurities and a seed crystal into contact with the solution so as to allow an Al GaAs crystal to grow on the seed crystal. CONSTITUTION:A discoid single GaAs crystal having a diameter of about 4 cm is used as a seed crystal. By using a Ga as a solvent and a single GaAs crystal and Al as a solute, and Si as a dopant for imparting n-type conductivity to the crystal, the solute is dissolved in the Ga solution. A used solid matter composed of GaAs crystal and Al added with Si as a dopant is used. By bringing the solid matter, solution, and seed crystal into contact with each other and respectively heating the upper and lower sections of the solution to 900 deg.C and 950 deg.C with a temperature difference, a single AlGaAs crystal is grown on the seed crystal by utilizing the differences in specific gravity and temperature. At the time of growing the AlGaAS, the seed crystal is gradually pulled up. Therefore, a bulk crystal is grown on the seed crystal and an ingot is obtained. Thereafter, AlGaAs crystal substrates are obtained by slicing the ingot into pieces.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、AlGaAs単結晶基板の製法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an AlGaAs single crystal substrate.

〔従来の技術〕[Conventional technology]

■−V族化合物半導体の三元混晶であるAlGaAs結
晶をエピタキシャル成長させる場合には、一般に基板と
して格子整合の要件から同し■−V族の二元化合物であ
るGaAsを用いる。このGaAs基板は、エピタキシ
ーで成長させるエピタキシャル層の厚さが通常数十μm
以下であり、エピタキシャル層のままではIII械的強
度が小さいために必要とされるものである。二〇GaA
s基板に限らず一般に基板は、引上げ法などによりバル
ク結晶を成長させたインゴットを作製し、インゴットを
板状にスライスすることにより得られる。スライスによ
って薄板に切り出されたウェハはエピタキシーの基板と
して使用し、更にエピタキシャル層が積まれる。
When epitaxially growing an AlGaAs crystal, which is a ternary mixed crystal of the (1)-V group compound semiconductor, GaAs, which is a binary compound of the (1)-V group, is generally used as a substrate due to the requirement of lattice matching. In this GaAs substrate, the thickness of the epitaxial layer grown by epitaxy is usually several tens of μm.
This is necessary because the epitaxial layer as it is has low mechanical strength. 20 GaA
Generally, substrates, not just S-substrates, are obtained by producing an ingot in which bulk crystals are grown by a pulling method or the like, and slicing the ingot into plate shapes. The wafer cut into thin plates by slicing is used as an epitaxial substrate, and further epitaxial layers are stacked thereon.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、GaAs結晶基板は光吸収性を呈するため、
光取出効率を大きくしたり、GaAs基板側から光を取
り出す場合には、GaAs基板を取り除かなければなら
ず、素子化過程で基板除去工程を必要とする。
By the way, since the GaAs crystal substrate exhibits light absorption properties,
In order to increase the light extraction efficiency or to extract light from the GaAs substrate side, the GaAs substrate must be removed, and a substrate removal step is required during the device fabrication process.

又、この基板除去に関連して、エピタキシー後の工程で
基板を除去するため、機械的強度を確保すべく基板上に
エピタキシャル成長させるAlGaAs層は厚膜でなけ
ればならないが、エピタキシャル層の厚膜化は長時間を
要し、これが半導体デバイスのコスト高の要因の一つで
もある。
In addition, in connection with this substrate removal, since the substrate is removed in the step after epitaxy, the AlGaAs layer epitaxially grown on the substrate must be thick to ensure mechanical strength. This takes a long time, which is one of the reasons for the high cost of semiconductor devices.

更に、GaAs基板上にAlGaAs層を成長させる場
合、通常は液相エピタキシーによる徐冷法或いは温度差
法を行っており、例えば徐冷法では900℃程度の高温
溶液を600℃程度まで漸次降温することによってGa
As基板上にAlGaAs結晶をエピタキシャル成長さ
せている。しかし、結晶成長開始時が高温で成長終了時
が低温であると、結晶成長が終了した時点でGaAs基
板上にAlGaAs層を設けた半導体ウェハには、基板
とAlGaAs層との熱膨張係数(一般には常温でGa
Asが7.3X10−’、AlGaAsが5.2XIO
−’)の差により既に反りが発生している。
Furthermore, when growing an AlGaAs layer on a GaAs substrate, a slow cooling method using liquid phase epitaxy or a temperature difference method is usually used. For example, in the slow cooling method, Ga
AlGaAs crystal is epitaxially grown on an As substrate. However, if the crystal growth starts at a high temperature and the growth ends at a low temperature, a semiconductor wafer with an AlGaAs layer on a GaAs substrate will have a thermal expansion coefficient (generally is Ga at room temperature
As is 7.3X10-', AlGaAs is 5.2XIO
-') warping has already occurred.

かかる反り状態の半導体ウェハは、以後の加工プロセス
を施し難くなる8例えば、露光プロセス、メサダイシン
グプロセス(通常チップの全数を検査するためにウェハ
に切り込みを入れる工程)で、ウェハに割れや欠けなど
が多発する。
Semiconductor wafers in such a warped state become difficult to perform subsequent processing processes. occurs frequently.

半導体素子の設計段階でGaAs基板を除去することが
予め分かっている場合、或いはGaAs基板上にAlG
aAs層を設けた半導体ウェハに反りが生ずる問題を回
避する場合、当初からGaAs基板よりもAlGaAs
層に格子整合で有利なAlGaAs基板を用いればよい
わけであるが、AlGaAsは基板としてバルク結晶を
成長させるのが通常の引上げ法などのバルク結晶成長技
術では困難である。そのため、止むを得ずGaAs基板
板を用い、これにAlGaAs層をエピタキシャル成長
させているわけである。
If it is known in advance that the GaAs substrate will be removed at the design stage of the semiconductor device, or if AlG is removed on the GaAs substrate.
In order to avoid the problem of warping of semiconductor wafers provided with an aAs layer, AlGaAs substrates should be used rather than GaAs substrates from the beginning.
Although it is sufficient to use an AlGaAs substrate, which is advantageous in terms of lattice matching, for the layer, it is difficult to grow a bulk crystal of AlGaAs as a substrate using a normal bulk crystal growth technique such as a pulling method. Therefore, it is unavoidable to use a GaAs substrate and epitaxially grow an AlGaAs layer thereon.

従って、本発明の目的は、上記問題点を一挙に解決する
新規なAlGaAs単結晶基板の製法を捷供することに
ある。
Therefore, an object of the present invention is to provide a novel method for manufacturing an AlGaAs single crystal substrate that solves the above problems at once.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的は、GaAs、 Al、不純物を含む固形物と
、GaAs、Al、不純物を含有するGafJ液とを接
触させ、更に種結晶を溶液に接触させて、種結晶上にA
lGaAs結晶を成長させる工程を有することを特徴と
するAlGaAs単結晶基板の製法により達成される。
The purpose is to contact a solid material containing GaAs, Al, and impurities with a GafJ liquid containing GaAs, Al, and impurities, and then contact a seed crystal with the solution to form A on the seed crystal.
This is achieved by a method for manufacturing an AlGaAs single crystal substrate, which is characterized by having a step of growing an IGaAs crystal.

本発明の製法によれば、AlGaAsの基板用バルク結
晶を成長させることができ、AlGaAs単結晶のイン
ゴットが得られる。このインゴットを薄板状にスライス
してAlGaAs結晶基板として供すれば、AlGaA
s基板は光透過性であるから除去する必要がない、しか
も、AlGaAs基根上にA基板上As層をエピタキシ
ャル成長させても、基板とエピタキシャル層が共にAl
GaAsであって熱膨張係数に差がないので反りが発生
しない、又、本発明の製法によるAlGaAs基板を用
いれば、基板除去工程が不要であるから基板上に成長さ
せるエピタキシャル層が薄膜でもよい、そのため、Ga
As基板上に当該基板を除去することを予め配慮して厚
膜に形成したAlGaAs層の形成に要する時間よりも
成長時間を短縮でき、結果として半導体素子の製作コス
トを低減できる。
According to the manufacturing method of the present invention, a bulk crystal of AlGaAs for a substrate can be grown, and an ingot of AlGaAs single crystal can be obtained. If this ingot is sliced into thin plates and used as an AlGaAs crystal substrate, AlGaAs
Since the S substrate is optically transparent, there is no need to remove it.Moreover, even if the As layer on the A substrate is epitaxially grown on the AlGaAs base, both the substrate and the epitaxial layer are Al.
Since it is GaAs, there is no difference in thermal expansion coefficient, so no warpage occurs, and if the AlGaAs substrate according to the manufacturing method of the present invention is used, there is no need for a substrate removal process, so the epitaxial layer grown on the substrate can be a thin film. Therefore, Ga
The growth time can be shorter than the time required to form a thick AlGaAs layer on the As substrate with consideration given in advance to the removal of the substrate, and as a result, the manufacturing cost of the semiconductor element can be reduced.

これら利点に加えて、後述するように本発明の製法では
低融点金属であるGa (融点:約30℃)を溶媒とす
るGa溶液を用いて結晶成長を行うため、化学量論的組
成のずれなどの結晶の構造欠陥が少ない。
In addition to these advantages, as will be described later, in the production method of the present invention, crystal growth is performed using a Ga solution using Ga, a low melting point metal (melting point: approximately 30°C), as a solvent, so there is no difference in stoichiometric composition. There are few structural defects in crystals such as.

次に、上記のような種々の利点が得られる本発明の製法
において用いる種結晶、溶液、固形物の三要素について
説明する。
Next, the three elements of the seed crystal, solution, and solid substance used in the production method of the present invention, which provide the various advantages described above, will be explained.

まず種結晶は周知のように、成長してくる結晶の最初の
核となる結晶であり、本発明に用いる種結晶としてはこ
れを核にしてAlGaAs結晶が成長するのであれば特
に限定はないが、通常は従来のGa^3バルク結晶を得
る場合と同様に単又は多結晶のGaAsを用いることが
好ましい0種結晶の大きさは、得ようとするインゴット
の大きさや形状にも依るが、例えば直径1.5〜2イン
チ(約3.8〜5.1 C11)程度の円板状のものが
例示される。 AlGaAs結晶成長時に種結晶は結晶
成長と共に徐々に引上げてもよいし、或いは静置してお
いても構わない、勿論、静置の場合はAlGaAs結晶
が溶液中に成長することになる。又、引上げや静置のい
ずれの場合でも、必要に応して種結晶は結晶成長時にゆ
っくりと回転させてもよい。
First, as is well known, a seed crystal is a crystal that becomes the first nucleus of a growing crystal, and there are no particular limitations on the seed crystal used in the present invention as long as it can be used as a nucleus to grow an AlGaAs crystal. The size of the 0 seed crystal, which is usually preferably made of monocrystalline or polycrystalline GaAs as in the case of obtaining conventional Ga^3 bulk crystals, depends on the size and shape of the ingot to be obtained, but for example, An example is a disk-shaped one with a diameter of about 1.5 to 2 inches (approximately 3.8 to 5.1 C11). During AlGaAs crystal growth, the seed crystal may be gradually pulled up as the crystal grows, or it may be left standing. Of course, if it is left standing, the AlGaAs crystal will grow in the solution. Furthermore, in either case of pulling or standing still, the seed crystal may be rotated slowly during crystal growth, if necessary.

種結晶を接触させる溶液は、Gaを溶媒とし、これに単
又は多結晶GaAs、 Al、不純物を溶質とした融液
である。不純物(ドーパント)はAlGaAs結晶の導
電性を制御するドーピングを行うために添加するもので
、AlGaAsの場合、n型結晶を得るためにはSl、
丁eSSn、 Se、 Sなどが、p単結晶を得るため
にはZn、 Mg、 Cdなどがドープされる。溶液中
の各成分の配合割合は、成長させるAlGaAs結晶の
組成にも依るが、Ga100重量部に対し、GaAs 
1〜14重量部、好ましくは3〜10重量部、AIo、
2〜0.9fif部、好ましくは0.5〜0.8重量部
、ドーパントI X I (1−3〜5 X 10−’
重量部、好マシくは3xl O−” 〜2.5xl O
−’重量部である。
The solution with which the seed crystal is brought into contact is a melt containing Ga as a solvent and monocrystalline or polycrystalline GaAs, Al, and impurities as solutes. Impurities (dopants) are added to control the conductivity of AlGaAs crystals.In the case of AlGaAs, in order to obtain n-type crystals, Sl,
SSn, Se, S, etc. are doped with Zn, Mg, Cd, etc. to obtain a p single crystal. The mixing ratio of each component in the solution depends on the composition of the AlGaAs crystal to be grown, but the ratio of GaAs to 100 parts by weight of Ga
1 to 14 parts by weight, preferably 3 to 10 parts by weight, AIo,
2 to 0.9 fi parts, preferably 0.5 to 0.8 parts by weight, dopant I X I (1-3 to 5 X 10-'
Parts by weight, preferably 3xl O-” to 2.5xl O
−' parts by weight.

溶液に接触させる固形物は、GaAs (単又は多結晶
)、A1、不純物を含有するものである。これは、種結
晶上にAlGaAs結晶が成長するに連れて溶液中の溶
ii (Al、 As、  )−−パント)が減少する
が、この減少分量相当のf′Jfを補填するためのもの
で、従って固形物の成分はAlGaAs結晶の組成とほ
ぼ同しで、固形物にドープする不純物は溶液中の不純物
と同様にn型AlGaAs結晶にばSi、 Te、 S
n、 Se。
The solid material to be brought into contact with the solution contains GaAs (single or polycrystalline), A1, and impurities. This is to compensate for f'Jf equivalent to the decrease in solubility (Al, As, )--Punt) in the solution as the AlGaAs crystal grows on the seed crystal. Therefore, the composition of the solid substance is almost the same as that of the AlGaAs crystal, and the impurities doped into the solid substance are Si, Te, and S in the n-type AlGaAs crystal, similar to the impurities in the solution.
n, Se.

Sなどが、P型AlGaAs結晶にはZnSMg、 C
dなどがある。固形物中の各組成側合は、AlGaAs
結晶の組成と当該結晶を析出させるための溶液中の成分
にも依存するが、前記溶液の場合とほぼ同様でよい。
S, etc., but P-type AlGaAs crystal contains ZnSMg, C
d etc. Each composition in the solid substance is AlGaAs
Although it depends on the composition of the crystal and the components in the solution for precipitating the crystal, it may be substantially the same as in the case of the solution described above.

即ち、GaAs 100重量部に対して、All0〜1
6重量部、好ましくは1工〜14重量部、ドーパントI
 X 10−’ 〜I x 10−’重量部、好ffi
 L < I−! lXl0−’〜lXl0−’重量部
である。但し、固形物中の各組成はAlGaAs結晶成
長に必要な溶液中の溶質が不足しないよう十分な量を含
有していることが重要である。
That is, for 100 parts by weight of GaAs, All0 to 1
6 parts by weight, preferably 1 to 14 parts by weight, dopant I
X 10-' ~ I x 10-' parts by weight, ffi
L<I-! lXl0-' to lXl0-' parts by weight. However, it is important that each composition in the solid substance contains sufficient amounts of solutes in the solution necessary for AlGaAs crystal growth.

本発明において上述の種結晶、溶液、固形物を用いてA
lGaAs結晶を成長させるには、固形物と溶液、溶液
と種結晶を互いに接触させて配置する。
In the present invention, A
To grow a lGaAs crystal, a solid and a solution, and a solution and a seed crystal are placed in contact with each other.

このように配置することで、種結晶上にAlGaAsバ
ルク結晶が厚く成長する。この成長原理について述べる
と、まず溶液中では比重差によって溶媒(Ga)より軽
い元素(Al、^S)が高濃度となり、種結晶上にAl
GaAs結晶が析出する。一方、結晶成長に随伴して固
形物と溶液との界面近傍の溶液は未飽和状態となり、溶
質のA1、Asが不足するが、固形物から不足分の溶質
が溶液中に溶出し、この溶質は比重差により成長結晶の
方に移動する。このようにAlGaAs結晶の成長と結
晶に必要な溶質の供給とが並行することにより、種結晶
上に一定組成のAlGaAs単結晶が厚く成長する。
With this arrangement, the AlGaAs bulk crystal grows thickly on the seed crystal. To explain the principle of this growth, first, elements (Al, ^S) that are lighter than the solvent (Ga) become highly concentrated in the solution due to the difference in specific gravity, and Al
GaAs crystals precipitate. On the other hand, as the crystal grows, the solution near the interface between the solid and the solution becomes unsaturated, resulting in a shortage of solutes A1 and As. moves toward the growing crystal due to the difference in specific gravity. In this way, by paralleling the growth of the AlGaAs crystal and the supply of the solute necessary for the crystal, a thick AlGaAs single crystal of a constant composition grows on the seed crystal.

しかして、種結晶、溶液、固形物の配!は、上記結晶成
長プロセスが自発的に繰り返される限り特に限定はない
、しかし、溶質の移動が比重差によることから通常は第
1図に示すように、適当なバルク結晶成長用容器30内
に固形物1、溶液2、種結晶3を順に鉛直方向に配する
のが結晶成長効率の点で最も好ましい、かかる配置B様
で種結晶をそのまま放置しておくか又はゆっくり引上げ
れば、前記比重差原理に基づいて種結晶上にAlGaA
s結晶が成長するが、溶液の上部と下部に温度差を付け
ることで一層成長速度が早まる。即ち、種結晶と接触す
る溶液の上方を低温にし、溶液の下方に進むに従い高温
にすると(溶液の下部に配置した固形物も同し温度にす
る)、高温側では高濃度の溶質を含む溶液となり、低温
側(種結晶側)との密度差による密度拡散、温度差によ
る熱拡散、及び先程の比重差と相まって固形物から供給
される溶質の移動と結晶析出が促進される。この温度差
は成長させるA lGaAs結晶の組成により多少異な
るが、具体的には溶液の上部は800〜1000゛C1
好ましくは850〜950 ”C1特に好ましくは90
0℃程度で、下部は850〜1200℃、好ましくは9
00〜1000”C1特に好ましくは950℃程度であ
る。この温度差は結晶成長中保持しておく。
However, the distribution of seed crystals, solutions, and solids! There is no particular limitation as long as the above-mentioned crystal growth process is repeated spontaneously. However, since the movement of solutes is due to the difference in specific gravity, it is usually a solid state in a suitable bulk crystal growth container 30 as shown in FIG. It is most preferable in terms of crystal growth efficiency to arrange substance 1, solution 2, and seed crystal 3 in this order in the vertical direction.If the seed crystal is left as it is or slowly pulled up in arrangement B, the specific gravity difference will be reduced. AlGaA on the seed crystal based on the principle
The s-crystal grows, and by creating a temperature difference between the upper and lower parts of the solution, the growth rate is further accelerated. In other words, if the upper part of the solution that comes into contact with the seed crystal is kept at a lower temperature, and the temperature is increased as it moves downwards (the solid material placed at the bottom of the solution is also brought to the same temperature), the solution containing a high concentration of solute will be In combination with density diffusion due to the density difference with the low temperature side (seed crystal side), thermal diffusion due to the temperature difference, and the aforementioned specific gravity difference, the movement of the solute supplied from the solid and crystal precipitation are promoted. This temperature difference varies somewhat depending on the composition of the AlGaAs crystal to be grown, but specifically, the temperature difference at the top of the solution is 800 to 1000°C1.
Preferably 850 to 950” C1, particularly preferably 90
At about 0℃, the lower part is 850-1200℃, preferably 9
00 to 1000''C1, particularly preferably about 950°C. This temperature difference is maintained during crystal growth.

温度差を利用しない時は比重差のみにより結晶成長を行
うことになるが、その場合には溶液全体の温度を可及的
に同一に保持しておくことが好ましい、当該同一温度は
700−1100”C,好ましくは850〜1000”
C2特に好ましくは900℃程度である。
When the temperature difference is not used, crystal growth is performed only by the difference in specific gravity, but in that case, it is preferable to keep the temperature of the entire solution as the same as possible.The same temperature is 700-1100. "C, preferably 850-1000"
C2 is particularly preferably about 900°C.

バルク結晶成長したAlGaAsからなるインゴットは
、薄板状にスライスしてAlGaAs結晶基板とし、当
該基板上にエピタキシー(通常は液相エピタキシー)に
よりAlGaAsエピタキシャル薄膜を成長させる。こ
の時、先述したようにエピタキシャル成長層と基板が同
し素材で熱膨張係数に差異がないので反りが発生しない
ばかりが、^1GaAs基板は光透過性であるから除去
する必要がない、しかも、基板上に成長させるエピタキ
シャル層は薄くても半導体ウェハとして機械的強度は十
分である。
The bulk crystal-grown AlGaAs ingot is sliced into thin plates to obtain AlGaAs crystal substrates, and an AlGaAs epitaxial thin film is grown on the substrates by epitaxy (usually liquid phase epitaxy). At this time, as mentioned earlier, the epitaxial growth layer and the substrate are made of the same material and there is no difference in thermal expansion coefficient, so no warping occurs, but since the GaAs substrate is optically transparent, there is no need to remove it. Even if the epitaxial layer grown thereon is thin, it has sufficient mechanical strength as a semiconductor wafer.

本発明の製法によって得られた^1GaAs結晶基板を
用いて作製したLEDチフプの一例を第2図(a)〜(
C)に示す、(a)に示すLEDは、上記製法に従って
作製したn型AlGaAs基板10、基板10上にエピ
タキシャル成長させたP型AlGaAs層11で構成さ
れる単純構造のもので、基板10と層11との界面には
pn接合12が形成されている。更に、層11の上面に
はp側の電極材として例えばCrAu、 Zn−Au、
又は5i−Auなどからなる電極E1が、基板10の下
面にはn側の電極材として例えばAuGe又は5n−A
uなどからなる電極E2が真空蒸着などの手段にて設け
られている。
An example of an LED chip manufactured using a ^1GaAs crystal substrate obtained by the manufacturing method of the present invention is shown in Figs.
The LEDs shown in C) and (a) have a simple structure consisting of an n-type AlGaAs substrate 10 manufactured according to the above manufacturing method, and a p-type AlGaAs layer 11 epitaxially grown on the substrate 10. A pn junction 12 is formed at the interface with 11. Further, on the upper surface of the layer 11, for example, CrAu, Zn-Au,
Alternatively, the electrode E1 made of 5i-Au or the like is made of, for example, AuGe or 5n-A as the n-side electrode material on the lower surface of the substrate 10.
An electrode E2 made of U or the like is provided by means such as vacuum evaporation.

[有])に示すLEDは、P型AlGaAs基板20、
基板20上に順にエピタキシャル成長させたP型AlG
aAs層21、n型AlGaAs層22で構成されてい
る0層21と層22との界面にはpn接合23が形成さ
れ、層22にはn側電極E2が、基板20にはp側電極
E1が設けられている。(C)のLEDば、P型AlG
aAs基板30、n型AlGaAs層31、p型AlG
aAs活性層32、n型AlGaAs層33からなり、
層33に電極E2が、基板30に電極E1が形成されて
いる。
The LED shown in [Yes]) has a P-type AlGaAs substrate 20,
P-type AlG grown epitaxially on the substrate 20
A pn junction 23 is formed at the interface between the 0 layer 21 and the layer 22, which are composed of an aAs layer 21 and an n-type AlGaAs layer 22. The layer 22 has an n-side electrode E2, and the substrate 20 has a p-side electrode E1. is provided. (C) LED is P-type AlG
aAs substrate 30, n-type AlGaAs layer 31, p-type AlG
Consisting of an aAs active layer 32 and an n-type AlGaAs layer 33,
An electrode E2 is formed on the layer 33, and an electrode E1 is formed on the substrate 30.

〔実施例〕〔Example〕

以下に本発明の製法の具体例を記述する。 Specific examples of the production method of the present invention will be described below.

本実施例では製作しようとするA]GaAs結晶基板の
固相A1を0.7とし、導電型をn型とする0種結晶に
は、直径約4C11の円板状単結晶GaAsを用いる。
In this embodiment, a disk-shaped single crystal GaAs having a diameter of about 4C11 is used as a zero seed crystal whose solid phase A1 of the A] GaAs crystal substrate to be manufactured is 0.7 and whose conductivity type is n type.

溶液は、Gaを溶媒とし、溶質に単結晶GaAs、 A
l、ドーパントとしてn型導電性を得るためにSlを使
用し、これら溶質をGa溶媒に溶解する。溶液中の各成
分の配合割合は、Ga 100重量部に対し、GaAs
単結晶6.08重量部、AIo、90重量部、Te5X
10−3重量部である。固形物は結晶GaAs、 AI
からなり、ドーパントのSiを添加しであるものを用い
る。固形物中の配合割合は、GaAs 100重量部に
対し、A114重量部、Te1X10−’重量部である
The solution uses Ga as a solvent and single crystal GaAs as a solute, A
1, Sl is used as a dopant to obtain n-type conductivity, and these solutes are dissolved in a Ga solvent. The mixing ratio of each component in the solution is 100 parts by weight of Ga to 100 parts by weight of GaAs.
Single crystal 6.08 parts by weight, AIo, 90 parts by weight, Te5X
It is 10-3 parts by weight. Solids are crystalline GaAs, AI
The material used is made of the following materials and is doped with Si as a dopant. The mixing ratio in the solid substance is 114 parts by weight of A1 and 10 parts by weight of Te1X with respect to 100 parts by weight of GaAs.

上記固形物、溶液、種結晶を第1回に示したように接触
・配宣し、溶液の上部を900℃、下部を950℃にし
て溶液に温度差を付け、比重差と温度差を利用して種結
晶上にAlGaAs単結晶を成長させる。なお、AlG
aAs結晶の成長時には、種結晶を徐々に引上げた。こ
れにより、種結晶上にAlGaAsのバルク結晶が成長
し、インゴットが得られた。
The above solid matter, solution, and seed crystal are brought into contact and distributed as shown in Part 1, and the upper part of the solution is 900°C and the lower part is 950°C, creating a temperature difference in the solution and utilizing the specific gravity difference and temperature difference. Then, an AlGaAs single crystal is grown on the seed crystal. In addition, AlG
During the growth of the aAs crystal, the seed crystal was gradually pulled up. As a result, a bulk crystal of AlGaAs grew on the seed crystal, and an ingot was obtained.

後は、このインゴットを1ill状にスライスすればA
lGaAs結晶基板を擾供できる。
After that, slice this ingot into 1ill pieces.A
A GaAs crystal substrate can be provided.

〔発明の効果] 本発明のAlGaAsエピタキシャル結晶基板の製法は
、以上説明したように構成されているので、以下に記載
される如き効果を奏する。
[Effects of the Invention] Since the method for manufacturing an AlGaAs epitaxial crystal substrate of the present invention is configured as described above, it produces the effects as described below.

i ) AlにaAs基板は光透過性であるから、Ga
As基板のように除去する必要がない。
i) Since the aAs substrate is optically transparent to Al, Ga
There is no need to remove it unlike the As substrate.

11)^1GaAs基板上にAlGaAs層をエピタキ
シャル成長させても同しAlGaAs結晶であるので、
熱膨張係敞に差がなく、基板とエピタキシャル層からな
る半導体ウェハに反りは発生しない。
11) Even if an AlGaAs layer is epitaxially grown on a ^1GaAs substrate, it is still the same AlGaAs crystal, so
There is no difference in thermal expansion coefficient, and no warpage occurs in the semiconductor wafer consisting of the substrate and epitaxial layer.

ii ) AlGaAs基板は除去しなくてもよいので
、基板上に成長させるエピタキシャル層は薄膜でもよい
、そのため、GaAs基板を用いた場合に比べて、エピ
タキシャル層の成長時間が短縮され、半導体デバイスの
製造コストを低減できる。
ii) Since the AlGaAs substrate does not need to be removed, the epitaxial layer grown on the substrate can be a thin film. Therefore, compared to the case where a GaAs substrate is used, the epitaxial layer growth time is shortened and the manufacturing of semiconductor devices is Cost can be reduced.

iv) AlGaAsのバルク結晶成長は熱平衡状態で
行うため、得られる結晶は非化学量論的組成にならず、
構造欠陥が少ない。
iv) Since the bulk crystal growth of AlGaAs is carried out in a state of thermal equilibrium, the resulting crystal does not have a non-stoichiometric composition;
Fewer structural defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1Fg:Jは本発明の製法においてAlGaAsバル
ク結晶を成長させるために固形物、溶液、種結晶の配置
態様を示す断面図、第2図(a)〜(C)はそれぞれ本
発明の製法によって得られたAlGaAs基板を用いて
作製したLEDの一例を示す断面図である。 1        ・固形物 2        :溶液 3         M結晶 10.20.30  : AlGaAs結晶基板11.
21.31  : p 1AIGaAs層12.23 
    : pn接合 22.33     :n型AlGaAs層32   
     :P型AlGaAs活性層E1、E2   
  :@極 第1図 El (a) 第2図 (C) 第2図
1st Fg:J is a cross-sectional view showing the arrangement of solids, solutions, and seed crystals for growing AlGaAs bulk crystals in the manufacturing method of the present invention, and Figures 2 (a) to (C) are respectively FIG. 2 is a cross-sectional view showing an example of an LED manufactured using the obtained AlGaAs substrate. 1. Solid 2: Solution 3 M crystal 10.20.30: AlGaAs crystal substrate 11.
21.31: p1AIGaAs layer 12.23
: pn junction 22.33 : n-type AlGaAs layer 32
:P-type AlGaAs active layers E1, E2
:@Pole Figure 1 El (a) Figure 2 (C) Figure 2

Claims (1)

【特許請求の範囲】[Claims]  GaAs、Al、不純物を含む固形物と、GaAs、
Al、不純物を含有するGa溶液とを接触させ、更に種
結晶を該溶液に接触させて、種結晶上にAlGaAs結
晶を成長させる工程を有することを特徴とするAlGa
As単結晶基板の製法。
GaAs, Al, solid material containing impurities, GaAs,
AlGaAs characterized by having a step of contacting a Ga solution containing Al and impurities and further contacting a seed crystal with the solution to grow an AlGaAs crystal on the seed crystal.
Manufacturing method of As single crystal substrate.
JP15043890A 1990-06-07 1990-06-07 Manufacture of algaas monocrystalline substrate Pending JPH0444222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15043890A JPH0444222A (en) 1990-06-07 1990-06-07 Manufacture of algaas monocrystalline substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15043890A JPH0444222A (en) 1990-06-07 1990-06-07 Manufacture of algaas monocrystalline substrate

Publications (1)

Publication Number Publication Date
JPH0444222A true JPH0444222A (en) 1992-02-14

Family

ID=15496935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15043890A Pending JPH0444222A (en) 1990-06-07 1990-06-07 Manufacture of algaas monocrystalline substrate

Country Status (1)

Country Link
JP (1) JPH0444222A (en)

Similar Documents

Publication Publication Date Title
US3993533A (en) Method for making semiconductors for solar cells
EP2245218B1 (en) Method for producing group iii nitride wafers and group iii nitride wafers
JPH08288220A (en) Device that has iii-v genus nitride semiconductor material on substrate
US8940095B2 (en) Apparatus for growth of single crystals including a solute feeder
JPH03122097A (en) Preparation of single crystal ii-vi group or iii-v group compound and product made of it
US8236603B1 (en) Polycrystalline semiconductor layers and methods for forming the same
Tomlinson et al. The growth and doping of single crystals of CuInTe2
JP2003206200A (en) p-TYPE GaAs SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JP4559586B2 (en) Single crystal thin film material
JPH0444222A (en) Manufacture of algaas monocrystalline substrate
GB2126125A (en) Method and apparatus for performing epitaxial growth of znse crystal from a melt thereof
JP7046242B1 (en) Method for manufacturing indium phosphide single crystal ingot and method for manufacturing indium phosphide substrate
KR20110003346A (en) Process for producing zno single crystal, self-supporting zno single-crystal wafer obtained by the same, self-supporting wafer of mg-containing zno mixed single crystal, and process for producing mg-containing zno mixed single crystal for use in the same
JP2009234824A (en) METHOD FOR MANUFACTURING SELF-SUPPORTING WAFER OF Mg CONTAINING ZnO MIXED SINGLE CRYSTAL AND Mg CONTAINING ZnO MIXED SINGLE CRYSTAL USED FOR IT
Buehler et al. Phase relations, crystal growth and heteroepitaxy in the quaternary system Cd, Sn, In and P
JP2537296B2 (en) &lt;II&gt;-&lt;VI&gt; Intergroup compound semiconductor device manufacturing method
JP3560180B2 (en) Method for producing ZnSe homoepitaxial single crystal film
Freyhardt III–V Semiconductors
JPH0372680A (en) Semiconductor material, photoelectric integrated circuit element, and crystal growth method of material
JP3531205B2 (en) Substrate for epitaxial growth and epitaxial wafer
JP4211897B2 (en) Liquid phase epitaxial growth method
JP3202405B2 (en) Epitaxial growth method
JPH04294527A (en) Liquid phase epitaxial growth method
JPS63256599A (en) Gaalas epitaxial wafer and its production
Wood et al. Developments in large CdTe substrate growth