JPH04223378A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH04223378A
JPH04223378A JP2405947A JP40594790A JPH04223378A JP H04223378 A JPH04223378 A JP H04223378A JP 2405947 A JP2405947 A JP 2405947A JP 40594790 A JP40594790 A JP 40594790A JP H04223378 A JPH04223378 A JP H04223378A
Authority
JP
Japan
Prior art keywords
hole
silicon substrate
electrode
solar cell
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2405947A
Other languages
Japanese (ja)
Inventor
Kunio Kamimura
邦夫 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2405947A priority Critical patent/JPH04223378A/en
Publication of JPH04223378A publication Critical patent/JPH04223378A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable solar cells to be easily connected together by a method wherein both electrodes are provided to one side of the solar cell. CONSTITUTION:A cone-shaped through-hole 11 is provided to a silicon substrate 1 penetrating it through, and a P-N junction 3 is formed on these surfaces. An insulating film 4 is formed on the other side of the silicon substrate 1 around the through-hole 11, and one of electrodes is provided covering the surface of the P-N junction 3 from one side. The other electrode is provided to the other side of the substrate 1 in another part.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、太陽電池と太陽電池の
接続を容易にさせる電極の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode structure that facilitates connection between solar cells.

【0002】0002

【従来の技術】従来の太陽電池は、シリコン基板の受光
面側のごく浅い部分にPN接合があり、表側と裏側に各
々の電極を設けていた。この方式では電極の形成は容易
であるが、他の太陽電池と接続するとき、リード線を互
い違いに接続するので不便であった。そのため片側に両
方の電極を設けたものが考案されている。その製造には
太陽電池の側面を経由して、または、レーザによりシリ
コン基板に開口し表側電極が裏側に回された例もある。 しかしながら表側から裏側へ接続する金属膜を形成する
ことが困難であった。
2. Description of the Related Art Conventional solar cells have a PN junction in a very shallow portion on the light-receiving surface side of a silicon substrate, and electrodes are provided on the front and back sides. This method makes it easy to form electrodes, but it is inconvenient when connecting to other solar cells because the lead wires must be connected alternately. Therefore, a device in which both electrodes are provided on one side has been devised. There are also examples in which the front electrode is turned to the back side through the side surface of the solar cell or by opening an opening in the silicon substrate using a laser. However, it has been difficult to form a metal film that connects from the front side to the back side.

【0003】0003

【発明が解決しようとする課題】前述のように太陽電池
の側面を経由して、または、レーザで開口した穴により
、表側と裏側とを接続する場合、その接続のために金属
膜を形成しなければならない。しかし、太陽電池の側面
や、開口部の内側に金属膜を形成することは、非常に困
難で、太陽電池を回転させながら金属を蒸着し形成した
り、斜め方向から蒸着するようにして行なうため、蒸着
に使用する金属のうちごく一部しか利用できない。また
手間のかかる作業が必要である。これは、太陽電池の側
面あるいは開口部の側面が、太陽電池の表面または裏面
と垂直になっているからである。
[Problem to be Solved by the Invention] As mentioned above, when connecting the front side and the back side through the side surface of a solar cell or through a hole opened with a laser, a metal film is formed for the connection. There must be. However, it is very difficult to form a metal film on the sides of a solar cell or inside the opening, and it is difficult to do so by vapor-depositing metal while rotating the solar cell or by vapor-depositing it from an oblique direction. , only a small fraction of the metals used for vapor deposition are available. Further, it requires laborious work. This is because the side surface of the solar cell or the side surface of the opening is perpendicular to the front or back surface of the solar cell.

【0004】0004

【課題を解決するための手段】本発明においては、シリ
コン基板の一方の面から他方の面に達する貫通孔を設け
るとき、他方の面の幅を次第に広くしこの斜面に電極を
設けるようにした。
[Means for Solving the Problems] In the present invention, when providing a through hole reaching from one surface of a silicon substrate to the other surface, the width of the other surface is gradually increased and electrodes are provided on this slope. .

【0005】[0005]

【作用】本発明は、表側から裏側への貫通孔が斜面にな
っているので、この貫通孔の側面への金属膜の形成が一
度の蒸着によって容易にできる。
[Function] In the present invention, since the through hole from the front side to the back side is sloped, a metal film can be easily formed on the side surface of the through hole by a single vapor deposition.

【0006】[0006]

【実施例】図1は、本発明の一実施例の略断面図である
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic cross-sectional view of one embodiment of the present invention.

【0007】シリコン基板1は、結晶軸が(100)の
厚さが50〜200ミクロンのものを用いる。その一方
の面にPN接合3を形成しその表面に適宜の形状の表面
電極2が形成されている。さらにその表面にカバーガラ
ス6が接着剤7を介して取付けられている。シリコン基
板1の一部に、表側から裏側へ貫通孔11があり、この
孔の周辺にもPN接合3が延長されている。貫通孔11
は裏側の方の幅が次第に広く斜面をなしている。裏側の
貫通孔11の周辺には絶縁膜4が設けられており、表面
電極2は、この貫通孔11の斜面を介して電極5aに接
続されている。絶縁膜4は、シリコン酸化膜、窒化膜、
あるいはポリイミド膜等が使用され、電極5aとシリコ
ン基板1とを電気的に絶縁している。
The silicon substrate 1 used has a crystal axis of (100) and a thickness of 50 to 200 microns. A PN junction 3 is formed on one surface, and a surface electrode 2 of an appropriate shape is formed on the surface. Further, a cover glass 6 is attached to the surface thereof via an adhesive 7. A through hole 11 is provided in a part of the silicon substrate 1 from the front side to the back side, and a PN junction 3 is also extended around this hole. Through hole 11
The back side gradually becomes wider and forms a slope. An insulating film 4 is provided around the through hole 11 on the back side, and the surface electrode 2 is connected to the electrode 5a via the slope of the through hole 11. The insulating film 4 is a silicon oxide film, a nitride film,
Alternatively, a polyimide film or the like is used to electrically insulate the electrode 5a and the silicon substrate 1.

【0008】図2AないしHは本発明の製造の各工程を
示す。まず図2Aに示すように、厚いシリコン基板1を
アルカリ溶液中でエッチングして、厚さが50〜200
ミクロンとなるようにする。
FIGS. 2A to 2H illustrate the manufacturing steps of the present invention. First, as shown in FIG. 2A, a thick silicon substrate 1 is etched in an alkaline solution to a thickness of 50 to 200 mm.
Make it micron.

【0009】次に図2Bに示すように、シリコン基板1
の表面に酸化膜9を形成する。この酸化膜9は、水蒸気
中または酸素中の高温処理によって形成する。
Next, as shown in FIG. 2B, the silicon substrate 1
An oxide film 9 is formed on the surface. This oxide film 9 is formed by high temperature treatment in water vapor or oxygen.

【0010】次に図2Cに示すようにシリコン基板1の
裏面の酸化膜の一部分を取除き窓10を形成する。
Next, as shown in FIG. 2C, a portion of the oxide film on the back surface of the silicon substrate 1 is removed to form a window 10.

【0011】次に図2Dに示すように、弱アルカリ溶液
中でエッチングする。このときシリコン基板1の表面の
酸化膜9はマスクとなり、前の工程で形成された窓10
からのみエッチングされる。このとき、シリコン基板の
結晶方位方向に対しエッチング速度が異なるため、結晶
方位方向が(100)であるときは、エッチングされた
部分に形成される貫通孔11は、シリコン基板1の表面
に対し約70度の角度をなす。
Next, as shown in FIG. 2D, etching is performed in a weak alkaline solution. At this time, the oxide film 9 on the surface of the silicon substrate 1 serves as a mask, and the window 10 formed in the previous step
etched only from At this time, since the etching rate differs depending on the crystal orientation direction of the silicon substrate, when the crystal orientation direction is (100), the through hole 11 formed in the etched portion is approximately Make an angle of 70 degrees.

【0012】次に図2Eに示すように、表面の酸化膜9
を酸性の溶液中でエッチングする。その後、PN接合を
形成するために、N型不純物を拡散する。この拡散によ
って表面および貫通孔11の壁面にPN接合が形成され
る。裏面は酸化膜9によって裏側へ不純物が拡散するこ
とを防止している。
Next, as shown in FIG. 2E, the oxide film 9 on the surface is
etched in an acidic solution. Thereafter, N-type impurities are diffused to form a PN junction. A PN junction is formed on the surface and the wall of the through hole 11 by this diffusion. The oxide film 9 on the back side prevents impurities from diffusing to the back side.

【0013】次に図2Fに示すように、裏面の酸化膜9
を貫通孔11の周辺を除き取除く。これによって裏側の
貫通孔11の周辺には、酸化膜よりなる絶縁膜4が形成
されている。
Next, as shown in FIG. 2F, the oxide film 9 on the back surface is
are removed except for the area around the through hole 11. As a result, an insulating film 4 made of an oxide film is formed around the through hole 11 on the back side.

【0014】次に図2Gに示すように、シリコン基板1
の表面に表面電極2を蒸着する。次に図2Hに示すよう
に、絶縁膜4の表面から表面電極2に接続するように、
貫通孔11の斜面に沿って電極5aを蒸着する。このと
き貫通孔11の斜面は表面に対し約70度の傾斜がある
ため、貫通孔11の側面に電極材料が容易に蒸着される
。このとき、電極が不必要な部分をマスクしておくこと
で、裏面電極5bは電極5aの蒸着と同時に形成できる
Next, as shown in FIG. 2G, the silicon substrate 1
A surface electrode 2 is deposited on the surface of the substrate. Next, as shown in FIG. 2H, from the surface of the insulating film 4 to the surface electrode 2,
An electrode 5a is deposited along the slope of the through hole 11. At this time, since the slope of the through hole 11 is inclined at about 70 degrees with respect to the surface, the electrode material is easily deposited on the side surface of the through hole 11. At this time, by masking portions where electrodes are not needed, the back electrode 5b can be formed at the same time as the electrode 5a is deposited.

【0015】[0015]

【発明の効果】本発明の斜面を有する貫通孔11は、シ
リコン基板1をエッチングするときの異方性を利用する
ことにより、容易に製造が可能であり、大量生産に適し
たものである。さらに表側から裏側への電気的接続がこ
の貫通孔によってできるため、太陽電池セルの外側で電
気的接続をする必要がない。このため、太陽電池の表側
にカバーガラスを接着剤等で接着することにより、太陽
電池セルの電位がカバーガラスの外側に漏洩しなくなる
。宇宙空間で使用されることを考えると、宇宙空間プラ
ズマと太陽電池との電気的相互作用が生じることがない
。さらに、表側の電極を裏面に形成することで、表側の
電極面積を低減することができ、光が入射する面積が増
大する。その結果、太陽電池の電気出力が大きくなる。
Effects of the Invention The through-hole 11 having the slope according to the present invention can be easily manufactured by utilizing the anisotropy when etching the silicon substrate 1, and is suitable for mass production. Furthermore, since an electrical connection from the front side to the back side can be made through the through hole, there is no need to make an electrical connection on the outside of the solar cell. Therefore, by bonding the cover glass to the front side of the solar cell with an adhesive or the like, the potential of the solar cell will not leak to the outside of the cover glass. Considering that it is used in outer space, there is no electrical interaction between space plasma and solar cells. Furthermore, by forming the front electrode on the back surface, the area of the front electrode can be reduced and the area onto which light enters increases. As a result, the electrical output of the solar cell increases.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の略断面図である。FIG. 1 is a schematic cross-sectional view of an embodiment of the invention.

【図2】AないしHは本発明の一実施例の各工程の略断
面図である。
FIGS. 2A to 2H are schematic cross-sectional views of each step in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  シリコン基板 2  表面電極 3  PN接合 4  絶縁膜 5a  電極 5b  裏面電極 1 Silicon substrate 2 Surface electrode 3 PN junction 4 Insulating film 5a Electrode 5b Back electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  シリコン基板の一方の面から他方の面
に達する他方の面側の幅を次第に広くした貫通孔と、前
記の一方の面および貫通孔の表面に設けたPN接合と、
シリコン基板の他方の面における前記の貫通孔の周縁部
に設けた絶縁膜と、前記のPN接合を覆い絶縁膜の表面
に至る一方の電極と、前記の他方の面に設けた他方の電
極とよりなる太陽電池。
1. A through hole that reaches from one surface of a silicon substrate to the other surface and has a width gradually widened on the other surface side, and a PN junction provided on the one surface and the surface of the through hole;
an insulating film provided on the periphery of the through hole on the other surface of the silicon substrate, one electrode covering the PN junction and reaching the surface of the insulating film, and another electrode provided on the other surface of the silicon substrate. More solar cells.
JP2405947A 1990-12-25 1990-12-25 Solar cell Pending JPH04223378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2405947A JPH04223378A (en) 1990-12-25 1990-12-25 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2405947A JPH04223378A (en) 1990-12-25 1990-12-25 Solar cell

Publications (1)

Publication Number Publication Date
JPH04223378A true JPH04223378A (en) 1992-08-13

Family

ID=18515574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2405947A Pending JPH04223378A (en) 1990-12-25 1990-12-25 Solar cell

Country Status (1)

Country Link
JP (1) JPH04223378A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267697A (en) * 1991-09-23 1993-10-15 Hughes Aircraft Co Solar cell with front surface thin-film contacting part
US5725006A (en) * 1995-01-31 1998-03-10 Mitsubishi Denki Kabushiki Kaisha Solar battery cell, a solar battery module, and a solar battery module group
US6020556A (en) * 1998-09-07 2000-02-01 Honda Giken Kogyo Kabushiki Kaisha Solar cell
EP0985233A1 (en) 1997-05-30 2000-03-15 Interuniversitair Micro-Elektronica Centrum Vzw Solar cell and process of manufacturing the same
US6188013B1 (en) 1998-09-07 2001-02-13 Honda Giken Kogyo Kabushiki Kaisha Solar cell
JP2002527910A (en) * 1998-10-12 2002-08-27 パシフィック ソーラー ピー ティ ワイ リミテッド Melt-through contact formation method
DE19706519B4 (en) * 1996-04-26 2004-02-05 Mitsubishi Denki K.K. Process for the production of solar cells
JP2004095669A (en) * 2002-08-29 2004-03-25 Toyota Motor Corp Photoelectric conversion element
JP2004103649A (en) * 2002-09-05 2004-04-02 Toyota Motor Corp Photoelectric conversion element for thermooptical power generation
DE19758589B4 (en) * 1996-04-26 2004-05-13 Mitsubishi Denki K.K. Production of solar cells
EP1715529A2 (en) * 2005-04-19 2006-10-25 Emcore Corporation Solar cell with feedthrough via
JP2008034609A (en) * 2006-07-28 2008-02-14 Kyocera Corp Solar battery element, solar battery module using same, and manufacturing methods of both
EP1953828A1 (en) * 2007-02-02 2008-08-06 Emcore Corporation Inverted metamorphic solar cell with via for backside contacts
JP2009088406A (en) * 2007-10-02 2009-04-23 Sanyo Electric Co Ltd Solar battery and its production process
DE102009031151A1 (en) 2008-10-31 2010-05-12 Bosch Solar Energy Ag Solar cell and process for its production
US8772067B2 (en) 2011-04-15 2014-07-08 Panasonic Corporation Silicon substrate having textured surface, solar cell having same, and method for producing same
US8916410B2 (en) 2011-05-27 2014-12-23 Csi Cells Co., Ltd Methods of manufacturing light to current converter devices
US9153713B2 (en) 2011-04-02 2015-10-06 Csi Cells Co., Ltd Solar cell modules and methods of manufacturing the same
US9490375B2 (en) 2011-04-04 2016-11-08 Mitsubishi Electric Corporation Solar cell and method for manufacturing the same, and solar cell module
JP2018082153A (en) * 2016-09-14 2018-05-24 ザ・ボーイング・カンパニーThe Boeing Company Nano-metal connection for solar cell array
US11398575B2 (en) * 2017-04-07 2022-07-26 Microlink Devices, Inc. Back-contact thin film semiconductor device structures and methods for their production

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267697A (en) * 1991-09-23 1993-10-15 Hughes Aircraft Co Solar cell with front surface thin-film contacting part
US5725006A (en) * 1995-01-31 1998-03-10 Mitsubishi Denki Kabushiki Kaisha Solar battery cell, a solar battery module, and a solar battery module group
DE19758589B4 (en) * 1996-04-26 2004-05-13 Mitsubishi Denki K.K. Production of solar cells
DE19706519B4 (en) * 1996-04-26 2004-02-05 Mitsubishi Denki K.K. Process for the production of solar cells
EP0985233A1 (en) 1997-05-30 2000-03-15 Interuniversitair Micro-Elektronica Centrum Vzw Solar cell and process of manufacturing the same
US6188013B1 (en) 1998-09-07 2001-02-13 Honda Giken Kogyo Kabushiki Kaisha Solar cell
US6020556A (en) * 1998-09-07 2000-02-01 Honda Giken Kogyo Kabushiki Kaisha Solar cell
JP2002527910A (en) * 1998-10-12 2002-08-27 パシフィック ソーラー ピー ティ ワイ リミテッド Melt-through contact formation method
JP2004095669A (en) * 2002-08-29 2004-03-25 Toyota Motor Corp Photoelectric conversion element
JP2004103649A (en) * 2002-09-05 2004-04-02 Toyota Motor Corp Photoelectric conversion element for thermooptical power generation
EP1715529A3 (en) * 2005-04-19 2008-10-29 Emcore Corporation Solar cell with feedthrough via
EP1715529A2 (en) * 2005-04-19 2006-10-25 Emcore Corporation Solar cell with feedthrough via
JP2008034609A (en) * 2006-07-28 2008-02-14 Kyocera Corp Solar battery element, solar battery module using same, and manufacturing methods of both
EP1953828A1 (en) * 2007-02-02 2008-08-06 Emcore Corporation Inverted metamorphic solar cell with via for backside contacts
JP2008193089A (en) * 2007-02-02 2008-08-21 Emcore Corp INVERSION MODIFIED SOLAR CELL CONSTRUCTION HAVING via FOR BACKSIDE CONTACT
JP2009088406A (en) * 2007-10-02 2009-04-23 Sanyo Electric Co Ltd Solar battery and its production process
US8258397B2 (en) 2007-10-02 2012-09-04 Sanyo Electric Co., Ltd. Solar cell and method of manufacturing the same
DE102009031151A1 (en) 2008-10-31 2010-05-12 Bosch Solar Energy Ag Solar cell and process for its production
US9153713B2 (en) 2011-04-02 2015-10-06 Csi Cells Co., Ltd Solar cell modules and methods of manufacturing the same
US9490375B2 (en) 2011-04-04 2016-11-08 Mitsubishi Electric Corporation Solar cell and method for manufacturing the same, and solar cell module
US8772067B2 (en) 2011-04-15 2014-07-08 Panasonic Corporation Silicon substrate having textured surface, solar cell having same, and method for producing same
US8916410B2 (en) 2011-05-27 2014-12-23 Csi Cells Co., Ltd Methods of manufacturing light to current converter devices
US9209342B2 (en) 2011-05-27 2015-12-08 Csi Cells Co., Ltd Methods of manufacturing light to current converter devices
US9281435B2 (en) 2011-05-27 2016-03-08 Csi Cells Co., Ltd Light to current converter devices and methods of manufacturing the same
JP2018082153A (en) * 2016-09-14 2018-05-24 ザ・ボーイング・カンパニーThe Boeing Company Nano-metal connection for solar cell array
US11398575B2 (en) * 2017-04-07 2022-07-26 Microlink Devices, Inc. Back-contact thin film semiconductor device structures and methods for their production

Similar Documents

Publication Publication Date Title
JPH04223378A (en) Solar cell
US6518596B1 (en) Formation of contacts on thin films
JP2002100789A (en) Manufacturing method for solar battery
JP2645953B2 (en) Solar cell manufacturing method
JPH05235387A (en) Manufacture of solar cell
JP3238945B2 (en) Solar cell and method of manufacturing the same
JPH0456351U (en)
JPS63150954A (en) Bridge type semiconductor device
JP3103737B2 (en) Solar cell element
JPH02237166A (en) Semiconductor pressure sensor
JPH0945945A (en) Solar cell element and fabrication thereof
JPS59106153A (en) Manufacture of silicon transistor
JP2555300Y2 (en) Diode for solar cell device
JPH0518470B2 (en)
JPH079391Y2 (en) Semiconductor light receiving element
JP2000332269A (en) Solar battery and manufacture thereof
JPH06222040A (en) Fabrication of solid electrolyte oxygen concentration sensor
JPS5832477A (en) Photovoltaic element module
JPS5860569A (en) Semiconductor device
JPH027578A (en) Manufacture of thin-film type photoelectric converting element
JPS61168224A (en) Formation of metallic wiring layer
JPS59222973A (en) Semiconductor optical coupling device
JPH08316255A (en) Pressure contact flat-type semiconductor device and its manufacture
JPS61193468A (en) Manufacture of semiconductor device
JPH01241871A (en) Infrared ray detector and manufacture thereof