JP2000332269A - Solar battery and manufacture thereof - Google Patents

Solar battery and manufacture thereof

Info

Publication number
JP2000332269A
JP2000332269A JP11139097A JP13909799A JP2000332269A JP 2000332269 A JP2000332269 A JP 2000332269A JP 11139097 A JP11139097 A JP 11139097A JP 13909799 A JP13909799 A JP 13909799A JP 2000332269 A JP2000332269 A JP 2000332269A
Authority
JP
Japan
Prior art keywords
solar cell
divided
solder
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11139097A
Other languages
Japanese (ja)
Other versions
JP3906385B2 (en
Inventor
Katsuya Yamashita
勝也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP13909799A priority Critical patent/JP3906385B2/en
Publication of JP2000332269A publication Critical patent/JP2000332269A/en
Application granted granted Critical
Publication of JP3906385B2 publication Critical patent/JP3906385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To establish reliable connections between leads and back side electrodes of a plurality of solar batteries through soldering, when the plurality of solar batteries are connected to one another by the leads, and to prevent damages during the laminating step of adhering the solar batteries to a glass substrate or the like. SOLUTION: A solar battery 1 comprises a semiconductor substrate having a P-N junction, electrodes on the light-receiving surface side of the semiconductor substrate, and a back side electrode pattern 8 formed on the back of the semiconductor substrate. The pattern 8 is formed of three divided electrodes 10, 11 and 12 by printing and baking a silver paste. The electrodes 10, 11 and 12 are divided perpendicularly with respect to a direction in which leads are connected. Therefore, when the substrate is drawn up from a solder vessel during its dipping into the solder vessel, the tip of each of the three electrodes 10, 11 and 12 which points in the direction opposite to the substrate raising direction, serves as a solder accumulated layer forming portion, thereby allowing the solder to accumulate thereon in a proper amount. C-shaped or curved slender wires make connections between the electrodes 10 and 11 and between the electrodes 11 and 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池の電極及
び製造方法に関し、より詳しくは、複数の太陽電池をリ
ード線によって接続する際のリード線との接続を確実に
することができる裏面電極の構成及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell electrode and a method of manufacturing the same, and more particularly, to a back electrode capable of ensuring connection with a lead when a plurality of solar cells are connected by a lead. And a method of manufacturing the same.

【0002】[0002]

【従来の技術】図6は、従来の一般的な太陽電池1の断
面図で、P型Si(シリコン)基板2の表面に活性不純
物を浅く拡散してN+の拡散層3とし表面近くにPN接
合を形成し、その上に太陽光の反射を防ぐためSi
2,TiO2,SiN等からなる反射防止膜4を形成す
る。太陽電池1の表裏両面に複数個の太陽電池素子を接
続するための電極部5,8をスクリーン印刷法,蒸着
法,スパッタ法等を用いて形成する。このうち配線を接
続するための裏面電極8は、図7,図8に示すように、
リード線22等の配線を接続しやすいよう、通常接続の
方向Bに長い長方形の形状をしており、図8に示すよう
に複数の太陽電池がリード線22によって、太陽電池1
の裏面と隣接する太陽電池1′の受光面とが接続され
る。この際、リード線22は、受光面(表面)電極5及
び裏面電極8にはんだ付けして接続されるため、各太陽
電池1,1′の表裏両電極に予めはんだ層6,9を形成
しておく。このようなはんだ層6,9を表裏両電極5,
8上に形成する場合、図9に示すように、はんだディッ
プ法により、表裏電極5,8が形成された太陽電池1を
はんだ層21に浸漬し、引き上げて行う。
2. Description of the Related Art FIG. 6 is a sectional view of a conventional general solar cell 1 in which active impurities are diffused shallowly into the surface of a P-type Si (silicon) substrate 2 to form an N + diffusion layer 3 and a PN near the surface. Si to form a junction and prevent sunlight reflection on it
An anti-reflection film 4 made of O 2 , TiO 2 , SiN or the like is formed. Electrode portions 5 and 8 for connecting a plurality of solar cell elements are formed on both front and back surfaces of the solar cell 1 by using a screen printing method, a vapor deposition method, a sputtering method, or the like. Among them, the back electrode 8 for connecting the wiring is, as shown in FIGS.
In order to easily connect the wiring such as the lead wire 22, it has a rectangular shape that is long in the normal connection direction B. As shown in FIG.
Is connected to the light receiving surface of the adjacent solar cell 1 '. At this time, since the lead wire 22 is connected to the light receiving surface (front surface) electrode 5 and the back surface electrode 8 by soldering, the solder layers 6 and 9 are formed in advance on both the front and back electrodes of each solar cell 1, 1 '. Keep it. Such solder layers 6, 9 are applied to the front and back electrodes 5,
As shown in FIG. 9, the solar cell 1 on which the front and back electrodes 5 and 8 are formed is immersed in the solder layer 21 by a solder dipping method, and is pulled up, as shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】ところが従来の太陽電
池素子では、裏面側電極上に形成されたはんだ層の厚み
が薄かったり、電極上ではんだ層がうまく形成されなか
ったり、部分的に、はんだ層が形成されなかった場合が
あり、太陽電池素子を複数接続する際のリード線と裏面
側電極部との接着が不十分であった。また、はんだ溜ま
りの量が多く厚くなりすぎることがあり、太陽電池素子
をガラス基板などに接着するラミネート工程で、太陽電
池に破損が生じるという不具合があった。
However, in the conventional solar cell element, the thickness of the solder layer formed on the back side electrode is small, the solder layer is not formed well on the electrode, or the solder layer is partially formed. In some cases, a layer was not formed, and the adhesion between the lead wire and the back electrode portion when connecting a plurality of solar cell elements was insufficient. Further, the amount of the solder pool may be too large and the thickness may be too large, and there is a problem that the solar cell is damaged in a laminating step of bonding the solar cell element to a glass substrate or the like.

【0004】本発明は、上記課題を解決するためになさ
れたものであり、裏面電極部と太陽電池間を接続する配
線との接続を良好にすることのできる裏面電極を備えた
太陽電池の供給を目的とする。また本発明は、太陽電池
とガラス基板等とのラミネート工程で、破損が生じない
太陽電池の供給を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and is intended to provide a solar cell having a back electrode capable of improving a connection between a back electrode portion and a wiring connecting the solar cell. With the goal. Another object of the present invention is to provide a solar cell that is not damaged in a laminating step of a solar cell and a glass substrate or the like.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1の発明は、PN接合を有する半導体基板
と、前記半導体基板の裏面側に形成された配線を接続す
るための裏面電極とを備えた太陽電池において、前記裏
面電極ははんだ溜まりを形成するために複数に分割され
ていることを特徴とする。請求項2の発明は、請求項1
記載の太陽電池において、前記裏面電極は、配線の接続
方向に対して平行もしくは垂直に分割されていることを
特徴とする。請求項3の発明は、請求項1記載の太陽電
池において、前記裏面電極は、配線の接続方向に対して
斜めに分割されていることを特徴とする。
In order to achieve the above-mentioned object, a first aspect of the present invention is to provide a semiconductor substrate having a PN junction and a back surface for connecting a wiring formed on the back side of the semiconductor substrate. And a back electrode is divided into a plurality of parts to form a solder pool. The invention of Claim 2 is Claim 1
In the solar cell described above, the back electrode is divided parallel or perpendicular to a wiring connection direction. According to a third aspect of the present invention, in the solar cell according to the first aspect, the back electrode is divided obliquely with respect to a wiring connection direction.

【0006】請求項4の発明は、請求項1乃至3のいず
れかに記載の太陽電池において、前記裏面電極は、任意
の大きさをもった長方形,正方形などの多角形,円もし
くは楕円等の形状により形成されていることを特徴とす
る。請求項5の発明は、請求項1乃至4のいずれかに記
載の太陽電池において、前記裏面電極の分割された部分
間の隙間は、0.01mm以上であることを特徴とす
る。請求項6の発明は、請求項1乃至5のいずれかに記
載の太陽電池において、前記裏面電極の分割された部分
は、細線で接続されていることを特徴とする。請求項7
の発明は、請求項6記載の太陽電池において、前記細線
は、コ字状もしくは曲線状であることを特徴とする。請
求項8の発明は、請求項6または7記載の太陽電池にお
いて、前記細線は、幅0.01mm以上であることを特
徴とする。請求項9の発明は、PN接合を有する半導体
基板と、該半導体基板の受光面電極と、前記半導体基板
の裏面側に形成された裏面電極とを備えており、前記裏
面電極ははんだ溜まりを形成するために複数に分割され
ている太陽電池をはんだディップする製造方法におい
て、分割された前記裏面電極の先端部を下方向または斜
め下方向にして、はんだ層から太陽電池を引き上げるこ
とを特徴とする。
According to a fourth aspect of the present invention, in the solar cell according to any one of the first to third aspects, the back electrode has a polygonal shape such as a rectangle or a square having an arbitrary size, a circle or an ellipse or the like. It is characterized by being formed by a shape. According to a fifth aspect of the present invention, in the solar cell according to any one of the first to fourth aspects, a gap between the divided portions of the back electrode is 0.01 mm or more. According to a sixth aspect of the present invention, in the solar cell according to any one of the first to fifth aspects, the divided portion of the back electrode is connected by a thin wire. Claim 7
According to the invention of the sixth aspect, in the solar cell according to the sixth aspect, the thin line has a U shape or a curved shape. The invention according to claim 8 is the solar cell according to claim 6 or 7, wherein the fine line has a width of 0.01 mm or more. The invention according to claim 9 includes a semiconductor substrate having a PN junction, a light receiving surface electrode of the semiconductor substrate, and a back surface electrode formed on the back surface side of the semiconductor substrate, wherein the back surface electrode forms a solder pool. In a manufacturing method of solder-dipping a plurality of divided solar cells, the tip of the divided back electrode is directed downward or obliquely downward, and the solar cell is pulled up from the solder layer. .

【0007】[0007]

【発明の実施の形態】図面によって本発明の実施例につ
いて詳細に説明する。なお、以下の図及び説明におい
て、従来例と同一の構成要素には同一の符号を付し、説
明を省略することがある。図1は、本発明の一実施例を
説明するための図であって、太陽電池1の裏面図であ
る。図1に示す太陽電池1の断面図は従来例で示した図
6と同様であるので図6を用いて説明する。2はP型S
i(シリコン)基板、3は活性不純物を拡散して形成さ
れたN+の拡散層、4は太陽光の反射を防ぐためSiO
2,TiO2,SiN等からなる反射防止膜、5は太陽光
を受光する銀ペーストからなるマイナス側の受光面電
極、7はAl(アルミニウム)ペーストからなるプラス
側電極、8は配線を接続するための裏面電極で銀ペース
トを印刷焼成して形成する。裏面電極8は、分割電極1
0,11,12より構成される。6及び9は直列抵抗を
減少させるとともに、複数の太陽電池素子1を接続する
際に必要とするはんだ層である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail with reference to the drawings. In the following drawings and description, the same components as those of the conventional example are denoted by the same reference numerals, and the description may be omitted. FIG. 1 is a diagram for explaining one embodiment of the present invention, and is a rear view of a solar cell 1. The cross-sectional view of the solar cell 1 shown in FIG. 1 is the same as FIG. 6 shown in the conventional example, and will be described with reference to FIG. 2 is P type S
i (silicon) substrate, 3 is an N + diffusion layer formed by diffusing active impurities, and 4 is SiO to prevent reflection of sunlight.
2 , an anti-reflection film made of TiO 2 , SiN, etc., 5 is a negative light receiving surface electrode made of silver paste for receiving sunlight, 7 is a positive electrode made of Al (aluminum) paste, and 8 is a wiring connection. Is formed by printing and baking a silver paste on the back electrode for the purpose. Back electrode 8 is divided electrode 1
It is composed of 0, 11, and 12. Reference numerals 6 and 9 denote solder layers required for reducing the series resistance and connecting a plurality of solar cell elements 1.

【0008】図2は、裏面電極8の一実施例を拡大して
示す分割電極パターンを示す図である。この電極パター
ンは、リード線の接続方向に対して垂直に3つに分かれ
た分割電極10,11,12により形成されている。
FIG. 2 is a diagram showing a divided electrode pattern showing an embodiment of the back electrode 8 in an enlarged manner. This electrode pattern is formed by three divided electrodes 10, 11, and 12 which are perpendicular to the connection direction of the lead wires.

【0009】図5は裏面電極8にはんだ層を形成するは
んだディップ工程を示す図である。図5のように、はん
だディップ時のはんだ層21からの引き上げ時、引き上
げ方向Aとは逆の方向の先端部13,14,15がはん
だ溜まり形成部分となり、はんだが溜まる。裏面電極8
が分割されていない従来例の場合、リード線22と接着
できるはんだ溜まり形成部分13,14,15が1個所
でしか形成できず、その他の部分ははんだが薄いためリ
ード線22等との接着が不安定になるが、本実施例によ
ればはんだ溜まり形成部分が3個所あるため、多数の点
でリード線22と接着でき、十分な接着強度が得られ
る。
FIG. 5 is a view showing a solder dipping step for forming a solder layer on the back surface electrode 8. As shown in FIG. 5, at the time of lifting from the solder layer 21 at the time of solder dipping, the tip portions 13, 14, and 15 in the direction opposite to the lifting direction A become solder pool forming portions, and the solder is stored. Back electrode 8
In the case of the conventional example in which is not divided, the solder pool forming portions 13, 14, and 15 that can be bonded to the lead wire 22 can be formed only in one place, and the other portions are thin solder, so that the bonding with the lead wire 22 and the like cannot be performed. Although it becomes unstable, according to the present embodiment, since there are three portions where the solder pool is formed, the solder pool can be bonded to the lead wire 22 at many points, and sufficient bonding strength can be obtained.

【0010】また図2のように、この分割電極8の引き
上げ方向Aとは逆の方向の先端部13,14,15を、
はんだ溜まり形成部分として先端を細くした形状にする
ことによって、はんだ層21からの引き上げ速度を変化
させることなく、はんだの溜まる量を適当な量に制御す
ることができる。この先端部を太くするとはんだ溜まり
の量が多くなり、太陽電池1をガラス基板などに接着す
るラミネート工程で、太陽電池に破損などを生じる可能
性がでてくる。この実施例では、はんだ溜まり形成部分
を小さくさせるために電極先端部を三角形状に細くして
おり、十分な強度でリード線と接着でき、しかも、太陽
電池に破損などを生じないはんだ量がはんだ溜まり形成
部分に溜まる。本実施例では分割電極部を3つに分割し
ているが、2とするかまたは4以上に分割してもよく、
リード線22の特性に適した分割数とすればよい。
Further, as shown in FIG. 2, the leading ends 13, 14, 15 in the direction opposite to the pulling direction A of the divided electrode 8 are
By making the tip having a thinner shape as the solder pool forming portion, the amount of the pooled solder can be controlled to an appropriate amount without changing the pulling speed from the solder layer 21. When the tip is thickened, the amount of solder pool increases, and the solar cell 1 may be damaged in a laminating step of bonding the solar cell 1 to a glass substrate or the like. In this embodiment, the tip of the electrode is thinned in a triangular shape in order to reduce the portion where the solder pool is formed. It accumulates in the accumulation forming part. In this embodiment, the divided electrode portion is divided into three, but may be divided into two or four or more.
What is necessary is just to set the division number suitable for the characteristic of the lead wire 22.

【0011】また、図3は裏面電極8の他の電極パター
ンの例を示し、図3(A)のように、この裏面電極8は
分割電極10,11がリード線の接続方向に対して平行
に分割されていても上述の効果がある。また図3(B)
のように、この裏面電極8の分割電極10,11,12
がリード線の接続方向に対して斜めに分割されていると
上述の効果の他に、リード線の接続方向に対して接続点
が斜めに形成されるため、接着がさらに安定するという
効果がある。図4は裏面電極8の分割電極10,11,
12の形状の例を示し、この分割電極8の形状は、例え
ば、図4のような多角形、もしくは円、楕円あるいはそ
れらの組み合わせでもよい。先端部13,14,15の
形状を選ぶことにより、はんだの溜まる量を適当な量に
制御することができる。この分割電極10,11,12
間の距離は、図2の実施例では2mmとした。分割電極
間の距離を短くすると、分割電極10と11、もしくは
分割電極11と12がはんだによってつながり、はんだ
溜まりを形成できない可能性がある。この分割電極間の
距離は最低0.01mmは必要である。この裏面側分割
電極10,11,12は図2のように細線16,17で
電気的に接続されていると、複数の太陽電池素子間をリ
ード線22で接続するとき、図2中の分割電極10,1
1,12のいずれかがリード線と接続できなかった場
合、この細線16,17を設けておくことで電気的分離
は免れることができる。
FIG. 3 shows an example of another electrode pattern of the back surface electrode 8. As shown in FIG. 3A, the back surface electrode 8 has divided electrodes 10 and 11 parallel to the connection direction of the lead wires. The above-described effect can be obtained even if the image is divided into two. FIG. 3 (B)
As shown in FIG.
Is divided obliquely to the connection direction of the lead wires, in addition to the above-described effects, the connection points are formed obliquely to the connection direction of the lead wires, so that there is an effect that the bonding is further stabilized. . FIG. 4 shows the split electrodes 10, 11,
12 shows an example of the shape, and the shape of the divided electrode 8 may be, for example, a polygon as shown in FIG. 4, a circle, an ellipse, or a combination thereof. By selecting the shapes of the tips 13, 14, and 15, the amount of accumulated solder can be controlled to an appropriate amount. The split electrodes 10, 11, 12
The distance between them was 2 mm in the embodiment of FIG. If the distance between the divided electrodes is shortened, the divided electrodes 10 and 11 or the divided electrodes 11 and 12 may be connected by solder, and a solder pool may not be formed. The distance between the divided electrodes must be at least 0.01 mm. When the back side split electrodes 10, 11, and 12 are electrically connected by the thin wires 16 and 17 as shown in FIG. 2, when the plurality of solar cell elements are connected by the lead wire 22, the split in FIG. Electrodes 10, 1
If any one of the wires 1 and 12 cannot be connected to the lead wire, by providing the thin wires 16 and 17, electrical isolation can be avoided.

【0012】図2に示すように、細線16,17は分割
電極10,11,12を最短距離で結ぶのではなく、コ
字状あるいは曲線状であるとさらによい。図2中の分割
電極10,11,12の真下に直線で細線を形成する
と、はんだディップ時のはんだ層からの引き上げで、上
部電極からのはんだが下部の電極部に流れ出し、一番下
の電極部にしか、はんだ溜まりを形成することができな
い。また、0.01mm以上の幅があると、電気的な抵
抗が小さくなり、いずれかの分割電極がリード線と接続
できなかった場合でも抵抗の増大を抑えることができ
る。
As shown in FIG. 2, it is more preferable that the fine wires 16, 17 do not connect the divided electrodes 10, 11, 12 at the shortest distance but have a U-shaped or curved shape. When a thin line is formed in a straight line directly below the divided electrodes 10, 11, and 12 in FIG. 2, the solder from the upper electrode flows out to the lower electrode portion by pulling up from the solder layer at the time of solder dipping, and the lowermost electrode is formed. The solder pool can be formed only in the portion. Further, when the width is 0.01 mm or more, the electric resistance is reduced, and even if any of the divided electrodes cannot be connected to the lead wire, the increase in the resistance can be suppressed.

【0013】次に、はんだディップの方法について述べ
る。シリコン基板2に図2のように、配線の接続方向に
対して垂直に分割された先端部を細くした5角形の裏面
分割電極10,11,12をスクリーン印刷法で印刷
し、400℃〜700℃程度の温度で銀ペーストの焼成
を行う。次に、水溶性フラックス等にこの太陽電池1を
浸漬させ、150℃程度の温度で乾燥させ、つづいて、
はんだ層21に浸漬させる。このときのはんだ層の温度
は200℃前後である。
Next, a method of solder dip will be described. As shown in FIG. 2, on the silicon substrate 2, pentagonal backside divided electrodes 10, 11, and 12 each having a narrowed end and divided at right angles to the connection direction of the wiring are printed by a screen printing method. The silver paste is fired at a temperature of about ° C. Next, the solar cell 1 is immersed in a water-soluble flux or the like, dried at a temperature of about 150 ° C.,
It is immersed in the solder layer 21. The temperature of the solder layer at this time is around 200 ° C.

【0014】図5のように、はんだ層21に浸漬させた
太陽電池1を、分割電極先端部13,14,15を下方
にして、10cm/min程度の速度で引き上げる。こ
のとき図3に示すように電極上部から引き上げ方向とは
反対に重力方向に余分なはんだは流れ出す。しかし、分
割電極下部では、はんだは流れ落ちるすべがなく、溜ま
る。したがって、裏面電極8を複数に分割することによ
ってその数の分、はんだ層21からの引き上げ方向とは
逆方向にはんだ溜まりを図2中、分割電極先端部13,
14,15の各部分に、形成することができる。このと
き、分割電極先端部13,14,15を下方にして引き
上げるのであるが、分割電極先端部を必ずしも真下にす
る必要はなく、斜め下の方向にして引き上げ、はんだ溜
まりの位置及び量を制御することができる。
As shown in FIG. 5, the solar cell 1 immersed in the solder layer 21 is pulled up at a speed of about 10 cm / min with the divided electrode tips 13, 14, 15 downward. At this time, as shown in FIG. 3, excess solder flows from the upper part of the electrode in the direction of gravity opposite to the pulling direction. However, at the lower part of the split electrode, there is no way for the solder to flow down and the solder collects. Therefore, when the back electrode 8 is divided into a plurality of parts, the solder pool is formed in a direction opposite to the pulling-up direction from the solder layer 21 by the number of the divided parts, as shown in FIG.
14, 15 can be formed. At this time, the divided electrode tips 13, 14, 15 are lifted downward, but it is not always necessary to make the divided electrode tips directly downward, and the divided electrode tips are pulled obliquely downward to control the position and amount of the solder pool. can do.

【0015】本実施例では角形のシリコン基板の図を用
いて説明したが、形状はこれに限ったものではなく、例
えば丸形,扇形,4隅の欠けた角形等どんな形状でもよ
いし、基板もシリコンに限られたものではなく、GaA
s等の化合物半導体基板等太陽電池に用いられる基板で
あればよい。
Although the present embodiment has been described with reference to the figures of a square silicon substrate, the shape is not limited to this. For example, the silicon substrate may have any shape such as a round shape, a sector shape, a square shape with four missing corners, and the like. Is not limited to silicon.
Substrates used for solar cells, such as a compound semiconductor substrate such as s, may be used.

【0016】[0016]

【発明の効果】以上のように本発明によれば、太陽電池
の裏面電極を複数に分割することで、複数のはんだ溜ま
りを形成することができ、十分な強度でリード線を接続
することができる。また、分割電極先端部の形状を選ぶ
ことにより、はんだ量を適切な量に制御することができ
る。即ち、分割電極先端部を細くすれば、はんだ溜まり
を少なくすることができる。このようにはんだ溜まりを
形成することによって太陽電池間を接続するリード線等
の配線との接続を良好にすることができる。また、太陽
電池をガラス基板上にラミネートする工程中に太陽電池
が破損することを防ぐことができる。よって、太陽電池
素子とリード線の接続も十分に確保でき、信頼性の高い
太陽電池モジュールを作成することができる。
As described above, according to the present invention, a plurality of solder pools can be formed by dividing the back electrode of the solar cell into a plurality of parts, and the lead wires can be connected with sufficient strength. it can. In addition, the amount of solder can be controlled to an appropriate amount by selecting the shape of the divided electrode tip. That is, if the tip of the divided electrode is made thinner, the solder pool can be reduced. By forming the solder pool in this way, it is possible to improve the connection with the wiring such as the lead wire connecting the solar cells. Further, it is possible to prevent the solar cell from being damaged during the step of laminating the solar cell on the glass substrate. Therefore, the connection between the solar cell element and the lead wire can be sufficiently ensured, and a highly reliable solar cell module can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す太陽電池裏面図であ
る。
FIG. 1 is a back view of a solar cell showing one embodiment of the present invention.

【図2】本発明の一実施例を示す裏面電極を拡大して示
す分割電極パターンである。
FIG. 2 is a divided electrode pattern showing a back electrode according to an embodiment of the present invention in an enlarged manner.

【図3】本発明の他の実施例を示す裏面分割電極パター
ンである。
FIG. 3 is a backside divided electrode pattern showing another embodiment of the present invention.

【図4】本発明の他の実施例を示す裏面分割電極パター
ンである。
FIG. 4 is a backside divided electrode pattern showing another embodiment of the present invention.

【図5】本発明の一実施例を示すはんだディップ工程を
示す略図である。
FIG. 5 is a schematic view showing a solder dip process showing one embodiment of the present invention.

【図6】従来の太陽電池の断面図である。FIG. 6 is a cross-sectional view of a conventional solar cell.

【図7】従来の太陽電池の裏面図である。FIG. 7 is a back view of a conventional solar cell.

【図8】従来の太陽電池複数が、リード線により太陽電
池の裏面と隣接する太陽電池の採光面とが接続された状
態を示す裏面図である。
FIG. 8 is a back view showing a state in which a plurality of conventional solar cells are connected by a lead wire to the back surface of the solar cell and a lighting surface of an adjacent solar cell.

【図9】従来のはんだディップ工程を示す略図である。FIG. 9 is a schematic view showing a conventional solder dip process.

【符号の説明】[Explanation of symbols]

1…太陽電池、2…P型シリコン基板、3…N+拡散
層、4…反射防止膜、5…受光面側電極、6,9,21
…はんだ層、7…裏面側Al電極、8…裏面側銀電極、
10,11,12…分割電極、13,14,15…はん
だ溜まり形成部分、16,17…分割電極間を電気的に
接続する細線、22…リード線、A…引き上げ方向、B
…リード線接続方向。
DESCRIPTION OF SYMBOLS 1 ... Solar cell, 2 ... P-type silicon substrate, 3 ... N + diffusion layer, 4 ... Antireflection film, 5 ... Light receiving surface side electrode, 6, 9, 21
... Solder layer, 7 ... Back side Al electrode, 8 ... Back side silver electrode,
10, 11, 12: divided electrode, 13, 14, 15: solder pool forming portion, 16, 17: fine wire for electrically connecting between divided electrodes, 22: lead wire, A: pulling direction, B
… Lead wire connection direction.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 PN接合を有する半導体基板と、前記半
導体基板の裏面側に形成された配線を接続するための裏
面電極とを備えた太陽電池において、前記裏面電極は複
数に分割されてはんだ溜まりが形成されていることを特
徴とする太陽電池。
1. A solar cell comprising a semiconductor substrate having a PN junction and a back electrode for connecting wiring formed on the back side of the semiconductor substrate, wherein the back electrode is divided into a plurality of parts and solder pools are formed. A solar cell, characterized in that is formed.
【請求項2】 前記裏面電極は、配線の接続方向に対し
て平行もしくは垂直に分割されていることを特徴とする
請求項1記載の太陽電池。
2. The solar cell according to claim 1, wherein the back electrode is divided in parallel or perpendicular to a connection direction of a wiring.
【請求項3】 前記裏面電極は、配線の接続方向に対し
て斜めに分割されていることを特徴とする請求項1記載
の太陽電池。
3. The solar cell according to claim 1, wherein the back electrode is divided obliquely with respect to a wiring connection direction.
【請求項4】 前記裏面電極は、任意の大きさをもった
長方形,正方形などの多角形,円もしくは楕円等の形状
により形成されていることを特徴とする請求項1乃至3
のいずれかに記載の太陽電池。
4. The back electrode is formed in a polygonal shape such as a rectangle or a square having an arbitrary size, a shape such as a circle or an ellipse, and the like.
The solar cell according to any one of the above.
【請求項5】 前記裏面電極の分割された部分間の隙間
は、0.01mm以上であることを特徴とする請求項1
乃至4のいずれかに記載の太陽電池。
5. The gap between the divided portions of the back electrode is 0.01 mm or more.
A solar cell according to any one of claims 1 to 4.
【請求項6】 前記裏面電極の分割された部分は、細線
で接続されていることを特徴とする請求項1乃至5のい
ずれかに記載の太陽電池。
6. The solar cell according to claim 1, wherein the divided portions of the back electrode are connected by a thin wire.
【請求項7】 前記細線は、コ字状もしくは曲線状であ
ることを特徴とする請求項6記載の太陽電池。
7. The solar cell according to claim 6, wherein the thin line has a U shape or a curved shape.
【請求項8】 前記細線は、幅0.01mm以上である
ことを特徴とする請求項6または7記載の太陽電池。
8. The solar cell according to claim 6, wherein the thin line has a width of 0.01 mm or more.
【請求項9】 PN接合を有する半導体基板と、該半導
体基板の受光面電極と、前記半導体基板の裏面側に形成
された裏面電極とを備えており、前記裏面電極ははんだ
溜まりを形成するために複数に分割されている太陽電池
をはんだディップする製造方法において、分割された前
記裏面電極の先端部を下方向または斜め下方向にして、
はんだ層から太陽電池を引き上げる太陽電池の製造方
法。
9. A semiconductor substrate having a PN junction, a light receiving surface electrode of the semiconductor substrate, and a back surface electrode formed on a back surface side of the semiconductor substrate, wherein the back surface electrode forms a solder pool. In the manufacturing method of soldering a solar cell that has been divided into a plurality, the tip of the divided back electrode is directed downward or obliquely downward,
A method for manufacturing a solar cell in which the solar cell is pulled up from the solder layer.
JP13909799A 1999-05-19 1999-05-19 Solar cell Expired - Fee Related JP3906385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13909799A JP3906385B2 (en) 1999-05-19 1999-05-19 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13909799A JP3906385B2 (en) 1999-05-19 1999-05-19 Solar cell

Publications (2)

Publication Number Publication Date
JP2000332269A true JP2000332269A (en) 2000-11-30
JP3906385B2 JP3906385B2 (en) 2007-04-18

Family

ID=15237430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13909799A Expired - Fee Related JP3906385B2 (en) 1999-05-19 1999-05-19 Solar cell

Country Status (1)

Country Link
JP (1) JP3906385B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224289A (en) * 2002-01-28 2003-08-08 Sharp Corp Solar cell, method for connecting solar cell, and solar cell module
JP2007214204A (en) * 2006-02-07 2007-08-23 Sharp Corp Solar cell, solar cell string, and solar cell module
JP2007242953A (en) * 2006-03-09 2007-09-20 Sharp Corp Solar cell, solar cell string, and solar cell module

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157176A (en) * 1982-03-15 1983-09-19 Hitachi Ltd Solar battery element
JPS61138256A (en) * 1984-12-10 1986-06-25 Toshiba Corp Formation of mask pattern
JPS6420751A (en) * 1987-07-16 1989-01-24 Matsushita Electric Ind Co Ltd Buffer oscillator
JPH06209115A (en) * 1993-01-12 1994-07-26 Sanyo Electric Co Ltd Solder part forming method of solar cell
JPH07135333A (en) * 1993-11-10 1995-05-23 Sharp Corp Fabrication of solar cell
JPH09116175A (en) * 1995-10-20 1997-05-02 Sanyo Electric Co Ltd Electrode structure of photovoltaic device
JPH09172196A (en) * 1995-11-22 1997-06-30 Ebara Solar Inc Structure of aluminum alloy junction self-alignment rear surface electrode type silicon solar cell and its manufacture
JPH09283781A (en) * 1996-04-09 1997-10-31 Sanyo Electric Co Ltd Photovoltaic device
JPH09293889A (en) * 1996-04-25 1997-11-11 Kyocera Corp Solar battery element
JPH10144943A (en) * 1996-11-12 1998-05-29 Sharp Corp Solar cell and its manufacture
JPH11330512A (en) * 1999-04-16 1999-11-30 Sharp Corp Electrode of solar cell
JP2000188409A (en) * 1998-12-24 2000-07-04 Sharp Corp Solar battery and its manufacture

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157176A (en) * 1982-03-15 1983-09-19 Hitachi Ltd Solar battery element
JPS61138256A (en) * 1984-12-10 1986-06-25 Toshiba Corp Formation of mask pattern
JPS6420751A (en) * 1987-07-16 1989-01-24 Matsushita Electric Ind Co Ltd Buffer oscillator
JPH06209115A (en) * 1993-01-12 1994-07-26 Sanyo Electric Co Ltd Solder part forming method of solar cell
JPH07135333A (en) * 1993-11-10 1995-05-23 Sharp Corp Fabrication of solar cell
JPH09116175A (en) * 1995-10-20 1997-05-02 Sanyo Electric Co Ltd Electrode structure of photovoltaic device
JPH09172196A (en) * 1995-11-22 1997-06-30 Ebara Solar Inc Structure of aluminum alloy junction self-alignment rear surface electrode type silicon solar cell and its manufacture
JPH09283781A (en) * 1996-04-09 1997-10-31 Sanyo Electric Co Ltd Photovoltaic device
JPH09293889A (en) * 1996-04-25 1997-11-11 Kyocera Corp Solar battery element
JPH10144943A (en) * 1996-11-12 1998-05-29 Sharp Corp Solar cell and its manufacture
JP2000188409A (en) * 1998-12-24 2000-07-04 Sharp Corp Solar battery and its manufacture
JPH11330512A (en) * 1999-04-16 1999-11-30 Sharp Corp Electrode of solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224289A (en) * 2002-01-28 2003-08-08 Sharp Corp Solar cell, method for connecting solar cell, and solar cell module
JP2007214204A (en) * 2006-02-07 2007-08-23 Sharp Corp Solar cell, solar cell string, and solar cell module
JP4519080B2 (en) * 2006-02-07 2010-08-04 シャープ株式会社 Solar cell, solar cell string and solar cell module
JP2007242953A (en) * 2006-03-09 2007-09-20 Sharp Corp Solar cell, solar cell string, and solar cell module
JP4519089B2 (en) * 2006-03-09 2010-08-04 シャープ株式会社 Solar cell, solar cell string and solar cell module

Also Published As

Publication number Publication date
JP3906385B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
TWI422047B (en) Solar cell and solar cell manufacturing method
JP2000164902A (en) Solar battery
JPH0415962A (en) Solar cell and manufacture thereof
JPH09116175A (en) Electrode structure of photovoltaic device
JPH0231508B2 (en)
JP3749079B2 (en) Solar cell and manufacturing method thereof
JP5323827B2 (en) Photovoltaic device and manufacturing method thereof
JP2001044459A (en) Solar battery
JP2006156693A (en) Solar battery element and solar battery module using it
JP2794141B2 (en) Method for manufacturing photoelectric conversion device
JP2983746B2 (en) Solar cell manufacturing method
JPH11312813A (en) Manufacture of solar cell device
JP3906385B2 (en) Solar cell
US20180219109A1 (en) Solar module and method for manufacturing the solar module
JP2003273379A (en) Solar cell element
JP6785964B2 (en) Solar cells and solar modules
JP2005268254A (en) Solar battery and its manufacturing method, and solar battery module
JP3238945B2 (en) Solar cell and method of manufacturing the same
JP5452755B2 (en) Method for manufacturing photovoltaic device
JPH11135812A (en) Formation method for solar cell element
JP4212292B2 (en) Solar cell and manufacturing method thereof
JP2007266649A (en) Method of manufacturing solar cell element
JP5205118B2 (en) Solar cell, solar cell with tab, and manufacturing method thereof
JP6455099B2 (en) Solar cell unit and method for manufacturing solar cell unit
JPH0945945A (en) Solar cell element and fabrication thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees