JPH027578A - Manufacture of thin-film type photoelectric converting element - Google Patents

Manufacture of thin-film type photoelectric converting element

Info

Publication number
JPH027578A
JPH027578A JP63158462A JP15846288A JPH027578A JP H027578 A JPH027578 A JP H027578A JP 63158462 A JP63158462 A JP 63158462A JP 15846288 A JP15846288 A JP 15846288A JP H027578 A JPH027578 A JP H027578A
Authority
JP
Japan
Prior art keywords
electrode
lower metal
photoelectric conversion
metal electrode
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63158462A
Other languages
Japanese (ja)
Inventor
Atsushi Sakai
淳 阪井
Shigeaki Tomonari
友成 惠昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63158462A priority Critical patent/JPH027578A/en
Publication of JPH027578A publication Critical patent/JPH027578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To achieve a stable process without generating corrosion by forming an Al electrode on an insulation substrate, forming a lower metal electrode so that it covers the Al electrode completely, forming a photoelectric conversion layer, an upper transparent electrode, and a transparent protective film in sequence, and finally eliminating a lower metal electrode on the Al electrode except the connection part between the lower metal electrode and the Al electrode. CONSTITUTION:First of all, an Al electrode 5 is formed on an insulation substrate S. Then, a lower metal electrode 1 is formed so that it covers the Al electrode 5 completely. And then, a photoelectric conversion layer 2, a transparent electrode 3, and a transparent protection film 4 are formed in sequence. Finally, only the central part of the lower metal electrode 1 on the Al electrode 5 is eliminated by etching leaving the connection part. It enables the Al electrode to be exposed to the surface and wire bonding to be made.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄膜型光電変換素子の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a thin film photoelectric conversion element.

[従来の技術] 最近、アモルファスシリコン等を用いた集積型光電変換
素子が、電力用以外にフォトダイオードアレイ等の電子
部品分野でも用いられようとしている。また、薄膜型で
あることを応用して、パワーMO3)ランリスタの上に
形成し、発光ダイオード(LED)と対向実装すること
により、トランジスタ駆動用電源として利用することも
試みられている。
[Prior Art] Recently, integrated photoelectric conversion elements using amorphous silicon or the like are being used not only for electric power but also in the field of electronic components such as photodiode arrays. Furthermore, by taking advantage of the thin film type, attempts have been made to form it on a power MO3) run lister and to use it as a power source for driving a transistor by mounting it opposite to a light emitting diode (LED).

フォトダイオードアレイ等の素子を製造するには、微小
なサイズに加工する必要があるため、−般にフォトリソ
グラフィを用いて加工される。第3図はその一般的な製
造方法を示すもので、下部金属電極1、光電変換層2、
透明電極3、透明保護膜4、ボンディング用AI!電極
5を順次フォトリソグラフィを用いて形成する。
In order to manufacture elements such as photodiode arrays, it is necessary to process them into minute sizes, so photolithography is generally used. Figure 3 shows the general manufacturing method, in which the lower metal electrode 1, the photoelectric conversion layer 2,
Transparent electrode 3, transparent protective film 4, AI for bonding! Electrodes 5 are sequentially formed using photolithography.

[発明が解決しようとする課題] ところで、早産性やコストを考慮すると、上記フォトリ
ソグラフィで行われるエツチング方法としては、湿式エ
ツチングの方が有利である。ところが、ボンディング用
AP電極5を湿式エッチングしたとき、光電変換層2の
上の透明電極3が腐食するという問題がしばしば生じる
。特に集積型にした場合この傾向が著しい。これは、透
明保護膜4のピンホールを通して電気化学反応が起こる
ものと考えられる。
[Problems to be Solved by the Invention] By the way, considering premature production and cost, wet etching is more advantageous as an etching method performed in the photolithography. However, when the bonding AP electrode 5 is wet-etched, a problem often arises in that the transparent electrode 3 on the photoelectric conversion layer 2 corrodes. This tendency is particularly noticeable when integrated type devices are used. This is considered to be because an electrochemical reaction occurs through the pinholes in the transparent protective film 4.

本発明は、上記問題点を解決するためになされたもので
、その目的とするところは、腐食が起こらず、信頼性の
高い薄膜型光電変換素子の製造方法を提供するにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a method for manufacturing a highly reliable thin film type photoelectric conversion element that does not cause corrosion.

[課題を解決するための手段] 本発明に係る製造方法を第1図に基づいて説明する。ま
ず、絶縁基板S上にA1電極5を形成する(同図(a)
参照)。次に、下部金属電極1を前記/l電極5を完全
に覆うように形成しく同図(b)参照)、シかる後、光
電変換層2、透明電極3、透明保護膜4を順次形成する
(同図[C)〜(el参照)。
[Means for Solving the Problems] A manufacturing method according to the present invention will be explained based on FIG. 1. First, the A1 electrode 5 is formed on the insulating substrate S (see FIG.
reference). Next, the lower metal electrode 1 is formed so as to completely cover the /l electrode 5 (see figure (b)), and after that, the photoelectric conversion layer 2, the transparent electrode 3, and the transparent protective film 4 are sequentially formed. (See [C) to (el) in the same figure.

最後にAlt電極5上の下部金属電極1を、それらの接
続部を残すようにして中央部付近だけをエツチング除去
する(同図(f)参照)、これによって、AI電極5が
表面に露出してワイヤーボンディングが可能となる。
Finally, the lower metal electrode 1 on the Alt electrode 5 is etched away only near the center, leaving the connecting part (see figure (f)). As a result, the AI electrode 5 is exposed on the surface. Wire bonding becomes possible.

[作 用] 上記の工程によると、Alのエツチング工程を最初に行
なうので、下地に及ぼす影響を考える必要がない、つま
り、従来例の如き腐食の生じるおそれのない安定した工
程を実現できる。
[Function] According to the above process, since the Al etching process is carried out first, there is no need to consider the effect on the underlying layer, that is, a stable process without the fear of corrosion as in the conventional example can be realized.

[実施例] 下部金属電極1としてCr、光電変換層2としてアモル
ファスS i % J明電極3としてインジウム・スズ
酸化物及び透明保護膜4としてSiO2股を用いて集積
型太陽電池を試作した。サイズは0.6111m口のセ
ルを10(Ilil直列に接続したものである。
[Example] An integrated solar cell was prototyped using Cr as the lower metal electrode 1, amorphous Si% J as the photoelectric conversion layer 2, indium tin oxide as the bright electrode 3, and SiO 2 as the transparent protective film 4. The size is 10 cells (0.6111 m) connected in series.

まず最初に、真空蒸着によりAl膜を5000人形成し
、これをフォトリソグラフィ・エツチングにより加工し
てボンディング用A1電極5とする。
First, 5,000 Al films are formed by vacuum evaporation, and processed by photolithography and etching to form the A1 electrode 5 for bonding.

エッチャントとしてりん酸系エツチング液を用いた0次
に、スパッタリング法によりCrl13を2000人形
成して、フォトリソグラフィにより下部金属電極1とす
る。エッチャントとして酢酸・硝酸アンモニウム系を用
いた。続いてプラズマCVDによりアモルファスSi膜
をp、i、nの順に約6000人、EB蒸着によりイン
ジウム・スズを900人、プラズマCVDによりS i
 02膜を5000人形成し、それぞれフォトリソグラ
フィ・エツチングにより所定の形状に加工する。最後に
Cr電極の中央部をフォトリソグラフィ・エツチングに
よって除去してA1電極を露出させる。
Next, 2,000 layers of Crl 13 are formed by sputtering using a phosphoric acid-based etching solution as an etchant, and a lower metal electrode 1 is formed by photolithography. Acetic acid/ammonium nitrate was used as the etchant. Subsequently, an amorphous Si film was formed by plasma CVD in the order of p, i, and n in an amount of approximately 6,000 layers, indium tin was formed by EB evaporation in an amount of 900 layers, and Si
02 films were formed by 5,000 people, and each film was processed into a predetermined shape by photolithography and etching. Finally, the central portion of the Cr electrode is removed by photolithography and etching to expose the A1 electrode.

このようにして得られた集積型太陽電池の概略図を第2
図に示す。図において、lは下部金属電極、3は透明電
極、5はAN電極である。
A schematic diagram of the integrated solar cell obtained in this way is shown in the second figure.
As shown in the figure. In the figure, 1 is a lower metal electrode, 3 is a transparent electrode, and 5 is an AN electrode.

本発明に係る薄膜型集積光電変換素子の応用として、パ
ワーMO3)ランリスタの駆動用電源が考えられる。現
在実用化されているフォトMOSリレー等は、単結晶太
陽電池とMOSトランジスタと2つのチップより構成さ
れている。しかし、薄膜型の場合はMOS)ランリスタ
の上に絶縁層を介して形成可能である。
As an application of the thin film type integrated photoelectric conversion element according to the present invention, a power source for driving a power MO3) run lister can be considered. Photo MOS relays and the like currently in practical use are composed of two chips: a single crystal solar cell and a MOS transistor. However, in the case of a thin film type, it can be formed on a MOS (MOS) run lister with an insulating layer interposed therebetween.

そこで、前記実施例の集積型太陽電池の2つの電極と同
じ位置にソース電極とゲート電極を持つパワーMO3)
ランリスタの上に、同様なプロセスで集積型太陽電池を
形成した。この場合、既にソース電極、ゲート電極には
A1膜が形成されているので、これをそのままボンディ
ングパッド用AI電極として用いることができる。つま
り、製造工程の簡略化が図れる。
Therefore, a power MO3) having a source electrode and a gate electrode at the same positions as the two electrodes of the integrated solar cell of the above embodiment
An integrated solar cell was formed on top of the Lanristor using a similar process. In this case, since the A1 film has already been formed on the source electrode and the gate electrode, this can be used as it is as the AI electrode for the bonding pad. In other words, the manufacturing process can be simplified.

以上のようにして得られたセルを発光ダイオード(LE
D)と対向実装して、LEDを発光させたところ、太陽
電池の起電力によってパワーMOSトランジスタを駆動
できることを確認した。
The cell obtained in the above manner is used as a light emitting diode (LE).
When mounted opposite to D) and caused the LED to emit light, it was confirmed that the power MOS transistor could be driven by the electromotive force of the solar cell.

[発明の効果] 本発明は上記のように、薄膜型光電変換素子の製造にお
いて、まず前記絶縁基板上にボンディング用Aβ電極を
形成し、次に下部金FI[極を前記AI電極を完全に覆
うように形成し、しかる後、光電変換層、上部透明電極
及び透明保護膜を順次形成し、最後にAβ電極上の下部
金属電極を、下部金属電極とAβ電極間の接続部を残し
て除去したことを特徴とするので、本発明によれば、湿
式エツチングによって加工する場合でも腐食の発生しな
い安定したプロセスが可能となる。
[Effects of the Invention] As described above, in manufacturing a thin film photoelectric conversion element, the present invention first forms an Aβ electrode for bonding on the insulating substrate, and then completely removes the lower gold FI [pole from the AI electrode. After that, a photoelectric conversion layer, an upper transparent electrode, and a transparent protective film are sequentially formed, and finally, the lower metal electrode on the Aβ electrode is removed, leaving the connection between the lower metal electrode and the Aβ electrode. Therefore, according to the present invention, a stable process in which corrosion does not occur even when processing by wet etching is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のプロセスを示す図、第2し1は本発明
により製造されたgll梨型太陽電池概略平面図、第3
図は従来例のプロセスを示す図であるS・・・絶縁基板
、l・・・下部金属電極、2・・・光電変換層、3・・
・上部透明電極、4・・・透明保護膜、5・・・Al電
極。
FIG. 1 is a diagram showing the process of the present invention, FIG. 2 is a schematic plan view of a GLL pear-shaped solar cell manufactured according to the present invention, and FIG.
The figure shows the process of a conventional example. S... Insulating substrate, L... Lower metal electrode, 2... Photoelectric conversion layer, 3...
- Upper transparent electrode, 4... transparent protective film, 5... Al electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板上に下部金属電極、光電変換層、上部透
明電極、透明保護膜、及びボンディング用Al電極をフ
ォトリソグラフィによって形成する薄膜型光電変換素子
の製造において、まず前記絶縁基板上にボンディング用
Al電極を形成し、次に下部金属電極を前記Al電極を
完全に覆うように形成し、しかる後、光電変換層、上部
透明電極及び透明保護膜を順次形成し、最後にAl電極
上の下部金属電極を、下部金属電極とAl電極間の接続
部を残して除去したことを特徴とする薄膜型光電変換素
子の製造方法。
(1) In manufacturing a thin film photoelectric conversion element in which a lower metal electrode, a photoelectric conversion layer, an upper transparent electrode, a transparent protective film, and an Al electrode for bonding are formed on an insulating substrate by photolithography, first bonding is performed on the insulating substrate. A lower metal electrode is formed to completely cover the Al electrode, and then a photoelectric conversion layer, an upper transparent electrode, and a transparent protective film are sequentially formed, and finally a metal electrode on the Al electrode is formed. 1. A method for manufacturing a thin film photoelectric conversion element, characterized in that the lower metal electrode is removed leaving a connection between the lower metal electrode and the Al electrode.
JP63158462A 1988-06-27 1988-06-27 Manufacture of thin-film type photoelectric converting element Pending JPH027578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63158462A JPH027578A (en) 1988-06-27 1988-06-27 Manufacture of thin-film type photoelectric converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63158462A JPH027578A (en) 1988-06-27 1988-06-27 Manufacture of thin-film type photoelectric converting element

Publications (1)

Publication Number Publication Date
JPH027578A true JPH027578A (en) 1990-01-11

Family

ID=15672269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63158462A Pending JPH027578A (en) 1988-06-27 1988-06-27 Manufacture of thin-film type photoelectric converting element

Country Status (1)

Country Link
JP (1) JPH027578A (en)

Similar Documents

Publication Publication Date Title
EP2053661B1 (en) Solar cell module
JPH07183552A (en) Manufacture of solar cell
EP0959506A1 (en) Process for producing solar cells
JPH03278466A (en) Thin film transistor and manufacture thereof
JPH04223378A (en) Solar cell
CN108269864B (en) Flexible solar cell and preparation method thereof
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
JP2999867B2 (en) Solar cell and method of manufacturing the same
JPH027578A (en) Manufacture of thin-film type photoelectric converting element
JP3238945B2 (en) Solar cell and method of manufacturing the same
JP2002185024A (en) Solar battery and manufacturing method therefor
JPH02263474A (en) Insulated gate type field effect transistor
JPS6193663A (en) Amorphous silicon transistor
JPS5996778A (en) Manufacture of photoelectric conversion device
JPS61199674A (en) Thin film solar cell module
JPS6138204Y2 (en)
JPH0442944Y2 (en)
JPS5976480A (en) Amorphous silicon solar battery
JPH023231A (en) Thin film transistor and manufacture thereof
JPS6244533Y2 (en)
JP2001036104A (en) Solar battery module
JP2664377B2 (en) Manufacturing method of light receiving device
JPH0945945A (en) Solar cell element and fabrication thereof
JPS59110175A (en) Manufacture of solar battery
JPS6244548Y2 (en)