JPH02263474A - Insulated gate type field effect transistor - Google Patents

Insulated gate type field effect transistor

Info

Publication number
JPH02263474A
JPH02263474A JP27469789A JP27469789A JPH02263474A JP H02263474 A JPH02263474 A JP H02263474A JP 27469789 A JP27469789 A JP 27469789A JP 27469789 A JP27469789 A JP 27469789A JP H02263474 A JPH02263474 A JP H02263474A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor layer
silicon
silicon nitride
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27469789A
Other languages
Japanese (ja)
Other versions
JPH0669096B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP58151405A external-priority patent/JPS6043869A/en
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP1274697A priority Critical patent/JPH0669096B2/en
Publication of JPH02263474A publication Critical patent/JPH02263474A/en
Publication of JPH0669096B2 publication Critical patent/JPH0669096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To prevent permeation of water from cracks generating in a protecting film, and improve characteristics and reliability of a device itself, by forming a silicon nitride film between a semiconductor layer and insulator. CONSTITUTION:A silicon nitride film 15 is formed so as to cover the following; an ITO 23 surface, an SiXC1-X surface, an N-type silicon semiconductor 21 surface, an intrinsic semiconductor 13 surface, an N-type silicon semiconductor 14 surface, and an ITO 23 surface. Further said film 15 is formed in a region 31 as well as a region 30. After that, further, polyimide resin 16 being an insulator to protect a semiconductor layer is formed; holes for electrodes are formed; a power supply VDD 19, a ground Vss 17 and the anode of an output 18 are manufactured by using aluminum. Since, in this manner, the silicon nitride film 15 is formed between the insulator to protect the semiconductor layer and the semiconductor layer, permeation of water (moisture) from cracks generating in the protecting film, adverse influence on the lower layer semiconductor, etc., can be prevented by the silicon nitride film, and the manufacturing of highly reliable semiconductor Iayer is enabled.

Description

【発明の詳細な説明】 本発明は、絶縁ゲイト型電界効果半導体装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated gate field effect semiconductor device.

従来、絶縁ディト型電界効果半導体装置の外表面は半導
体層を保護する目的から有機樹脂等の保護膜で覆われて
いる。
Conventionally, the outer surface of an insulated field effect semiconductor device is covered with a protective film made of organic resin or the like for the purpose of protecting the semiconductor layer.

しかしながらこの保護膜自体からの水(湿度)の侵入ま
た保護膜に生じたクラックからの水の侵入、あるいはこ
の保護膜を形成する際の下層に存在する半導体層への影
響等により半導体装置自体の特性劣化、信頬性の低下を
誘発してしまっていた。
However, water (humidity) may enter through the protective film itself, enter through cracks in the protective film, or affect the underlying semiconductor layer when forming this protective film, causing damage to the semiconductor device itself. This led to deterioration of characteristics and a decrease in trustworthiness.

本発明は、絶縁ディト型電界効果半導体装置における上
記の問題点を解決し、半導体装置自体の特性や信頬性を
向上させることを目的としたものである。
The present invention aims to solve the above-mentioned problems in an insulated field effect semiconductor device and to improve the characteristics and reliability of the semiconductor device itself.

そのため本発明は、半導体層を保護するための絶縁物が
形成された絶縁ゲイト型電界効果トランジスタにおいて
、半導体層と前記絶縁物との間に窒化珪素膜が形成され
た絶縁ゲイト型電界効果トランジスタとしたものである
Therefore, the present invention provides an insulated gate field effect transistor in which an insulator is formed to protect a semiconductor layer, and in which a silicon nitride film is formed between the semiconductor layer and the insulator. This is what I did.

半導体装置を保護する有機樹脂等の絶縁物と、半導体層
との間に窒化珪素膜が形成されていることにより、保護
膜に生じたクラックから水(湿度)が侵入したり、ある
いは保護膜を形成する際に生じる下層の半導体層への影
響等を前記窒化珪素膜により防ぐことができるものであ
る。
Because a silicon nitride film is formed between the semiconductor layer and an insulating material such as an organic resin that protects the semiconductor device, water (humidity) can enter through cracks in the protective film, or the protective film can be damaged. The silicon nitride film can prevent effects on the underlying semiconductor layer that occur during formation.

一方、N(ソース)I(チャネル形成領域)N(ドレイ
ン)またはPIF接合を有する絶縁ゲイト型電界効果半
導体(以下FIETという)上における電極に関しても
以下のような特徴のある構造とした。
On the other hand, electrodes on an insulated gate field effect semiconductor (hereinafter referred to as FIET) having N (source), I (channel forming region), N (drain) or PIF junction also have the following characteristic structure.

従来FETのPまたはN型のアモルファス珪素上にアル
ミニュームを真空蒸着方法で形成することが知られてい
た。しかしかかるアモルファス珪素とアルミニュームと
の電極を100〜150’Cで加熱処理を50時間位行
うと、アルミニュームが半導体中にマイブレイト(異常
拡散)して、電気的劣化をおこしてしまう。このため、
PIまたはNl接合において、このアルミニュームがき
わめて深くPIまたNl接合に至り、接合特性を変質さ
せてしまっていた。
Conventionally, it has been known to form aluminum on P- or N-type amorphous silicon of an FET by a vacuum evaporation method. However, if such an electrode made of amorphous silicon and aluminum is heat-treated at 100 to 150'C for about 50 hours, the aluminum migrates into the semiconductor (abnormal diffusion), causing electrical deterioration. For this reason,
In the PI or Nl junction, this aluminum reaches extremely deeply into the PI or Nl junction, deteriorating the junction characteristics.

このため、PまたはN型半導体上にはこのような金属を
真空蒸着させるのではなく、酸化物導電膜を形成するこ
とが試みられている。即ちP型アモルファス珪素に対し
ては透光性導電酸化膜(以下CTOという)の酸化スズ
を、またN型アモルファス珪素に対しては酸化インジュ
ームを主成分とするCTO即ちITO(酸化スズを10
重量%以下添加した酸化インジューム)を密接させると
いうことが試みられている。さらに必要に応じてこのC
TO上に反射性金属であるアルミニュームまたは銀を形
成させる方法が知られている。
For this reason, attempts have been made to form an oxide conductive film on a P- or N-type semiconductor, rather than vacuum-depositing such a metal. That is, for P-type amorphous silicon, tin oxide is used as a light-transmitting conductive oxide film (hereinafter referred to as CTO), and for N-type amorphous silicon, CTO containing indium oxide as a main component, that is, ITO (tin oxide 10
Attempts have been made to bring oxidized indium (indium oxide added in an amount of less than % by weight) into close contact with each other. Furthermore, if necessary, this C
A method of forming reflective metals such as aluminum or silver on TO is known.

かくのごとき構造とすると、150″Cで作製しても5
00時間までは電気特性の劣化を10%以内に防ぐこと
ができた。しかし500時間〜2000時間たつと、例
えばPIN接合を有するpvcにおいて、初期の効率が
8.3%(1,05crfl)であったのが、その変化
量において5%(500時間)〜25%(2000時間
)もの特性劣化(低下)がおこってしまった。
With a structure like this, even if manufactured at 150"C, the
Until 00 hours, deterioration of electrical characteristics could be prevented to within 10%. However, after 500 to 2000 hours, for example, in PVC with PIN junction, the initial efficiency was 8.3% (1,05 crfl), but the amount of change was 5% (500 hours) to 25% ( 2000 hours) characteristic deterioration (decrease) occurred.

その原因を詳細に検討していくと、PまたはN領域のア
モルファス半導体とCTOとの界面に酸化珪素が薄く形
成されてしまっていることが判明した。特にN型アモル
ファス珪素においては、PSG(リンガラス)、P型ア
モルファス珪素においてはBSG  (ホウ素ガラス)
が形成される。これらガラスは最終的に絶縁性を有する
ものであり、これが特性劣化の原因であることが判明し
た。
A detailed study of the cause revealed that a thin layer of silicon oxide was formed at the interface between the amorphous semiconductor in the P or N region and the CTO. In particular, PSG (phosphorus glass) is used for N-type amorphous silicon, and BSG (boron glass) is used for P-type amorphous silicon.
is formed. These glasses ultimately have insulating properties, and this was found to be the cause of the deterioration of characteristics.

アモルファス珪素は化学的に結晶半導体に比べて不安定
でありかつ反応しやすいため、これらの劣化はアモルフ
ァス半導体に特有の劣化特性であることか判明した。
Since amorphous silicon is chemically more unstable and more reactive than crystalline semiconductors, it has been found that these deteriorations are unique to amorphous semiconductors.

また半導体としてアモルファス珪素の代わりに微結晶ま
たは多結晶の結晶性を有する半導体を用いた場合、その
成分中のアモルファス分は約50%となっているため、
ITOとCTOとの反応をアモルファス珪素のみの場合
に比べて約1/2とすることができる。しかしこれでも
本質的には劣化特性を有することには変わりなく、さら
に抜本的な解決法が求められていた。
Furthermore, when a semiconductor having microcrystalline or polycrystalline properties is used instead of amorphous silicon, the amorphous component in the component is approximately 50%.
The reaction between ITO and CTO can be reduced to about 1/2 compared to when only amorphous silicon is used. However, even with this, it still essentially has deterioration characteristics, and a more drastic solution was required.

このため本発明ではP型半導体及びN型半導体を有する
半導体装置であり、前記P型半導体及びN型半導体の各
々が透光性導電膜と密接した構造のものにおいて、前記
P型半導体及びN型半導体の各々は珪素非単結晶半導体
層とSiつC,−X(O<X〈1)で示される炭化珪素
半導体層との二層から成るものであり、前記P型半導体
を構成する炭化珪素半導体層は酸化物透光性導電膜と密
接されており、前記N型半導体を構成する炭化珪素半導
体層は酸化インジュームを主成分とする透光性導電膜と
密接されている構造としたものであり、つまりPまたは
N型の導電型を有し、がっ透光性をアモルファス珪素に
比べて大きく有する半導体と、この半導体に密接して導
電性を有する透光性導電膜の電極とを密接させてオーム
接触を有せしめるに際し、この電極−半導体界面での反
応による絶縁物の発生を防ぐため、その間にアモルファ
ス珪素よりも透光性を有し、前記半導体の導電型と同一
のPまたN型の導電型を有するSix C+−x (0
<X〈1)で示される炭化珪素を介在せしめて電極と半
導体界面での熱化学反応の発生を防ぎ、その結果この炭
化珪素が酸素に対しブロック(阻止)効果を有し、CT
Oを構成している酸素が珪素中に拡散してPSG、BS
Gを作ることを防ぐことができ、高信顧性の半導体装置
が得られるものである。
Therefore, the present invention provides a semiconductor device having a P-type semiconductor and an N-type semiconductor, in which each of the P-type semiconductor and the N-type semiconductor has a structure in close contact with a transparent conductive film. Each of the semiconductors consists of two layers: a silicon non-single crystal semiconductor layer and a silicon carbide semiconductor layer represented by SiC, -X (O<X<1), and the silicon carbide constituting the P-type semiconductor The semiconductor layer is in close contact with an oxide light-transmitting conductive film, and the silicon carbide semiconductor layer constituting the N-type semiconductor is in close contact with a light-transmitting conductive film containing indium oxide as a main component. In other words, a semiconductor having a conductivity type of P or N type and having greater translucency than amorphous silicon, and an electrode of a translucent conductive film having conductivity in close contact with this semiconductor. In order to prevent the formation of an insulator due to a reaction at the electrode-semiconductor interface when bringing them into close contact to form an ohmic contact, P or P, which has a higher translucency than amorphous silicon and has the same conductivity type as the semiconductor, is used between the electrodes and the semiconductor. Six C+-x (0
Silicon carbide represented by
Oxygen constituting O diffuses into silicon and forms PSG and BS.
The formation of G can be prevented, and a highly reliable semiconductor device can be obtained.

Six C+−x(0< x < l )で示される炭
化珪素半導体は、特にx =0.95〜0.8において
その酸素をブロックする作用が十分機能し、かつその厚
さもトンネル電流を引き出す程度の100Å以下(代表
的には平均膜厚15〜40人と推定される)の厚さで十
分のブロック作用がある。その結果、例えばP■N結合
を有さない光電変換装置を150″Cで保持し、100
0〜2000時間をへても、その劣化は0〜2%(10
00時間)ないし0〜3%(2000時間)と熱劣化を
まったくなくすことができた。
The silicon carbide semiconductor represented by Six C+-x (0<x<l) has a sufficient oxygen blocking effect especially when x = 0.95 to 0.8, and its thickness is sufficient to draw tunnel current. A thickness of 100 Å or less (typically estimated to have an average film thickness of 15 to 40) has a sufficient blocking effect. As a result, for example, a photoelectric conversion device without a P■N bond is held at 150''C,
Even after 0 to 2000 hours, the deterioration is 0 to 2% (10
00 hours) to 0 to 3% (2000 hours), and thermal deterioration could be completely eliminated.

本発明においては、1層に接する半導体は非単結晶半導
体であって、特に微結晶または多結晶のPまたはN型の
珪素半導体を用いても良い。
In the present invention, the semiconductor in contact with one layer is a non-single crystal semiconductor, and in particular, a microcrystalline or polycrystalline P or N type silicon semiconductor may be used.

それはPIまたはNl接合においては、またはN型半導
体層がアモルファス珪素においては、その電気伝導度は
10−7〜10−’ (Ωcm)−’であり、かつその
活性化エネルギも0.3〜0.4eVと大きい。
In a PI or Nl junction, or when the N-type semiconductor layer is amorphous silicon, its electrical conductivity is 10-7 to 10-'(Ωcm)-', and its activation energy is also 0.3 to 0. It is large at .4eV.

このため活性状態の真性または実質的に真性(P型用ホ
ウ素またはN型用リンが10”cm−’以下である、ま
たは意図的に■またはV価の不純物を添加しない)のI
型半導体との接合の内部電界を有せしめんとするには、
かかるアモルファス珪素では不十分であり、さらにこの
PまたはN型半導体を透光して光をI型半導体に注入せ
んとする時、この半導体層での光吸収損をより少なくす
ることが求められる。
Therefore, the active state of intrinsic or substantially intrinsic I
In order to have an internal electric field at the junction with the type semiconductor,
Such amorphous silicon is insufficient, and furthermore, when attempting to inject light into an I-type semiconductor by transmitting light through this P- or N-type semiconductor, it is required to further reduce light absorption loss in this semiconductor layer.

そこで微結晶または多結晶のPまたはN型の珪素半導体
を用いたのである。この微結晶または多結晶のPまたは
N型の珪素半導体は電気伝導度が10畳〜l02(Ωc
m)−’を有し、さらに光吸収係数も例えば500nm
にて1xlO5(Ωcm)柑とアモルファス珪素が3X
10’  (Ωcm)−’であるのに対して1/3に減
少させることができるのである。
Therefore, a microcrystalline or polycrystalline P or N type silicon semiconductor was used. This microcrystalline or polycrystalline P or N type silicon semiconductor has an electrical conductivity of 10 tatami to 102 (Ωc
m)-' and also has a light absorption coefficient of, for example, 500 nm.
1xlO5 (Ωcm) and amorphous silicon are 3x
10'(Ωcm)-', it can be reduced to 1/3.

かかる微結晶または多結晶の珪素の粒径はそれぞれ5〜
200人及び200〜2000人である。
The grain size of such microcrystalline or polycrystalline silicon is 5 to 5, respectively.
200 people and 200-2000 people.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

〔実施例〕〔Example〕

第1図において、石英基板(1)上にN型の珪素よりな
るゲイト電極(厚さ0.2μ、巾5μ)を第1のマスク
にて作製した。さらにディト絶縁物をハロゲン元素雰囲
気で1100”Cの温度で酸化をして300〜1200
人の厚さに作製した。さらにホウ素がIPPMの濃度に
注入したP型の真性の半導体(I型珪素) (13)を
公知のプラズマ気相法またはLT CVD法CHOMO
CVD法ともいう)、光CVD法のごとキLPCVD法
(減圧気相法)により0.3μの厚さに作製した。
In FIG. 1, a gate electrode (thickness: 0.2 μm, width: 5 μm) made of N-type silicon was fabricated on a quartz substrate (1) using a first mask. Furthermore, the Dito insulator is oxidized at a temperature of 1100"C in a halogen element atmosphere to a temperature of 300~1200"
Manufactured to the thickness of a person. Furthermore, a P-type intrinsic semiconductor (I-type silicon) (13) in which boron is implanted at a concentration of IPPM is processed using a known plasma vapor phase method or LT CVD method.
The film was manufactured to a thickness of 0.3 μm by the LPCVD method (also referred to as CVD method) and photo-CVD method (low-pressure vapor phase method).

次に酸化珪素をCVD法にて1μの厚さに作製した後、
フォトレジストをコーティングし、下側よりレーザ光を
照射してゲイト電極上方以外のレジストを除去した。さ
らにレジストを除去して、酸化珪素のみを残存させた。
Next, after making silicon oxide to a thickness of 1μ by CVD method,
A photoresist was coated, and a laser beam was irradiated from below to remove the resist except above the gate electrode. Furthermore, the resist was removed, leaving only silicon oxide.

さらにこれら全面にプラズマ気相法により微結晶のNの
珪素半導体を5゜0人の厚さに(21)として形成し、
さらに5iXCτ4(0<x<1  ここではx =0
.9 ) (22)をiooÅ以下の厚さここては50
人の厚さに同一反応炉により連続して形成した。さらに
I TO(23)を50OAの厚さに電子ビーム蒸着法
により形成した。この後、酸化珪素をリフトオフ法によ
り除去し、ゲイト電極の両端とその両端とを概略一致さ
せて、N型半導体(21)を形成させた。その結果、ソ
ース(12)とドレイン(14)とをゲイト電極(11
)とセルファラインをして形成させた。
Furthermore, a microcrystalline N silicon semiconductor was formed as (21) to a thickness of 5°0 on these entire surfaces by plasma vapor phase method.
Furthermore, 5iXCτ4 (0<x<1 where x = 0
.. 9) (22) with a thickness of less than iooÅ, here 50
Thicknesses were formed continuously in the same reactor. Furthermore, ITO (23) was formed to a thickness of 50 OA by electron beam evaporation. Thereafter, the silicon oxide was removed by a lift-off method, and both ends of the gate electrode were made approximately coincident with each other to form an N-type semiconductor (21). As a result, the source (12) and drain (14) are connected to the gate electrode (11).
) and Selfaline were formed.

この場合、N (12) I (13) N (14)
またはN(14)!(13) N (20)のインバー
タ集積化構造を構成させることができた。
In this case, N (12) I (13) N (14)
Or N(14)! (13) N (20) inverter integrated structure could be constructed.

その後、窒化珪素膜のパッシベイション膜(15)を作
製した。この窒化珪素膜(15)はITO(23)表面
、St、 C,□(22)表面、N型の珪素半導体(2
1)表面、真性の半導体(13)表面、N型の珪素半導
体(14)表面、ITO(23)表面を覆って形成させ
た。この窒化珪素膜(15)は、領域(30)に形成さ
れているばかりでな(、領域(31)にも領域(30)
と同様に形成されている。
Thereafter, a passivation film (15) of silicon nitride film was formed. This silicon nitride film (15) covers the surface of ITO (23), the surface of St, C, □ (22), and the surface of N-type silicon semiconductor (2
1) It was formed to cover the surface, the intrinsic semiconductor (13) surface, the N-type silicon semiconductor (14) surface, and the ITO (23) surface. This silicon nitride film (15) is not only formed in the region (30) (but also in the region (31)).
is formed similarly.

この窒化珪素膜の作製は、100〜300°C好ましく
は、150〜250’Cの温度において、シランとアン
モニアとを反応炉に導入し、そこに光エネルギを供給し
て水銀励起法による光CVD法により形成させた。窒化
珪素膜の厚さは500人〜1000人の厚さに形成させ
た。
This silicon nitride film is produced by photo-CVD using a mercury excitation method by introducing silane and ammonia into a reactor at a temperature of 100 to 300°C, preferably 150 to 250'C, and supplying light energy thereto. It was formed by the method. The silicon nitride film was formed to a thickness of 500 to 1000 layers.

その後、さらに半導体層を保護する絶縁物であるポリイ
ミド樹脂例えばPIQ (16)を約2μの厚さに形成
し、電極用穴開けをして、電源(VDD) (19)、
接地(Vss) (17) 、出力(18)のアノード
をアルミニュームにより作製した。
After that, a polyimide resin, such as PIQ (16), which is an insulator that protects the semiconductor layer, is formed to a thickness of about 2 μm, holes for electrodes are made, and a power source (VDD) (19) is formed.
The ground (Vss) (17) and output (18) anodes were made of aluminum.

このPIQの穴あけの時、入力(ゲイト電極(11)、
負荷のゲイト電極(11″)にも穴あけを行い(図示せ
ず)インバータ構造を有せしめた。
When drilling this PIQ, input (gate electrode (11),
A hole was also made in the gate electrode (11'') of the load (not shown) to provide an inverter structure.

前記のように形成させた窒化珪素膜は、その後に形成し
た絶縁物の樹脂からの水(湿度)、あるいは絶縁物に生
じたクラックなどからの水(湿度)が真性の半導体(1
3)、あるいはその他のN型の珪素半導体等に影響する
ことを防ぐことに効果がある。また、水(湿度)に対し
て効果を有するばかりでなく、前記半導体層を保護する
絶縁物を形成する際の不純物の半導体層への影響を防ぐ
ことができ、さらに前記電源(19)、接地(17)、
出力(18)のアノードからの不純物拡散による半導体
層への影響を防止することができる。特に真性半導体(
13)のチャネル形成領域に対する本発明の効果は大き
いものがある。
The silicon nitride film formed as described above is an intrinsic semiconductor (humidity) due to water (humidity) from the resin of the insulator formed subsequently or water (humidity) from cracks generated in the insulator.
3) or other N-type silicon semiconductors. In addition, it not only has an effect on water (humidity), but also can prevent the influence of impurities on the semiconductor layer when forming an insulator that protects the semiconductor layer, and furthermore, the power source (19) and the ground (17),
It is possible to prevent the influence on the semiconductor layer due to impurity diffusion from the anode of the output (18). In particular, intrinsic semiconductors (
The effect of the present invention on the channel forming region 13) is significant.

図面において明らかなごとく、N型半導体は微結晶また
は多結晶構造のN型半導体(21)Six C+−x(
0<x<l)半導体(22)、CTO(23)よりなり
、かかるN−N−CTO接合とした場合、このFETま
たICを150°C,1000時間の放置を行っても、
FET特性の劣化による変化がまったく見られず、従来
の単にN型珪素半導体上に金属を積層した場合に比べて
きわめて高信頼性を有せしめることができた。
As is clear from the drawings, the N-type semiconductor has a microcrystalline or polycrystalline structure (21)Six C+-x(
0<x<l) When the FET or IC is composed of a semiconductor (22) and a CTO (23) and is made into such an N-N-CTO junction, even if this FET or IC is left at 150°C for 1000 hours,
No change due to deterioration of FET characteristics was observed, and the reliability was significantly higher than in the conventional case where metal was simply laminated on an N-type silicon semiconductor.

本発明において、以上の実施例はN型非単結晶半導体に
ITO等の酸化インジュームを主成分とする電極を作製
した。しかしP型珪素半導体−P製炭化珪素(Six 
C1−K  O<χ〈1)半導体−酸化スズのCTOに
よる電極構造を同時に作ることは有効である。
In the present invention, in the above embodiments, an electrode containing indium oxide such as ITO as a main component was fabricated on an N-type non-single crystal semiconductor. However, P-type silicon semiconductor - P silicon carbide (Six
C1-K O<χ<1) It is effective to simultaneously produce an electrode structure using semiconductor-tin oxide CTO.

以上の如く、本発明の絶縁ゲイト型電界効果トランジス
タにおいては、半導体層を保護する絶縁物と半導体層と
の間に窒化珪素膜が形成されていることにより、保護膜
に生じたクラックからの水(湿度)が侵入したり、ある
いは保護膜を形成する際に生じる下層の半導体への影響
等を前記窒化珪素膜により防ぐことができる。そしてさ
らに半導体装置における電極構造において、■型半導体
に密接した電気伝導度のよい結晶性の非単結晶半導体を
形成し、さらにその上面に化学的にきわめて安定なSi
x C+−x (0< x < 1 )の炭化珪素を設
け、この結果非単結晶珪素半導体とCTOとの反応によ
る絶縁膜の形成を防ぐことができ、高信頼性の半導体層
を作ることが可能となった。
As described above, in the insulated gate field effect transistor of the present invention, since the silicon nitride film is formed between the insulator that protects the semiconductor layer and the semiconductor layer, water from cracks generated in the protective film can be removed. The silicon nitride film can prevent (humidity) from entering or affecting the underlying semiconductor layer that occurs when forming a protective film. Furthermore, in the electrode structure of a semiconductor device, a crystalline non-single crystal semiconductor with good electrical conductivity is formed in close contact with the type semiconductor, and furthermore, a chemically extremely stable Si is formed on the upper surface of the non-single crystal semiconductor.
xC+-x (0<x<1) silicon carbide is provided, and as a result, it is possible to prevent the formation of an insulating film due to the reaction between the non-single crystal silicon semiconductor and CTO, and it is possible to create a highly reliable semiconductor layer. It has become possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明構造を用いた絶縁ゲイト型電界効果トラ
ンジスタの集積化構造の縦断面図である。 /1 1!
FIG. 1 is a longitudinal sectional view of an integrated structure of an insulated gate field effect transistor using the structure of the present invention. /1 1!

Claims (1)

【特許請求の範囲】[Claims] (1)半導体層を保護するための絶縁物が形成された絶
縁ゲイト型電界効果トランジスタにおいて、半導体層と
前記絶縁物との間に窒化珪素膜が形成されたことを特徴
とする絶縁ゲイト型電界効果トランジスタ。
(1) An insulated gate field effect transistor in which an insulator is formed to protect a semiconductor layer, characterized in that a silicon nitride film is formed between the semiconductor layer and the insulator. effect transistor.
JP1274697A 1983-08-19 1989-10-20 Insulated gate type field effect transistor Expired - Lifetime JPH0669096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1274697A JPH0669096B2 (en) 1983-08-19 1989-10-20 Insulated gate type field effect transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58151405A JPS6043869A (en) 1983-08-19 1983-08-19 Semiconductor device
JP1274697A JPH0669096B2 (en) 1983-08-19 1989-10-20 Insulated gate type field effect transistor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58151405A Division JPS6043869A (en) 1983-08-19 1983-08-19 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8380394A Division JPH0750420A (en) 1994-03-31 1994-03-31 Manufacturing method of insulating gate type field-effect transistor

Publications (2)

Publication Number Publication Date
JPH02263474A true JPH02263474A (en) 1990-10-26
JPH0669096B2 JPH0669096B2 (en) 1994-08-31

Family

ID=26480668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1274697A Expired - Lifetime JPH0669096B2 (en) 1983-08-19 1989-10-20 Insulated gate type field effect transistor

Country Status (1)

Country Link
JP (1) JPH0669096B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750420A (en) * 1994-03-31 1995-02-21 Semiconductor Energy Lab Co Ltd Manufacturing method of insulating gate type field-effect transistor
JPH07131033A (en) * 1994-03-31 1995-05-19 Semiconductor Energy Lab Co Ltd Insulated gate fet transistor
JPH1041519A (en) * 1996-03-26 1998-02-13 Lg Electron Inc Liquid crystal display device and its manufacture
JP2001053283A (en) * 1999-08-12 2001-02-23 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
US6441468B1 (en) 1995-12-14 2002-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6800875B1 (en) 1995-11-17 2004-10-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix electro-luminescent display device with an organic leveling layer
JP2007027773A (en) * 2006-08-28 2007-02-01 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing same
WO2008105244A1 (en) * 2007-02-28 2008-09-04 Zeon Corporation Active matrix substrate, method for producing the same, and flat display

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134476A (en) * 1982-02-05 1983-08-10 Mitsubishi Electric Corp Thin film transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134476A (en) * 1982-02-05 1983-08-10 Mitsubishi Electric Corp Thin film transistor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750420A (en) * 1994-03-31 1995-02-21 Semiconductor Energy Lab Co Ltd Manufacturing method of insulating gate type field-effect transistor
JPH07131033A (en) * 1994-03-31 1995-05-19 Semiconductor Energy Lab Co Ltd Insulated gate fet transistor
US6867434B2 (en) 1995-11-17 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Active matrix electro-luminescent display with an organic leveling layer
US6800875B1 (en) 1995-11-17 2004-10-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix electro-luminescent display device with an organic leveling layer
US6441468B1 (en) 1995-12-14 2002-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6445059B1 (en) 1995-12-14 2002-09-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6787887B2 (en) 1995-12-14 2004-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JPH1041519A (en) * 1996-03-26 1998-02-13 Lg Electron Inc Liquid crystal display device and its manufacture
JP2001053283A (en) * 1999-08-12 2001-02-23 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
US8003989B2 (en) 1999-08-12 2011-08-23 Semiconductor Energy Laboratory Co., Ltd. Thin film semiconductor device having a terminal portion
US8023055B2 (en) 1999-08-12 2011-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
US8654270B2 (en) 1999-08-12 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
US9041875B2 (en) 1999-08-12 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
US9640630B2 (en) 1999-08-12 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
JP2007027773A (en) * 2006-08-28 2007-02-01 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing same
WO2008105244A1 (en) * 2007-02-28 2008-09-04 Zeon Corporation Active matrix substrate, method for producing the same, and flat display

Also Published As

Publication number Publication date
JPH0669096B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US4281208A (en) Photovoltaic device and method of manufacturing thereof
US5066340A (en) Photovoltaic device
JP2923700B2 (en) Semiconductor device and manufacturing method thereof
US20220115545A1 (en) Tunnel oxide passivated contact solar cell
US4781765A (en) Photovoltaic device
JPH0147025B2 (en)
JPH02263474A (en) Insulated gate type field effect transistor
US4706376A (en) Method of making semiconductor photoelectric conversion device
US4704624A (en) Semiconductor photoelectric conversion device with partly crystallized intrinsic layer
US4903102A (en) Semiconductor photoelectric conversion device and method of making the same
JPS6043869A (en) Semiconductor device
JPH05102504A (en) Photovoltaic element
JP2896793B2 (en) Method for manufacturing photovoltaic device
JPH07131033A (en) Insulated gate fet transistor
JPH0525395B2 (en)
JPH0750794B2 (en) Method for manufacturing photoelectric conversion element
JPH09181343A (en) Photoelectric conversion device
JPS5928387A (en) Semiconductor device
JPH05267700A (en) Semiconductor device
JPH0750420A (en) Manufacturing method of insulating gate type field-effect transistor
JPH044757B2 (en)
JP3336274B2 (en) Method for manufacturing semiconductor device
JPS60211880A (en) Manufacture of photoelectric conversion device
JPH0323679A (en) Photoelectric transducer
JPS5976482A (en) Manufacture of semiconductor device for photoelectric conversion