JPH04203618A - Groove machining method for dynamic pressure bearing made of ceramics - Google Patents

Groove machining method for dynamic pressure bearing made of ceramics

Info

Publication number
JPH04203618A
JPH04203618A JP2337845A JP33784590A JPH04203618A JP H04203618 A JPH04203618 A JP H04203618A JP 2337845 A JP2337845 A JP 2337845A JP 33784590 A JP33784590 A JP 33784590A JP H04203618 A JPH04203618 A JP H04203618A
Authority
JP
Japan
Prior art keywords
organic material
laser beam
groove
bearing base
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2337845A
Other languages
Japanese (ja)
Other versions
JPH0674808B2 (en
Inventor
Yumiko Noda
野田 ゆみ子
Ichiro Kamiya
一郎 神谷
Ryoichi Shinjo
新荘 良一
Manabu Toshimitsu
学 利光
Yoshio Sato
良雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2337845A priority Critical patent/JPH0674808B2/en
Publication of JPH04203618A publication Critical patent/JPH04203618A/en
Publication of JPH0674808B2 publication Critical patent/JPH0674808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/045Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Laser Beam Processing (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

PURPOSE:To enhance machining accuracy by applying surface finish to a portion forming a slide surface of a bearing base body made of ceramics after being sintered, bonding an organic material for absorbing a YAG laser beam according to a predetermined pattern of a machining groove so as to radiate the laser beam along the bonded pattern. CONSTITUTION:A portion of a slide surface of a bearing base body 1 made of ceramics after being sintered is applied to surface finish. A black organic material capable of efficiently absorbing a YAG laser beam is bonded onto the slide surface according to a pattern of a predetermined machining groove, thus obtaining portions 2a as shown by slash marks. A YQG laser processor radiates a YAGQ switch pulse laser beam onto the portions 2a with the organic material bonded thereto, to machine the groove 2. The bearing base body 1 is immersed into 1-trichloroethane, followed by ultrasonic cleaning, and then, the residual organic material is removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックス製動圧軸受の溝加工方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for machining grooves in ceramic hydrodynamic bearings.

〔従来技術〕[Prior art]

セラミックス製動圧軸受の加工方法の一つとして、Qス
イッチ付きNd:YAG(ネオジウムイツトリウム ア
ルミニウム ガーネット)レーザ(以下、単に’ YA
GQスイッチパルスレーザ、と記す)装置を用いる方法
がある。
One of the processing methods for ceramic hydrodynamic bearings is the use of a Q-switched Nd:YAG (neodymium yttrium aluminum garnet) laser (hereinafter simply 'YA').
There is a method using a device (referred to as a GQ switch pulse laser).

YAGQスイッチパルスレーザは、ピーク出力が大きく
とれるため、セラミック加工性に優れたレーザ装置であ
る。また、装置の安定性、信頼る。
The YAGQ switch pulse laser is a laser device with excellent ceramic processing properties because it can provide a large peak output. Also, the stability of the device is reliable.

性、価格面等から多くの利点を有するものであし〔発明
が解決しようとする課題〕 上記のようにYAGQスイッチパルスレーザは、セラミ
ック加工に優れているにもかかわらず、実際は下記のよ
うな欠点があり、セラミックス製動圧軸受の溝加工には
利用きれなかった。
[Problems to be solved by the invention] Although the YAGQ switched pulse laser is excellent in ceramic processing as described above, it actually has the following drawbacks. Therefore, it could not be used for groove machining of ceramic hydrodynamic bearings.

(1)レーザ照射時間が経過するに従って当該加工対象
物に熱が蓄積し、これによりクラックの発生等による製
品の重大な欠陥を与える。
(1) As the laser irradiation time elapses, heat accumulates in the workpiece, which causes serious defects in the product due to cracks and the like.

〈2〉溝外側面角部の堆積部の生成及び断面形状の非対
称性による性能への影響等の問題がある外、更にレーザ
装置及びレーザ光の特性から下記の問題がある。
<2> In addition to problems such as the formation of a deposited portion at the corner of the outer side surface of the groove and the influence on performance due to the asymmetry of the cross-sectional shape, there are also the following problems due to the characteristics of the laser device and laser light.

(3)精度良く均一に加工するためには、加工対象面で
のレーザ光の吸収率が一定で、且つ当該部での吸収率が
高く、レーザ光を効率よく吸収することが望まれるか、
これらの条件は被加工物であるセラミック材料の下記の
要因により左右される。
(3) In order to process accurately and uniformly, it is desirable that the absorption rate of the laser beam on the surface to be processed is constant, and that the absorption rate of the part concerned is high and absorbs the laser beam efficiently.
These conditions are influenced by the following factors of the ceramic material to be processed.

(8)材質及び成分等による物性 (b)材料の色 (c)表面粗き (d)洗浄状態 (e)上記(a)〜(d)の均一性 (f)大量生産においては、各個体試料の均一性も要求
される。
(8) Physical properties due to material and components, etc. (b) Color of material, (c) Surface roughness, (d) Cleaning condition, (e) Uniformity of the above (a) to (d), (f) In mass production, each individual Sample uniformity is also required.

(4)セラミックス基体に溝の形状及びパターンを正確
に描いて加工するためには、レーザ光照射位置の正確き
が要求されるが、これは下記の要因により左右される。
(4) In order to accurately draw and process the shape and pattern of grooves on a ceramic substrate, precision in the laser beam irradiation position is required, and this is influenced by the following factors.

(4−1)レーザ発振器のボインティングスタビリテイ
−(レーザスポットが当った位置の安定性)の問題で、
実際には限界がある。その原因とCで、 (a)冷却水の温度の変動 (b)投入電力の変動及び励起ランプ光の変動(c)レ
ーザ発振器の据付部の振動 (d)伝送部及びその雰囲気 等がある。
(4-1) Due to the problem of pointing stability of the laser oscillator (stability of the position where the laser spot hits),
In reality, there are limits. The causes include (a) fluctuations in the temperature of the cooling water, (b) fluctuations in the input power and excitation lamp light, (c) vibrations in the installation part of the laser oscillator, and (d) the transmission part and its atmosphere.

(4−2)走査又は加工テーブルの問題がある。(4-2) There is a problem with scanning or processing tables.

(a)位置決め精度 (b)移動速度の制御及び等速性 (c)複雑な形状への対応 等である。(a) Positioning accuracy (b) Movement speed control and uniformity (c) Dealing with complex shapes etc.

本発明は上述の点に鑑みてなきれたもので、上記(3)
 、 (4)の問題の解決ができるセラミックス製動圧
軸受の溝加工方法を提供することを目的とする。
The present invention has been developed in view of the above-mentioned points, and includes the above (3).
An object of the present invention is to provide a groove machining method for a ceramic hydrodynamic bearing that can solve the problem (4).

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明は、焼結後のセラミック
ス製軸受基体の摺動面となる部分に表面仕上げを施し、
該摺動面にYAGレーザ光を選択的に且つ効率よく吸収
する有機材料を所望の加工溝の形状パターンに均一に付
着し、該有機材料を付着してなる加工溝の形状パターン
にYAGQスイッチパルスレーザ光を照射することによ
り、該形状パターン通りの溝を形成し、しかる後加工時
の生成物の除去と同時に前記付着した有機材料の残留部
分を除去することを特徴とする。
In order to solve the above problems, the present invention provides a surface finish to the sliding surface of the ceramic bearing base after sintering,
An organic material that selectively and efficiently absorbs YAG laser light is uniformly adhered to the sliding surface in a desired pattern of the processed groove, and a YAGQ switch pulse is applied to the pattern of the processed groove formed by adhering the organic material. The method is characterized in that grooves are formed in accordance with the shape pattern by irradiation with laser light, and the residual portion of the attached organic material is removed simultaneously with the removal of products during post-processing.

〔作用〕[Effect]

本発明はセラミックス製軸受基体の摺動面にYAGレー
ザ光を選択的に且つ効率よく吸収する有機材料を所望の
加工溝の形状パターンに均一に付着し、該有機材料を付
着してなる加工溝の形状パターンにYAGQスイッチパ
ルスレーザ光を照射するので、軸受基体にYAGレーザ
光の吸収率の低いセラミック材料を用いた場合や加工面
が鏡面仕上げにより反射率が高い場合及び透過率が高い
場合でも、有機材料が極めて効率良くレーザ光を吸収し
、スムーズに溝加工ができる。
In the present invention, an organic material that selectively and efficiently absorbs YAG laser light is uniformly adhered to the sliding surface of a ceramic bearing base in a desired shape pattern of a processed groove, and the processed groove is formed by adhering the organic material. Since YAGQ switch pulse laser light is irradiated on the shape pattern of The organic material absorbs laser light extremely efficiently, allowing smooth groove processing.

また、レーザ光が被加工予定部分から多少ずれて照射き
れても有機材料が選択的にレーザ光を吸収するので、溝
形状に影響を与えることなく、その結果位置決め精度を
軽減できる。
Furthermore, even if the laser beam is irradiated with a slight deviation from the part to be processed, the organic material selectively absorbs the laser beam, so the groove shape is not affected, and as a result, positioning accuracy can be reduced.

また、レーザ照射後に残留した有機材料を除去する際、
洗浄工程を兼ねるので工程を減らすことができる。
In addition, when removing organic materials remaining after laser irradiation,
Since it also serves as a cleaning process, the number of steps can be reduced.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基ついて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第11K(a)、(b)はセラミックス製動圧軸受の溝
加工方法を説明するための図である。焼結後のセラミッ
クス製軸受基体1の摺動面となる部分に表面仕上げを施
し、該摺動面に同図(a)の斜線を付した部分2aのよ
うに、YAGレーザ光を効率よく吸収する黒色の有機材
料を同図(b)に示す加工溝2の形状パターンに均一に
付着する。この有機材料を付着したセラミックス製軸受
基体1をYAGレーザ加工装置に取り付け、有機材料を
付着した部分2aにYAGQスイッチパルスレーザ光を
照射する。レーザ光の走査はXY子テーブル用い、溝2
の形状、即ち有機材料を付着した部分2aに沿ってYA
GQスイッチパルスレーザ光が照射されるように、テー
ブルを移動し、レーザ光を照射する。このようにレーザ
光の照射を繰り返すことにより、セラミックス製軸受基
体1の前記有機材料の付着部分2aが除去され溝2が形
成きれる。本実施例では、セラミ7り材として、Al2
O3を用いYAGQスイッチパルスレーザ光の繰り返し
数を0.32kHzとし、XY子テーブル移動速度を5
mn/secとして、セラミックス竪軸受基体10表面
に溝深さ10μm程度の動圧発生用の溝2を形成した。
11K (a) and (b) are diagrams for explaining a groove machining method for a ceramic hydrodynamic bearing. After sintering, the sliding surface of the ceramic bearing base 1 is surface-finished to efficiently absorb YAG laser light, as shown in the shaded area 2a in FIG. A black organic material is uniformly adhered to the shape pattern of the processed groove 2 shown in FIG. 2(b). The ceramic bearing base 1 to which the organic material is adhered is attached to a YAG laser processing device, and the portion 2a to which the organic material is adhered is irradiated with YAGQ switch pulse laser light. Laser beam scanning uses an XY child table, groove 2
shape, that is, YA along the part 2a to which the organic material is attached.
The table is moved so that the GQ switch pulse laser beam is irradiated, and the laser beam is irradiated. By repeating the laser beam irradiation in this manner, the portion 2a of the ceramic bearing base 1 to which the organic material is attached is removed and the groove 2 is completely formed. In this example, Al2 is used as the ceramic material.
Using O3, the repetition rate of the YAGQ switch pulse laser beam was set to 0.32kHz, and the XY child table movement speed was set to 5.
mn/sec, grooves 2 for generating dynamic pressure with a groove depth of about 10 μm were formed on the surface of the ceramic vertical bearing base 10.

次に、溝加工が施されたセラミックス製軸受基体1を1
.1−トリクロロエタン中に入れ、超音波洗浄を行ない
、セラミックス製軸受基体1の被加工部分に残留した有
機塗料を溶解すると共に、レーザ照射により、生成した
酸化物を除去及び洗浄し、第1図(b)に示すようにセ
ラミックス製軸受基体1に溝2が形成きれる。
Next, the grooved ceramic bearing base 1 is
.. The ceramic bearing base 1 is placed in 1-trichloroethane and subjected to ultrasonic cleaning to dissolve the organic paint remaining on the processed portion of the ceramic bearing base 1, and the generated oxide is removed and cleaned by laser irradiation. As shown in b), grooves 2 are completely formed in the ceramic bearing base 1.

」−記のようにセラミックス製軸受基体1の表面に動圧
発生用溝2の形状のレーザ光を効率良く吸収できる有機
材料を付着さ+iることにより、YAGQスイッチパル
スレーザ光を照射した場合、有機材料部分にはし・−ザ
光が効率良く吸収されるのに対して、セラミック表面が
露出している部分はレーザ光が反射及び透過きれるため
レーザ光の吸収が悪くなる。従って、レーザ光がイ1′
機材料を多少はみ出て照射きれても、有機材料の形状通
りに溝加工ができ、有機材料の溝形状を精度よく形成す
ることにより、高精度の動圧発生用の溝2を形成できる
。上記において部分2aに付着する有機材料は、YAG
レーザ光を選択的且つ効率良く吸収できる材料であれは
とのようなものでもよく、例えは、黒色顔料を添加した
アクリル樹脂塗料、顔料を添加したビニル樹脂塗料、顔
料を添加したアルキド樹脂塗料なとべ〉′キのようなも
のが適している。また、液状或いはシーl−状のいずれ
でもよい。また、有機材料の付着の方法は、描写、貼付
等があるが、いずれの方法を採用するかは、材料の性状
により変化させればよい。
” - When an organic material capable of efficiently absorbing laser light in the shape of dynamic pressure generating grooves 2 is adhered to the surface of a ceramic bearing base 1 as shown in the figure above, YAGQ switch pulse laser light is irradiated. While the organic material portion efficiently absorbs the laser beam, the exposed portion of the ceramic surface reflects and transmits the laser beam, resulting in poor absorption of the laser beam. Therefore, the laser beam is
Even if the irradiation is completed with some part of the organic material protruding, the groove can be processed according to the shape of the organic material, and by forming the groove shape of the organic material with high precision, the groove 2 for generating dynamic pressure can be formed with high precision. In the above, the organic material attached to the portion 2a is YAG
Any material that can selectively and efficiently absorb laser light may be used, for example, acrylic resin paint with added black pigment, vinyl resin paint with added pigment, alkyd resin paint with added pigment. Something like Tobe〉′ki is suitable. Further, it may be in either liquid form or seal form. Further, methods for attaching the organic material include drawing, pasting, etc., and which method to adopt may be changed depending on the properties of the material.

なお、上記実施例にいては、YAGレーザ光の走査にX
Y子テーブル移動させる方法を用いたが、これに替えて
ガルバノ鏡によりレーザビームを伝送、走査するガルハ
メータ型オプティカルスキャナ方式、又はレーザビーム
を導く光ファイ・・先端を走査する光フアイバ方式のい
ずれでもよい。また、本発明の溝加工方法はセラミック
ス製動圧軸受の溝加ニ一般に適用でき、セラミックス製
軸受基体及び溝形状を問わず適用できる。
Note that in the above embodiment, X is used for scanning the YAG laser beam.
We used a method of moving the Y-column table, but instead of this, we can use either a galvanometer type optical scanner method that transmits and scans the laser beam using a galvano mirror, or an optical fiber method that scans the tip of the optical fiber that guides the laser beam. good. Furthermore, the grooving method of the present invention is generally applicable to grooving of ceramic hydrodynamic bearings, and can be applied regardless of the ceramic bearing base and groove shape.

また、上記のような加工方法においては、−度加工条件
を設定すれば、同一寸法で精度の高いセラミックス製動
圧軸受の溝加工かでき、更に、加工工程の自動化を簡単
に行なうことができ、加工費等各種費用を大幅に低減で
きる。
In addition, in the above-mentioned processing method, by setting the -degree processing conditions, it is possible to machine grooves in ceramic hydrodynamic bearings with the same dimensions and high precision, and furthermore, the processing process can be easily automated. , various costs such as processing costs can be significantly reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、セラミックス製軸受基体
の摺動面にYAGレーザ光を選択的に且つ効率よく吸収
する有機材料を所望の加工溝の形状パターンに均一に付
着さゼ、この付着部分にYAGQスイッチパルスレーザ
光を照射するので以下のような優れた効果が得られる。
As explained above, the present invention involves uniformly attaching an organic material that selectively and efficiently absorbs YAG laser light to the sliding surface of a ceramic bearing base in a desired groove shape pattern, and applying the organic material to the sliding surface of a ceramic bearing base. Since the YAGQ switch pulse laser beam is irradiated to the YAGQ switch pulse laser beam, the following excellent effects can be obtained.

(1)軸受基体にYAGレーザ光の吸収率の低いセラミ
ックス材料を用いた場合や加工面が鏡面仕上げにより反
射率が高い場合及び透過率か高い場合でも、有機材料が
極めて効率良くシ・−ザ光を吸収するのでスムーズに溝
加工かできる。即ち、あらゆるセラミックス材料並びに
その加工面状態に左右されることなく、溝加工か行なえ
る。
(1) Even when a ceramic material with low absorption rate of YAG laser light is used for the bearing base, or when the machined surface has a mirror finish with high reflectance or high transmittance, organic materials can be used for extremely efficient shearing. Since it absorbs light, it allows smooth groove processing. That is, groove machining can be performed without being affected by any ceramic material or the condition of its machined surface.

(2)レーザ光が被加工予定部分から多少すれて照射さ
れても有機材料が選択的にレーザ光を吸収するので、溝
形状に影響を与えることなく、その結果位置決め精度を
軽減できる。
(2) Since the organic material selectively absorbs the laser light even if the laser light is irradiated with some deviation from the part to be processed, the groove shape is not affected, and as a result, positioning accuracy can be reduced.

(3)レーザ照射後に残留した有機材料を除去する際、
洗浄工程を兼ねるので工程を減らすことができる。
(3) When removing organic materials remaining after laser irradiation,
Since it also serves as a cleaning process, the number of steps can be reduced.

り4)使用実績が多く安定したYAGQスイッチパルス
レーザ光を使用するので、安定で信頼の高い加工ができ
る。
4) Since the YAGQ switch pulsed laser beam, which has been used extensively and is stable, is used, stable and highly reliable processing is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)はセラミックス製動圧軸受の溝加
工方法を説明するための図である。 図中、1 ・・セラミックス製軸受基体、2・・溝。 特許出願人 株式会社荏原製作所 代理人 弁理士 熊 谷 隆(外1名)(d) (b) 第1図
FIGS. 1(a) and 1(b) are diagrams for explaining a groove machining method for a ceramic hydrodynamic bearing. In the figure, 1: Ceramic bearing base, 2: Groove. Patent applicant Ebara Corporation Representative Patent attorney Takashi Kumagai (1 other person) (d) (b) Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)焼結後のセラミックス製軸受基体の摺動面となる
部分に表面仕上げを施し、該摺動面にYAGレーザ光を
選択的に且つ効率よく吸収する有機材料を所望の加工溝
の形状パターンに均一に付着し、該有機材料を付着して
なる加工溝の形状パターンにYAGQスイッチパルスレ
ーザ光を照射することにより、該形状パターン通りの溝
を形成し、しかる後加工時の生成物の除去と同時に前記
付着した有機材料の残留部分を除去することを特徴とす
るセラミックス製動圧軸受の溝加工方法。
(1) Surface finishing is applied to the sliding surface of the sintered ceramic bearing base, and an organic material that selectively and efficiently absorbs YAG laser light is applied to the sliding surface to form the desired groove shape. By irradiating YAGQ switch pulse laser light onto the shape pattern of the processed groove formed by adhering the organic material uniformly to the pattern, a groove according to the shape pattern is formed, and after that, the product during processing is A method for machining grooves in a ceramic hydrodynamic bearing, characterized in that the residual portion of the attached organic material is removed at the same time as the removal.
(2)前記有機材料の付着は描写又は転写或いは貼付の
いずれかにより付着することを特徴とする請求項(1)
記載のセラミックス製動圧軸受の溝加工方法。
(2) Claim (1) characterized in that the organic material is attached by any one of drawing, transfer, or pasting.
Grooving method for ceramic hydrodynamic bearings described.
JP2337845A 1990-11-30 1990-11-30 Grooving method for ceramic dynamic bearings Expired - Lifetime JPH0674808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2337845A JPH0674808B2 (en) 1990-11-30 1990-11-30 Grooving method for ceramic dynamic bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2337845A JPH0674808B2 (en) 1990-11-30 1990-11-30 Grooving method for ceramic dynamic bearings

Publications (2)

Publication Number Publication Date
JPH04203618A true JPH04203618A (en) 1992-07-24
JPH0674808B2 JPH0674808B2 (en) 1994-09-21

Family

ID=18312516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2337845A Expired - Lifetime JPH0674808B2 (en) 1990-11-30 1990-11-30 Grooving method for ceramic dynamic bearings

Country Status (1)

Country Link
JP (1) JPH0674808B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965043A (en) * 1996-11-08 1999-10-12 W. L. Gore & Associates, Inc. Method for using ultrasonic treatment in combination with UV-lasers to enable plating of high aspect ratio micro-vias
JP2013510610A (en) * 2009-11-12 2013-03-28 デンタウルム ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディト ゲゼルシャフト Method of manufacturing an orthodontic element
JP2014516000A (en) * 2011-06-01 2014-07-07 サントル ドゥ ルシェルシュ ドゥ ランデュストリー ベルジュ ドゥ ラ セラミック Ceramic particle mixture and method for producing ceramic parts from the mixture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170298990A1 (en) * 2016-04-18 2017-10-19 Caterpillar Inc. Self-lubricating roller bearing and methods of making and using self-lubricating roller bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735682A (en) * 1980-08-08 1982-02-26 Nippon Seiko Kk Formation of groove for generating dynamic pressure
JPS621886A (en) * 1985-06-25 1987-01-07 Matsushita Electric Ind Co Ltd Fluid bearing shaft
JPS63238992A (en) * 1987-03-27 1988-10-05 Nippon Seiko Kk Method for forming grooves for generating dynamic pressure
JPH01247566A (en) * 1988-03-29 1989-10-03 Mitsubishi Electric Corp Production of fluid bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735682A (en) * 1980-08-08 1982-02-26 Nippon Seiko Kk Formation of groove for generating dynamic pressure
JPS621886A (en) * 1985-06-25 1987-01-07 Matsushita Electric Ind Co Ltd Fluid bearing shaft
JPS63238992A (en) * 1987-03-27 1988-10-05 Nippon Seiko Kk Method for forming grooves for generating dynamic pressure
JPH01247566A (en) * 1988-03-29 1989-10-03 Mitsubishi Electric Corp Production of fluid bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965043A (en) * 1996-11-08 1999-10-12 W. L. Gore & Associates, Inc. Method for using ultrasonic treatment in combination with UV-lasers to enable plating of high aspect ratio micro-vias
JP2013510610A (en) * 2009-11-12 2013-03-28 デンタウルム ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディト ゲゼルシャフト Method of manufacturing an orthodontic element
JP2014516000A (en) * 2011-06-01 2014-07-07 サントル ドゥ ルシェルシュ ドゥ ランデュストリー ベルジュ ドゥ ラ セラミック Ceramic particle mixture and method for producing ceramic parts from the mixture

Also Published As

Publication number Publication date
JPH0674808B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
CN109926584B (en) Additive manufacturing and surface polishing synchronous processing method and device
JP2004515365A (en) Laser processing of semiconductor materials
CN108971775B (en) Laser drilling method and device for metal
CN110625401B (en) Processing device and method under laser-induced material coupling reaction
JP2000071086A (en) Method and device for shape processing by laser light
Audouard et al. Optimization of surface engraving quality with ultrafast lasers
JPS6239539B2 (en)
JPH04203618A (en) Groove machining method for dynamic pressure bearing made of ceramics
JPS5976687A (en) Laser cutting method
JP2007021527A (en) Laser beam machining method
JPH06170563A (en) Working method using pulse laser light
JPS5933091A (en) Laser working method
JP4534543B2 (en) Material processing by ultra-short pulse laser
RU94020443A (en) Process of laser engraving and device for its realization
JPH0159076B2 (en)
JPS62168688A (en) Laser beam machining device
JPH04203616A (en) Machining method for dynamic pressure bearing made of ceramics
JPH0479827B2 (en)
JPS61206587A (en) Laser beam processing method
RU2071141C1 (en) Process of hydrooptical machining of surfaces of parts from dielectric materials and gear for its implementation
JPH0399790A (en) Laser beam machine
JPH01321088A (en) Piercing method by laser beam
JP2017104875A (en) Laser processing device and laser processing method
RU2072302C1 (en) Method of opticocavitational treatment of ceramics
JPH04203617A (en) Groove machining method for dynamic pressure bearing made of ceramics