JPH04203616A - Machining method for dynamic pressure bearing made of ceramics - Google Patents

Machining method for dynamic pressure bearing made of ceramics

Info

Publication number
JPH04203616A
JPH04203616A JP2337843A JP33784390A JPH04203616A JP H04203616 A JPH04203616 A JP H04203616A JP 2337843 A JP2337843 A JP 2337843A JP 33784390 A JP33784390 A JP 33784390A JP H04203616 A JPH04203616 A JP H04203616A
Authority
JP
Japan
Prior art keywords
base material
yagq
dynamic pressure
laser beam
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2337843A
Other languages
Japanese (ja)
Other versions
JPH0674806B2 (en
Inventor
Yumiko Noda
野田 ゆみ子
Ichiro Kamiya
一郎 神谷
Ryoichi Shinjo
新荘 良一
Manabu Toshimitsu
学 利光
Yoshio Sato
良雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2337843A priority Critical patent/JPH0674806B2/en
Publication of JPH04203616A publication Critical patent/JPH04203616A/en
Publication of JPH0674806B2 publication Critical patent/JPH0674806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves

Abstract

PURPOSE:To enhance dynamic pressure generating groove forming accuracy by coating a base material of a dynamic pressure bearing made of ceramics with resin or oil capable of absorbing a YAGQ switch pulse laser beam, radiating the YAGQ laser beam so as to form a recess portion formed into a predetermined shape, and removing the residual coating film. CONSTITUTION:A coating film 14 made of resin or oil, e.g. dimethyl silicone oil colored into blue capable of efficiently absorbing a YAGQ switch pulse laser beam is formed on a base material 10 of a dynamic pressure bearing made of ceramics. The YAGQ switch pulse laser beam is radiated onto the base material 10 made of ceramics along a trace 11 so that a recess portion 15 such as dynamic pressure generating groove or the like of a slide bearing is formed on the base material 10. After forming the recess portion 15, the residual coating film 14 is removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックス製動圧軸受の溝加工方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for machining grooves in ceramic hydrodynamic bearings.

〔従来技術〕[Prior art]

従来、セラミックス製動圧軸受の基材に動圧発生用の溝
を形成する方法の一つとして、Qスイッチイ寸きNd 
: YAG(ネオジウム イツトリウムアルミニウム 
ガーネット)レーザ(以下、単に’YAGQスイッチパ
ルスレーザ」と記す)光で加工する方法が考案されてい
る。このYAGQスイッチパルスレーザ光による加工は
、ピーク出力が大きくとれ、加工性に優れ、また安定性
、信頼性の面で多くの利点を有することから多く利用さ
れる。
Conventionally, one method of forming grooves for generating dynamic pressure in the base material of ceramic dynamic pressure bearings is to use a Q-switch size Nd.
: YAG (neodymium yttrium aluminum)
A method of processing using a garnet laser (hereinafter simply referred to as 'YAGQ switch pulse laser') light has been devised. Processing using YAGQ switch pulsed laser light is often used because it can provide a large peak output, has excellent processability, and has many advantages in terms of stability and reliability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

YAGQスイッチパルスレーザ光による加工において、
被加工対象が動圧軸受である場合、例えは、第2図に示
すように、セラミックス製動圧軸受の基材10の表面に
YAGQスイッチパルスレーザ光を軌跡11のように照
射して加工するが、以下のような問題点があった。
In processing using YAGQ switch pulsed laser light,
When the object to be processed is a hydrodynamic bearing, for example, as shown in FIG. 2, the surface of the base material 10 of the ceramic hydrodynamic bearing is processed by irradiating YAGQ switch pulse laser light as shown by the trajectory 11. However, there were the following problems.

(1)レーザ照射時間が経過するにつれ、被加工対象物
内部に熱が蓄積され、熱影響層が増加し、クラック12
が発生、さらにレーザ照射により生成した溶融物或いは
蒸散物が加工表面に堆積し、すぐに固化し溶融凝固物と
なると同時に強く凝着し、堆積部13を形成し容易に除
去できなくなる。また、加工面性状が加工の始まり部A
と終わり部B(第2図参照)において異なる。
(1) As the laser irradiation time passes, heat accumulates inside the workpiece, the heat-affected layer increases, and cracks 12
Further, the molten material or evaporated material generated by the laser irradiation is deposited on the processing surface, quickly solidified to become a molten solidified material, and at the same time strongly adheres to form a deposited portion 13 that cannot be easily removed. In addition, the machined surface quality is the starting point A of machining.
and end portion B (see Figure 2).

(2)上記(1)のような堆積部を除去するために再加
工が必要であり、また再加工はラジアル軸受においては
極めて困難な加工である。
(2) Re-processing is necessary to remove the deposited portions as described in (1) above, and re-processing is extremely difficult for radial bearings.

(3)上記(1)の問題を防ぐ手段の一つとしてレーザ
のピーク出力、パルス幅を制御する方法があるが、加工
中にそれらを随時変更することは困難である。
(3) One way to prevent the problem in (1) above is to control the peak output and pulse width of the laser, but it is difficult to change them at any time during processing.

本発明は上述の点に鑑みてなされたもので、セラミック
製動圧軸受基材の摺動面に動圧発生溝を高精度で且つ容
易に形成できるセラミックス製動圧軸受の加工方法を提
供することを目的とする。
The present invention has been made in view of the above-mentioned points, and provides a processing method for a ceramic hydrodynamic bearing that can easily form hydrodynamic grooves with high precision on the sliding surface of a ceramic hydrodynamic bearing base material. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明は、セラミックス製動圧
軸受の加工方法を、セラミックス製動圧軸受の基材表面
にYAGQレーザ光を効率よく吸収する樹脂或いは油で
被覆し、この被覆付き被加工物にYAGQスイッチパル
スレーザ光を照射して基材表面に所定形状の凹部を形成
し、しかる後前記被覆の残留部分を除去するようにした
ことを特徴とする。
In order to solve the above problems, the present invention provides a method for processing a ceramic dynamic pressure bearing, in which the base material surface of the ceramic dynamic pressure bearing is coated with a resin or oil that efficiently absorbs YAGQ laser light, and the coated workpiece is coated with a resin or oil that efficiently absorbs YAGQ laser light. The present invention is characterized in that a concave portion of a predetermined shape is formed on the surface of the base material by irradiating the object with a YAGQ switch pulsed laser beam, and then the remaining portion of the coating is removed.

〔作用〕[Effect]

セラミックス製動圧軸受の加工を上記の如く行なうこと
により、基材表面に形成された被膜がレーザ光を吸収し
、除去加工が率よく行なわれ、且つ加工によって発生し
た熱を効率よく吸収するので、被加工対象物の熱蓄積が
抑えられるからクラックの発生を抑えると共に、レーザ
照射により生成した溶融物或いは蒸散物被膜表面部分に
広く付着させ、また一部が内部に拡散することにより容
易に除去することができる。
By processing a ceramic hydrodynamic bearing as described above, the coating formed on the surface of the base material absorbs laser light, the removal process is performed efficiently, and the heat generated by processing is efficiently absorbed. Since heat accumulation on the workpiece is suppressed, the occurrence of cracks is suppressed, and the molten matter or evaporated matter generated by laser irradiation is widely adhered to the surface of the film, and some of it diffuses into the interior, making it easy to remove. can do.

〔実施例〕〔Example〕

以下、本発明の一実例を図面を用いて説明する。 An example of the present invention will be described below with reference to the drawings.

第1図は本発明のセラミックス製動圧軸受の加工方法を
説明するための図である。図示するように、セラミック
ス製動圧軸受の基材10の表面にはYAGQスイッチパ
ルスレーザ光を効率よく吸収する樹脂材又は油の被膜1
4を形成する。このように表面に被膜14を形成したセ
ラミックス製の基材10に軌跡11に沿ってYAGQス
イッチパルスレーザ光を照射することにより、基材10
の表面にスベリ軸受の動圧発生溝等の凹部15を形成す
る。
FIG. 1 is a diagram for explaining a method of processing a ceramic hydrodynamic bearing according to the present invention. As shown in the figure, the surface of the base material 10 of the ceramic dynamic pressure bearing is covered with a resin or oil coating 1 that efficiently absorbs the YAGQ switch pulse laser beam.
form 4. By irradiating the YAGQ switch pulse laser beam along the trajectory 11 to the ceramic base material 10 on which the coating 14 is formed on the surface, the base material 10
A recess 15 such as a dynamic pressure generating groove for a sliding bearing is formed on the surface of the bearing.

被膜14はYAGQスイッチパルスレーザ光を効率よく
吸収する樹脂材又は油からなるから器材の溝加工が効率
よく行なわれるとともに、被膜14は加工により発生し
た熱を効率よく吸収することになり、被加工対象物内部
への熱蓄積を抑える作用を奏する。
The coating 14 is made of a resin material or oil that efficiently absorbs the YAGQ switch pulse laser beam, so that the grooves on the equipment can be processed efficiently. It has the effect of suppressing heat accumulation inside the object.

第1図及び第2図はこの凹部15の断面を示す図で、基
材10の表面に被膜14を施さない場合は、レーザ光が
基材10のセラミック材の表面で吸収され、熱エネルギ
ーに変換きれ、基材10のレーザ光照射部分に温度上昇
を与え、これによりセラミックス材を溶融或いは蒸散さ
せる。このような工程を繰り返すことにより、基材10
の表面に深さd2=3〜20μmで深きと幅の比d、/
w=10−’〜10−1の動圧発生溝となる凹部15を
形成するのである。ここでレーザ光の熱を効率よく吸収
する樹脂又は油からなる被膜14を形成しない場合は、
第2図に示すようにレーザ光の照射初期Sの部分は同図
のA部分のように、加工深さが深く、側壁が急峻である
が、レーザ光を連続して照射していくと、生成した溶融
物或いは蒸散物がすぐに固化し、溶融凝固物となり周辺
に飛散し、また次の加工面に堆積し、強く凝着するため
、レーザ光がこれに吸収又は反射され、凹部の深さが徐
々に浅くなる。また、連続してレーザを照射していくと
、基材10のセラミックス内部に加工により発生した熱
が蓄積し、熱影響層が増加する。その結果加工深さがバ
ラつき、溶融凝固層が多くなり、加工終点Eの近傍の凹
部15以外の部分に堆積部13を形成したり、クラック
12が発生することは前述の通りである。これに対して
、基材10の表面にレーザ光の熱を効率よく吸収する樹
脂又は油からなる被膜14を形成した場合は、前述のよ
うに被膜14がレーザ光を効率よく吸収するから、基材
の溝加工が効率よく行なわれるとともに、基材10に蓄
積される熱の一部或いは大部分を吸収するので、熱蓄積
が減少するから、第1図に示すようにクラックの発生を
抑えると共に、レーザ照射時に蒸発生成した溶融物或い
は蒸散物を被膜14上に広く付着させ、さらにその一部
が内部に拡散し複合層16.17、形成する。この被膜
14の上に形成きれた複合層16゜17は基材10の表
面に直接付着していないから、後に容易に除去すること
ができる。
1 and 2 are diagrams showing a cross section of this recess 15. When the coating 14 is not applied to the surface of the base material 10, the laser beam is absorbed by the surface of the ceramic material of the base material 10, and is converted into thermal energy. Once the conversion is complete, a temperature rise is applied to the portion of the base material 10 irradiated with the laser beam, thereby melting or evaporating the ceramic material. By repeating such steps, the base material 10
The depth to width ratio d, /
A recess 15 that becomes a dynamic pressure generating groove with w=10-' to 10-1 is formed. If the coating 14 made of resin or oil that efficiently absorbs the heat of the laser beam is not formed,
As shown in Figure 2, the part S at the initial stage of laser beam irradiation has a deep machining depth and steep sidewalls, like part A in the same figure, but as the laser beam is continuously irradiated, The generated molten matter or transpiration solidifies immediately, becomes a molten solid, and scatters around the surrounding area. Also, it is deposited on the next machined surface and strongly adheres, so the laser beam is absorbed or reflected by this, and the depth of the recess is The depth gradually becomes shallower. Further, when the laser is continuously irradiated, heat generated by processing is accumulated inside the ceramic of the base material 10, and the heat-affected layer increases. As a result, the machining depth varies, the number of molten solidified layers increases, and as described above, deposits 13 are formed in areas other than the recess 15 near the machining end point E, and cracks 12 occur. On the other hand, when the coating 14 made of resin or oil that efficiently absorbs the heat of the laser beam is formed on the surface of the base material 10, the coating 14 efficiently absorbs the laser beam as described above. In addition to efficiently grooving the material, it also absorbs some or most of the heat accumulated in the base material 10, reducing heat accumulation, thereby suppressing the occurrence of cracks as shown in Figure 1. The molten matter or evaporated matter produced by evaporation during laser irradiation is widely deposited on the coating 14, and a part of it is further diffused inside to form a composite layer 16, 17. Since the composite layers 16 and 17 completely formed on the coating 14 are not directly attached to the surface of the base material 10, they can be easily removed later.

被膜14の材料としては、例えば青色に着色したジメチ
ルシリコンオイルや黒色に着色した塩化ビニール樹脂塗
料を用い、これらの被膜材料をセラミックス製の基材1
0の加工面全面に厚さd1=数10μmで均一に塗布す
る。第3図はレーザ加工装置の概略構成を示す図である
。上記のように表面にジメチルシリコンオイルからなる
被膜を形成したセラミックス製の基材22をXY移動テ
ーブル21の上に載置し、YAGQスイッチパルスレー
ザ発振器から構成されるレーザ発信器25からの出力パ
ルスレーザ光が全反射ミラー24で反射された後、集光
レンズ23で集光され、基材22の被膜14が形成され
た加工面に照射するようになっている。この状態でXY
移動テーブル21を駆動し、基材22の加工位置をレー
ザ光の照射位置に合わせ、レーザ発振器25を稼動し、
前記YAGQスイッチパルスレーザ発振器による短いパ
ルスレーザ光を基材22に照射する。この場合、YAG
Qスイッチパルスレーザ光の繰り返し周波数は、例えは
0.32kHzとし、XY移動テーブルの移動速度は、
例えは5a/secとする。このようなパルスレーザ光
の照射を繰り返して、セラミックス製の基材22の加工
面に所定の加工溝を形成する。その後、基材22に残留
したジメチルシリコンオイルや塩化ビニール塗料を1.
1.1−トリクロロエタンにより溶融除去する。なお、
上記実施例においては、レーザビームの走査は、XY移
動テーブル21を用いる例をしめしたが、レーザビーム
の走査方法はこれに限定されるものではなく、ガルバノ
メータ型オプティカルスキャナ方式、光フアイバ一方式
のいずれでも良く、マスクを併用することも可能である
As the material for the coating 14, for example, dimethyl silicone oil colored blue or vinyl chloride resin paint colored black are used, and these coating materials are applied to the ceramic base material 1.
It is applied uniformly to the entire processed surface of No. 0 to a thickness d1=several tens of micrometers. FIG. 3 is a diagram showing a schematic configuration of the laser processing device. A ceramic base material 22 with a dimethyl silicone oil coating formed on its surface as described above is placed on an XY moving table 21, and an output pulse from a laser oscillator 25 consisting of a YAGQ switch pulse laser oscillator is output. After the laser beam is reflected by the total reflection mirror 24, it is condensed by the condenser lens 23, and is irradiated onto the processed surface of the base material 22 on which the coating 14 is formed. In this state
Drive the moving table 21, align the processing position of the base material 22 with the laser beam irradiation position, operate the laser oscillator 25,
The base material 22 is irradiated with short pulse laser light from the YAGQ switch pulse laser oscillator. In this case, YAG
The repetition frequency of the Q-switched pulsed laser beam is, for example, 0.32kHz, and the moving speed of the XY moving table is:
For example, it is assumed to be 5a/sec. By repeating such pulsed laser light irradiation, a predetermined processing groove is formed on the processing surface of the ceramic base material 22. After that, remove the remaining dimethyl silicone oil and vinyl chloride paint from the base material 22 by 1.
1. Melt off with 1-trichloroethane. In addition,
In the above embodiment, the XY moving table 21 is used for laser beam scanning, but the laser beam scanning method is not limited to this. Either may be used, and it is also possible to use a mask in combination.

また、上記実施例においては、被膜14の材料として青
色に着色したジメチルシリコンオイルや黒色に着色した
塩化ビニール塗料を用いたが、YAGレーザ光を効率よ
く吸収し、厚さ数10μmの被膜を形成する樹脂、油で
あれはどのような樹脂、油でもよく、その着色顔料もY
AGレーザ光の反射量が少なく効率良く吸収できる顔料
であればよい。また、この被膜を除去する方法は、上記
被膜14を構成する材料が溶解分解するものであれはよ
く、超音波洗浄を併用することも効果的である。
In addition, in the above embodiment, blue-colored dimethyl silicone oil and black-colored vinyl chloride paint were used as materials for the coating 14, but they efficiently absorb YAG laser light and form a coating several tens of μm thick. Any resin or oil may be used as the resin or oil, and the coloring pigment may also be Y.
Any pigment may be used as long as it reflects less AG laser light and can efficiently absorb it. Further, any method for removing this coating may be used as long as the material constituting the coating 14 is dissolved and decomposed, and it is also effective to use ultrasonic cleaning in combination.

また、本発明の加工方法は、セラミックス一般に実現で
きるが、特に軸受として使用頻度の高いS i C,、
S 12N4、A1.03等が有効である。
Furthermore, although the processing method of the present invention can be applied to ceramics in general, SiC, which is particularly frequently used as bearings,
S12N4, A1.03, etc. are effective.

また、本発明の加工方法は、被加工体、即ちスベり軸受
の基材の形状及び加工溝の形状等は問わない。
Further, the processing method of the present invention does not care about the shape of the workpiece, that is, the base material of the sliding bearing, the shape of the processing groove, etc.

セラミックス製動圧軸受の溝加工を上記のように行なう
ことにより、レーザ加工条件を一度設定すれば、同じ条
件でセラミックス製動圧軸受を大量に生産でき、且つ加
工工程の自動化も簡単に行なうことがでくる。
By performing groove processing on ceramic hydrodynamic bearings as described above, once the laser processing conditions are set, ceramic hydrodynamic bearings can be produced in large quantities under the same conditions, and the processing process can be easily automated. comes out.

また、マスキング等の前処理の工程が必要なくなるから
、前処理のために必要であった洗浄工程も不必要となる
Further, since a pretreatment process such as masking is no longer necessary, a cleaning process that was necessary for the pretreatment is also no longer necessary.

エネルギー源がYAGQスイッチパルスレーザノ励起光
ランプであり、このランプは長寿命、安価であるから、
メンテナンスが簡単となりランニングコストが安価とな
る。
The energy source is a YAGQ switch pulsed laser excitation light lamp, and this lamp has a long life and is inexpensive.
Maintenance is easy and running costs are low.

また、上記実施例においては、YAGレーザの走査にX
Y子テーブル移動させる方法を用いたが、これに替えて
ガルバノ鏡によるレーザビームを伝送、走査するガルハ
メータ型オプチカルスキャナ方式、又はレーザビームを
導く光フアイバ先端を走査する光フアイバ方式のいずれ
でもよい。〔発明の効果〕 以上説明したように本発明によれば、下記のような優れ
た効果が得られる。
In addition, in the above embodiment, X
Although the method of moving the Y-child table was used, instead of this, either a galvanometer type optical scanner method in which a laser beam is transmitted and scanned by a galvano mirror, or an optical fiber method in which the tip of an optical fiber guiding the laser beam is scanned may be used. [Effects of the Invention] As explained above, according to the present invention, the following excellent effects can be obtained.

(1)溶融凝固物が加工部分以外に付着するのを陳止で
きるので、最終仕上げを必要とせず、高精度で信頼性の
高い加工ができる。
(1) Since it is possible to prevent the molten solidified material from adhering to areas other than the processed parts, there is no need for final finishing, and highly accurate and reliable processing can be performed.

(2)−度加工条件を設定すれば、大量且つ同一寸法、
精度を持つ品質の高い製品を得ることができる。
(2) - If you set the processing conditions, you can produce large quantities of the same size,
You can obtain high quality products with precision.

(3)ショツトブラストのような機械加工に比べて加工
後のクラックの発生を抑え、使用上に重大な問題となる
パーティクルの発生をなくすることができる。
(3) Compared to mechanical processing such as shot blasting, the occurrence of cracks after processing can be suppressed, and the generation of particles, which is a serious problem in use, can be eliminated.

(4)使用実績が多く安定したYAGQスイッチパルス
レーザ光を使用するので、安定で信頼の高い加工方法と
なる。
(4) Since the YAGQ switch pulse laser beam, which has been used extensively and is stable, is used, it is a stable and highly reliable processing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセラミックス製動圧軸受の加工方法及
び加工断面を説明するための図、第2図は従来のセラミ
ックス製動圧軸受の加工方法及び加工断面を説明するた
めの図、第3図はレーザ加工装置の概略構成を示す図で
ある。 図中、10・・・・セラミックス類の動圧軸受の基材、
11・・・・YAGQスイッチパルスレーザ光の走査軌
跡、12・・・・クラック、13・・・・堆積部、14
・・・・被膜、15・・・・加工凹部、16.17・・
・・複合層 特許出願人 株式会社荏原製作所 代理人 弁理士 熊 谷 隆(外1名)第1図 /U 第2図 第3図
Fig. 1 is a diagram for explaining the processing method and processing cross section of a ceramic hydrodynamic bearing according to the present invention; Fig. 2 is a diagram for explaining the processing method and processing cross section of a conventional ceramic hydrodynamic bearing; FIG. 3 is a diagram showing a schematic configuration of the laser processing device. In the figure, 10...Base material of ceramic dynamic pressure bearing,
11...Scanning locus of YAGQ switch pulse laser beam, 12...Crack, 13...Deposition part, 14
...Coating, 15... Processing recess, 16.17...
...Composite layer patent applicant Ebara Corporation Representative Patent attorney Takashi Kumagai (1 other person) Figure 1/U Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] セラミックス製動圧軸受の基材表面をYAGQスイッチ
パルスレーザ光を効率よく吸収する樹脂或いは油で被覆
し、この被覆付き被加工物にYAGQレーザ光を照射し
て基材表面に所定形状の凹部を形成し、しかる後前記被
覆の残留部分を除去することを特徴とするセラミックス
製動圧軸受の加工方法。
The base material surface of a ceramic dynamic pressure bearing is coated with a resin or oil that efficiently absorbs YAGQ switch pulse laser light, and this coated workpiece is irradiated with YAGQ laser light to form a recess in a predetermined shape on the base material surface. 1. A method for processing a ceramic hydrodynamic bearing, comprising: forming a coating, and then removing a remaining portion of the coating.
JP2337843A 1990-11-30 1990-11-30 Processing method of ceramic dynamic bearing Expired - Lifetime JPH0674806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2337843A JPH0674806B2 (en) 1990-11-30 1990-11-30 Processing method of ceramic dynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2337843A JPH0674806B2 (en) 1990-11-30 1990-11-30 Processing method of ceramic dynamic bearing

Publications (2)

Publication Number Publication Date
JPH04203616A true JPH04203616A (en) 1992-07-24
JPH0674806B2 JPH0674806B2 (en) 1994-09-21

Family

ID=18312496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2337843A Expired - Lifetime JPH0674806B2 (en) 1990-11-30 1990-11-30 Processing method of ceramic dynamic bearing

Country Status (1)

Country Link
JP (1) JPH0674806B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7290936B2 (en) 2004-03-08 2007-11-06 Daido Metal Company Ltd. Slide member, manufacturing method and manufacturing apparatus of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621886A (en) * 1985-06-25 1987-01-07 Matsushita Electric Ind Co Ltd Fluid bearing shaft
JPS63238992A (en) * 1987-03-27 1988-10-05 Nippon Seiko Kk Method for forming grooves for generating dynamic pressure
JPH01247566A (en) * 1988-03-29 1989-10-03 Mitsubishi Electric Corp Production of fluid bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621886A (en) * 1985-06-25 1987-01-07 Matsushita Electric Ind Co Ltd Fluid bearing shaft
JPS63238992A (en) * 1987-03-27 1988-10-05 Nippon Seiko Kk Method for forming grooves for generating dynamic pressure
JPH01247566A (en) * 1988-03-29 1989-10-03 Mitsubishi Electric Corp Production of fluid bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7290936B2 (en) 2004-03-08 2007-11-06 Daido Metal Company Ltd. Slide member, manufacturing method and manufacturing apparatus of the same

Also Published As

Publication number Publication date
JPH0674806B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
US7411150B2 (en) Method of producing a composite component
EP0761377B1 (en) Laser scribing on glass using Nd:YAG laser
US5484980A (en) Apparatus and method for smoothing and densifying a coating on a workpiece
US7157038B2 (en) Ultraviolet laser ablative patterning of microstructures in semiconductors
US20060091126A1 (en) Ultraviolet laser ablative patterning of microstructures in semiconductors
US5198637A (en) Method of cutting grooves in hydrodynamic bearing made of ceramic material
JP2000071086A (en) Method and device for shape processing by laser light
CN1527754A (en) Ultraviolet laser ablative patterning of microstructures in semiconductors
JPH03135568A (en) Lithographic technique using laser scanning for manufacturing electronic component, etc.
JP2718795B2 (en) Method for fine processing of work surface using laser beam
JPH04203616A (en) Machining method for dynamic pressure bearing made of ceramics
KR100664573B1 (en) Laser Processing Apparatus and Method thereof
JP2007021527A (en) Laser beam machining method
CA2487913C (en) Method of producing a composite component
JPH06170563A (en) Working method using pulse laser light
JP3182031B2 (en) Selective plating method and circuit board manufacturing method
JPH04203618A (en) Groove machining method for dynamic pressure bearing made of ceramics
JPH07185875A (en) Material processing method by pulse laser
Haehnel et al. Production of microstructures in wide-band-gap and organic materials using pulsed laser ablation at 157 nm wavelength
JPH0674807B2 (en) Grooving method for ceramic dynamic bearings
JPS63215394A (en) Method for processing substrate
JPH0220685A (en) Laser beam machining material and its manufacture
JPS62218587A (en) Selective etching method utilizing laser
JPH0428490A (en) Laser beam hole machining method for ceramics
Choi et al. Micromachining of Cr Thin Film and Glass Using an Ultrashort Pulsed Laser