JPH04199131A - Nonlinear resistor element and its production - Google Patents

Nonlinear resistor element and its production

Info

Publication number
JPH04199131A
JPH04199131A JP2333959A JP33395990A JPH04199131A JP H04199131 A JPH04199131 A JP H04199131A JP 2333959 A JP2333959 A JP 2333959A JP 33395990 A JP33395990 A JP 33395990A JP H04199131 A JPH04199131 A JP H04199131A
Authority
JP
Japan
Prior art keywords
layer
nonlinear resistance
electrode layer
resistance element
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2333959A
Other languages
Japanese (ja)
Inventor
Koichi Kodera
宏一 小寺
Yuji Mukai
裕二 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2333959A priority Critical patent/JPH04199131A/en
Publication of JPH04199131A publication Critical patent/JPH04199131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To eliminate defects in an element such as short-circuit or disconnection of wires by successively forming a first electrode layer, nonlinear resistor layer, second electric layer on an insulating substrate and further forming an insulating layer into the upper surface of the nonlinear resistor layer to embed these layers. CONSTITUTION:On a glass substrate 11, a first electrode layer 12 is formed, on which a nonlinear resistor layer 13, a P-doped first semiconductor layer 14, nondoped second semiconductor layer 15, and P-doped third semiconductor layer 16 is formed. Then an insulating layer 17 is formed so as to embed the nonlinear resistor layer 13 and to expose the top surface of the nonlinear resistor layer 13. Further, a second electrode layer 18 comprising Cr is formed and a pixel electrode 19 comprising ITO is formed on the insulating layer to connect with the second electrode layer. Thus, an active matrix array is formed, which prevents defects of elements such as short-circuit or disconnection.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は表示デバイスのアクティブマトリクス駆動等に
使用できる非線形抵抗素子およびその製造方法に関す4 従来の技術 液晶デイスプレィ、エレクトロルミネッセンス等の表示
デバイスにおいて、高精細度な画面を得るために(よ 
走査線数を増やした高密度なマトリクス構成が必要であ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nonlinear resistance element that can be used for active matrix driving of display devices, and a method for manufacturing the same. In order to obtain a high-definition screen (
A high-density matrix configuration with an increased number of scanning lines is required.

このようなマトリクスを有効的に駆動させるた敦 各表
示素子にスイッチング素子を取り付けたアクティブマト
リクス駆動方式が注目されている。
Atsushi's active matrix drive system, in which a switching element is attached to each display element, is attracting attention as a way to effectively drive such a matrix.

このアクティブマトリクス駆動に使用されるスイッチン
グ素子として、通究 薄膜トランジスタ(TPT)を代
表とした3端子型素子と、エムアイエム(MIM)や薄
膜ダイオードを代表とした2端子型素子が一般的である
The switching elements used in this active matrix drive are generally three-terminal devices such as thin film transistors (TPTs) and two-terminal devices such as MIMs and thin film diodes.

2端子型素子は3端子型に比べて構造が簡単で、製造歩
留まりか高いた取 大画面用として注目されている。特
にNIN型ダイオード(Mat、 Res、 S。
Two-terminal devices have a simpler structure than three-terminal devices, have higher manufacturing yields, and are attracting attention for use in large screens. Especially NIN type diodes (Mat, Res, S.

c、 Symp、 Proc、 Vol、 49.19
85 p、 385)や特願平1−109320号に示
されるINI型ダイオードは構造が簡単で、適切なしき
い値電圧を持つ非線形抵抗素子である。
c, Symp, Proc, Vol, 49.19
85 p. 385) and Japanese Patent Application No. 1-109320, the INI type diode has a simple structure and is a nonlinear resistance element having an appropriate threshold voltage.

第6図は従来のNIN型ダイオードの断面図を示してい
る。
FIG. 6 shows a cross-sectional view of a conventional NIN type diode.

ガラス基板61上にCrより成る第一電極層62を構成
し この上に非線形抵抗層63としてPをドープした1
+a−8iより成る第一半導体層6屯 ノンドープのa
−3iより成る第二半導体層65.Pをドープしたn+
a−3iより成る第三半導体層66を順次積層する。
A first electrode layer 62 made of Cr is formed on a glass substrate 61, and P is doped thereon as a nonlinear resistance layer 63.
+a-8i first semiconductor layer 6ton non-doped a
-3i second semiconductor layer 65. P-doped n+
A third semiconductor layer 66 made of a-3i is sequentially laminated.

さらにその上にSiO2より成る絶縁体層67を形成す
る。この絶縁体層67に電極引出し窓(コンタクトホー
ル)60を形成LCrより成る第二電極層68を積層L
 第三半導体層66と第二電極層68を接触させる。
Furthermore, an insulating layer 67 made of SiO2 is formed thereon. An electrode extraction window (contact hole) 60 is formed in this insulator layer 67, and a second electrode layer 68 made of LCr is laminated thereon.
The third semiconductor layer 66 and the second electrode layer 68 are brought into contact.

第二半導体層65を構成するノンドープのa−3iと第
一、第三半導体層64.66を構成するn+a−3iと
はその界面で障壁が形成され 2個のダイオードが縦方
向に直列かつ逆方向に接続された形となる。
A barrier is formed at the interface between the non-doped a-3i constituting the second semiconductor layer 65 and the n+a-3i constituting the first and third semiconductor layers 64 and 66, so that the two diodes are vertically connected in series and opposite to each other. The shape is connected in the direction.

その結果 正および負の両極性の電圧に対して6V程度
のしきい値電圧を示し 非線形抵抗素子として機能ナム この非線形抵抗特性を利用し 第一電極層62を走査電
極ラインに兼用する力\ 叉は走査電極ラインに接続し
 第二電極層68をITOより成る画素電極層69に接
続することにより、液晶デイスプレィのアクティブマト
リクスアレイが構成されも発明が解決しようとする課題 しかしなが収 従来のNIN型ダイオードのような第一
電極層6&非線形抵抗層6未 第二電極層68を順次積
層して構成する非線形抵抗素子で(よパターニングに使
用するマスク枚数は4枚を要し3端子型素子に比べると
その数は少なくなっているものへ 表示デバイスの大面
積化 低コスト化を実現するためにはさらに削減する必
要がある。
As a result, it exhibits a threshold voltage of about 6V for both positive and negative polarity voltages, and functions as a nonlinear resistance element.Using this nonlinear resistance characteristic, the first electrode layer 62 can also be used as a scanning electrode line. By connecting the second electrode layer 68 to the scanning electrode line and connecting the second electrode layer 68 to the pixel electrode layer 69 made of ITO, an active matrix array of a liquid crystal display can be constructed. It is a nonlinear resistance element constructed by sequentially laminating a first electrode layer 6, a nonlinear resistance layer 6, and a second electrode layer 68 like a type diode (the number of masks used for patterning is 4, making it a 3-terminal type element). In comparison, the number of display devices is decreasing.Increasing the area of display devices In order to realize cost reductions, further reductions are necessary.

また 非線形抵抗層63を絶縁体層67で覆う場合、非
線形抵抗層63の上面に対し 側面では絶縁体層67の
厚さは極端に薄くなり、 クラックの発生する可能性が
高くなる。
Furthermore, when the nonlinear resistance layer 63 is covered with the insulating layer 67, the thickness of the insulating layer 67 on the side surfaces of the nonlinear resistance layer 63 becomes extremely thin compared to the top surface, increasing the possibility that cracks will occur.

その結果 第二電極層68を画素電極層69に接続させ
る賑 第二電極層68と非線形抵抗層63の側面とが第
6図(b)のA部に示すように接触し ダイオードが短
絡してしまう欠陥が多く発生する。
As a result, when the second electrode layer 68 is connected to the pixel electrode layer 69, the second electrode layer 68 and the side surface of the nonlinear resistance layer 63 come into contact as shown in part A of FIG. 6(b), and the diode is shorted. Many defects occur.

また 第二電極層68も非線形抵抗層63の側面に沿っ
た部位で、膜厚が極端に薄くなり、第6図(C)のB部
に示す様にクラックなどが生し 断線の原因となってい
れ 本発明は上述のような従来の非線形抵抗素子の課題に鑑
へ 表示デバイスの大画面化に伴って要求されるマスク
枚数の低減を可能にするとともに短絡欠陥の発生、断線
の発生を解消する非線形抵抗素子を提供することを目的
とする。
In addition, the second electrode layer 68 also becomes extremely thin at a portion along the side surface of the nonlinear resistance layer 63, and as shown in section B of FIG. 6(C), cracks occur and cause wire breakage. The present invention takes into account the above-mentioned problems with conventional nonlinear resistance elements.It makes it possible to reduce the number of masks required as display devices become larger in size, and also eliminates the occurrence of short circuit defects and disconnections. The purpose of the present invention is to provide a nonlinear resistance element that has the following characteristics.

課題を解決するための手段 上記課題を解決するために 本発明の非線形抵抗素子は
 絶縁性基板上に第一電極層 非線形抵抗層 第二電極
層が順次積層されて構成される非線形抵抗素子において
、第一電極層上に形成された非線形抵抗層をその上面を
除いて埋め込む形で、絶縁体層が非線形抵抗層の上面の
高さまで形成され さらに非線形抵抗層と絶縁体層の上
に第二電極層が形成された構成を有する。
Means for Solving the Problems In order to solve the above problems, the nonlinear resistance element of the present invention is a nonlinear resistance element configured by sequentially laminating a first electrode layer, a nonlinear resistance layer, and a second electrode layer on an insulating substrate. The nonlinear resistance layer formed on the first electrode layer is buried except for its top surface, and an insulator layer is formed up to the height of the top surface of the nonlinear resistance layer. It has a structure in which layers are formed.

また その製造方法として(よ 絶縁性基板上に第一電
極層 非線形抵抗層を順次積層した後、第一電極層とそ
の上に形成した非線形抵抗層を完全に埋め込み、 かつ
第一電極層の形成畝 未形成部によらず、絶縁体層を厚
さ方向に平坦性を維持して形成し その後、絶縁体層を
その表面より均等に除去し 非線形抵抗層の表面を露呈
させ、その上に第二電極層を積層するものであ4作用 本発明の上記の構成により、従来のNIN型ダイオード
と同様の非線形抵抗性を維持しつつ、第二電極層は非線
形抵抗層の側面に接触することなく、画素電極層に接続
できる。また 第二電極層は非線形抵抗層の側面に沿う
ことなく形成することができ、クラックの発生の恐れも
なl、%  上記の製造方法により、基板全面に渡って
、厚さ方向に平坦性を維持して形成された絶縁体層をそ
の表面より均等に除去することにより、非線形抵抗層の
表面を露呈させることができ、電極引出し窓を形成する
フォトパターニング工程を省略できる。
In addition, the manufacturing method is as follows: After sequentially laminating a first electrode layer and a nonlinear resistance layer on an insulating substrate, the first electrode layer and the nonlinear resistance layer formed thereon are completely embedded, and the first electrode layer is formed. The insulating layer is formed while maintaining flatness in the thickness direction regardless of the part where the ridges are not formed.Then, the insulating layer is removed evenly from the surface to expose the surface of the nonlinear resistance layer, and a layer is placed on top of it. 4. Function: Due to the above structure of the present invention, the second electrode layer does not come into contact with the side surface of the nonlinear resistance layer while maintaining the same nonlinear resistance as a conventional NIN type diode. , can be connected to the pixel electrode layer.Furthermore, the second electrode layer can be formed without running along the sides of the nonlinear resistance layer, and there is no risk of cracking.By the above manufacturing method, the second electrode layer can be formed over the entire surface of the substrate. By uniformly removing the formed insulator layer from its surface while maintaining flatness in the thickness direction, the surface of the nonlinear resistance layer can be exposed, and the photopatterning process for forming the electrode extraction window can be performed. Can be omitted.

実施例 以下に本発明の実施例について図面を参照にして説明す
る。
EXAMPLES Examples of the present invention will be described below with reference to the drawings.

第1図に本発明の第1の実施例における非線形抵抗素子
の断面図を、その製造プロセスの工程図を第2図に示す
FIG. 1 shows a sectional view of a nonlinear resistance element according to a first embodiment of the present invention, and FIG. 2 shows a process diagram of its manufacturing process.

第2図(a)に示すように 絶縁性基板としてのガラス
基板11上に スパッタ法にてCrより成る第一電極層
12を1.OOnmの膜厚で形成し この上に非線形抵
抗層13として、Pをドープした1+a−3iより成る
第一半導体層14(膜厚10100n、ノンドープのa
−3iより成る第二半導体層15(膜厚400nm)、
Pをドープしたn+a−3iより成る第三半導体層16
(膜厚10100nをプラズマCVD法にて順次積層す
る。
As shown in FIG. 2(a), a first electrode layer 12 made of Cr is formed by sputtering on a glass substrate 11 serving as an insulating substrate. A first semiconductor layer 14 (thickness 10100 nm, non-doped a
-2nd semiconductor layer 15 (film thickness 400 nm) consisting of 3i,
Third semiconductor layer 16 made of n+a-3i doped with P
(Sequentially laminated with a film thickness of 10100 nm by plasma CVD method.

次に 絶縁体層17を形成する力(その形成法はJJa
c、 Sci、Technol、 B4. (1986
)、 p、 818で示されたバイアスECRプラズマ
CVD法を適用する。その方法を第3図に示す装置構成
て SiO2の形成を例に説明する。
Next, the force for forming the insulator layer 17 (the formation method is JJa
c, Sci, Technol, B4. (1986
), p, 818 is applied. The method will be explained using the apparatus configuration shown in FIG. 3 and using the formation of SiO2 as an example.

第3図において、31はプラズマ発生源で、空洞共振器
として形成され その外周には磁気コイル32が配置さ
れていも 図示しないマグネトロンにより発生させた 周波数が2
.4.5GHzのマイクロ波を導波管33から石英ガラ
ス円板34を介してプラズマ発生源31に導入する。
In Fig. 3, reference numeral 31 denotes a plasma generation source, which is formed as a cavity resonator, and a magnetic coil 32 is arranged around its outer periphery, but the frequency generated by a magnetron (not shown) is 2.
.. Microwaves of 4.5 GHz are introduced from the waveguide 33 to the plasma generation source 31 via the quartz glass disk 34 .

ガス導入管35から02ガスを導入したプラズマ発生源
31において、磁気コイル32により発生した磁界とマ
イクロ波はECR共鳴し 高密度のプラズマが得られる
In the plasma generation source 31 into which the 02 gas is introduced from the gas introduction pipe 35, the magnetic field generated by the magnetic coil 32 and the microwave resonate with ECR, resulting in high-density plasma.

36はガラス基板37を配置する減圧状態の基板処理室
て プラズマ導入口38を介してプラズマ発生源31に
隣接接続されており、02プラズマ流がガラス基板37
方向に輸送される。ガラス基板37の近傍にガス導入管
39から5iHnを導入すると、SiH4ガスは活性な
02プラズマに触れて分解L  5iCh膜がガラス基
板37上に形成される。
36 is a substrate processing chamber in a reduced pressure state in which a glass substrate 37 is placed; it is connected adjacent to the plasma generation source 31 via a plasma inlet 38, and the 02 plasma flow flows into the glass substrate 37;
transported in the direction. When 5iHn is introduced from the gas introduction tube 39 near the glass substrate 37, the SiH4 gas comes into contact with the active 02 plasma, and a decomposed L5iCh film is formed on the glass substrate 37.

この際 ガラス基板37にはRF電源30を接続させ、
RF雷電圧印加する構成を採る。この構成により、ガラ
ス基板37上においてプラズマ流に対して、垂直な面で
は成膜速度がスパッタエツチング速度に勝っているので
成膜する力(斜めの部分ではスパッタエツチング速度が
勝り、成膜せずに削り取られていくことになる。
At this time, the RF power source 30 is connected to the glass substrate 37,
A configuration is adopted in which RF lightning voltage is applied. With this configuration, the film formation rate exceeds the sputter etching speed on the plane perpendicular to the plasma flow on the glass substrate 37, so the film formation force is strong (on the diagonal areas, the sputter etching speed exceeds the film formation rate, and no film is formed). It will be scraped away.

その結果 ガラス基板37上の平坦部では成膜が進む力
(傾斜部ではスパッタエツチングが進へ壁側か後退し 
平坦(L  埋め込みが実現でき、第2図(b)に示す
ようにガラス基板11上において非線形抵抗層13の形
成の有無にかかわらず、厚さ方向に非線形抵抗層を埋め
込んだ形で平坦性を維持した絶縁体層17を形成するこ
とができる。
As a result, on the flat part of the glass substrate 37, the film formation progresses (on the slope part, the sputter etching progresses, but on the wall side or retreats).
Flatness (L) can be achieved by embedding the nonlinear resistance layer in the thickness direction, regardless of whether or not the nonlinear resistance layer 13 is formed on the glass substrate 11, as shown in FIG. 2(b). A maintained insulator layer 17 can be formed.

ここで基板17に印加するRFパワーは200W程度が
適当である。
Here, the appropriate RF power to be applied to the substrate 17 is about 200W.

平坦性を維持した絶縁体層17を形成した後、雰囲気に
CF、を導入して、RF雷電圧よってFを含有したプラ
ズマを励起させ、 このプラズマを作用させてSiO2
より成る絶縁体層17をその表面より均等にドライエツ
チングする。
After forming the insulator layer 17 that maintains flatness, CF is introduced into the atmosphere, a plasma containing F is excited by RF lightning voltage, and this plasma acts to form SiO2.
The insulating layer 17 is uniformly dry-etched from its surface.

その結果 第2図(c)に示すように非線形抵抗層13
の上面を露呈させることができ、非線形抵抗層13をそ
の上面を除いて埋め込む形で、絶縁体層17が非線形抵
抗層13の上面の高さまで形成された状態にすム この後、第2図(d)に示すようにCrより成る第二電
極層18をスパッタ法で1100nの膜厚で形成する。
As a result, as shown in FIG. 2(c), the nonlinear resistance layer 13
After that, the insulator layer 17 is formed to the height of the upper surface of the nonlinear resistance layer 13 in such a manner that the upper surface of the nonlinear resistance layer 13 is buried except for the upper surface of the nonlinear resistance layer 13. As shown in (d), a second electrode layer 18 made of Cr is formed with a thickness of 1100 nm by sputtering.

さらに絶縁体層17上にスパッタ法でITOより成る画
素電極層19 (膜厚100nm)を形成し 第二電極
層に接続し アクティブマトリクスアレイを構成する。
Further, a pixel electrode layer 19 (thickness: 100 nm) made of ITO is formed on the insulating layer 17 by sputtering and connected to the second electrode layer to form an active matrix array.

その際 第二電極層18はその構成上 非線形抵抗層1
3の側面に接触する可能性は皆無になるとともに 第二
電極層18は段差部に沿うことなくほぼ同じ高さの画素
電極層19に接続することができ、短絡欠陥の発生 断
線の発生を解消できる。
At that time, the second electrode layer 18 has a nonlinear resistance layer 1 due to its configuration.
The second electrode layer 18 can be connected to the pixel electrode layer 19 at almost the same height without running along the step, eliminating short-circuit defects and disconnections. can.

第4図に本発明の第2の実施例における非線形抵抗素子
の断面図を示す。
FIG. 4 shows a cross-sectional view of a nonlinear resistance element according to a second embodiment of the present invention.

ガラス基板41上に スパッタ法にてCrより成る第一
電極層42を1100nの膜厚で形成し この上に非線
形抵抗層43として、ノンドープのa−3iより成る第
二半導体層44(膜厚400nm)、Pをドープしたn
+a−8iより成る第二半導体層45(膜厚100TI
[D)、ノンドープのa−3iより成る第二半導体層4
6(膜厚400nm)をプラズマCVD法にて順次積層
する。
A first electrode layer 42 made of Cr is formed with a thickness of 1100 nm on a glass substrate 41 by sputtering, and a second semiconductor layer 44 made of non-doped A-3i (with a thickness of 400 nm) is formed thereon as a non-linear resistance layer 43. ), P-doped n
+a-8i second semiconductor layer 45 (film thickness 100TI
[D) Second semiconductor layer 4 made of non-doped a-3i
6 (film thickness: 400 nm) are sequentially stacked by plasma CVD method.

次?Q  Singより成る絶縁体層47を前述のバイ
アスECRプラズマCVD法て 厚さ方向に平坦性を保
って、非線形抵抗層43を完全に埋め込む形で形成すも その後、雰囲気にCF4を導入して、RFパワーによっ
てFを含有したプラズマを励起させ、このプラズマを作
用させてSiO2より成る絶縁体層47をその表面より
均等にドライエツチングし 非線形抵抗層43の上面を
露呈させ、この上にCrより成る第二電極層48をスパ
ッタ法で1100nの膜厚で形成しITOより成る画素
電極層49(膜厚100nm)に接続させる。このよう
に構成された非線形抵抗素子も正負の両極性の電圧に対
して6v程度のしきい値電圧を示すとともに 短線 断
線の発生を解消した素子として有効に動作する。
Next? The insulator layer 47 made of Q Sing is formed by the aforementioned bias ECR plasma CVD method in such a way that it completely embeds the nonlinear resistance layer 43 while maintaining flatness in the thickness direction, and then CF4 is introduced into the atmosphere. A plasma containing F is excited by RF power, and this plasma is used to uniformly dry-etch the insulating layer 47 made of SiO2 from the surface thereof, exposing the upper surface of the nonlinear resistance layer 43, and on top of this, a layer made of Cr is formed. A second electrode layer 48 is formed with a thickness of 1100 nm by sputtering and connected to a pixel electrode layer 49 (thickness 100 nm) made of ITO. The nonlinear resistance element configured in this manner also exhibits a threshold voltage of about 6 V for voltages of both positive and negative polarities, and operates effectively as an element that eliminates the occurrence of short wire breaks.

第5図に本発明の第3の実施例における非線形抵抗素子
の断面図を示す。
FIG. 5 shows a cross-sectional view of a nonlinear resistance element in a third embodiment of the present invention.

ガラス基板51上に スパッタ法にてCrより成る第一
電極層52を1100nの膜厚で形成し この上に非線
形抵抗層53として、ノンドープのa−3iより成る第
一半導体層54(膜厚200nm)、Ptより成る金属
層55(膜厚100nm)、ノンドープのa−3iより
成る第二半導体層56(膜厚20Or+m)をプラズマ
CVD法にて順次積層すム 次に SiO2より成る絶縁体層57を前述のバイアス
ECRプラズマCVD法て 厚さ方向に平坦性を保って
、非線形抵抗層53を完全に埋め込む形で形成する。そ
の後、雰囲気にCF4を導入して、R,Fパワーによっ
てFを含有したプラズマを励起させ、このプラズマを作
用させて5102より成る絶縁体層57をその表面より
均等にドライエツチングし 非線形抵抗層の上面を露呈
させ、この上にCrより成る第二電極層58をスパッタ
法で1100nの膜厚で形成し ITOより成る画素電
極層59(膜厚100r+m)に接続させも このように構成された非線形抵抗素子は第一半導体層5
4と金属層55との界献 および第二半導体層56と金
属層55との界面においてショットキー障壁が形成され
 正負の両極性の電圧に対して10V程度のしきい値電
圧を示すとともに 短線 断線の発生を解消した素子と
して有効に動作する。
A first electrode layer 52 made of Cr is formed with a thickness of 1100 nm on a glass substrate 51 by sputtering, and a first semiconductor layer 54 made of non-doped A-3i (with a thickness of 200 nm) is formed thereon as a non-linear resistance layer 53. ), a metal layer 55 (thickness 100 nm) made of Pt, and a second semiconductor layer 56 (thickness 20 Or+m) made of non-doped a-3i are sequentially laminated by plasma CVD, followed by an insulating layer 57 made of SiO2. The nonlinear resistance layer 53 is formed using the aforementioned bias ECR plasma CVD method to completely bury the nonlinear resistance layer 53 while maintaining flatness in the thickness direction. Thereafter, CF4 is introduced into the atmosphere, a plasma containing F is excited by R and F power, and this plasma is used to uniformly dry-etch the insulator layer 57 made of 5102 from its surface. By exposing the upper surface and forming a second electrode layer 58 made of Cr with a thickness of 1100 nm on this by sputtering and connecting it to a pixel electrode layer 59 made of ITO (thickness 100 r+m), a nonlinear structure constructed in this way can be obtained. The resistance element is the first semiconductor layer 5
A Schottky barrier is formed at the interface between the second semiconductor layer 56 and the metal layer 55 and the interface between the second semiconductor layer 56 and the metal layer 55, and exhibits a threshold voltage of about 10 V for both positive and negative polarity voltages. It operates effectively as an element that eliminates the occurrence of.

な耘 金属層55として、Pt以外にPd、Mo。In addition to Pt, the metal layer 55 is made of Pd or Mo.

W、  Rh、Ti、  Ir等を用いてもショットキ
ー障壁を形成でき、有効である。
W, Rh, Ti, Ir, etc. can also be used to form a Schottky barrier and are effective.

以上に示した実施例において(よ 絶縁体層をSiO2
で形成している力”%  513Nsを用いてもよい。
In the embodiments shown above, the insulator layer is SiO2
A force of 513 Ns may be used.

その際 第3図に示したECRプラズマCVD装置にお
いて、ガス導入管からプラズマ源にN2を含んだガスを
導入すればよ(見 半導体層 電極層の膜厚は上記実施例に示したものに限
らず、また形成法もスパッタ法 プラズマCVD法に限
るものではなl、% 発明の詳細 な説明したように 本発明の非線形抵抗素子およびその
製造方法により、バターニングに使用するマスク枚数を
削減することができるとともに短絡あるいは断線に基づ
く素子欠陥を解消することができ、歩留まりの向上が実
現できるものであり、その工業的価値は非常に高1.%
At that time, in the ECR plasma CVD apparatus shown in Fig. 3, a gas containing N2 is introduced from the gas inlet tube into the plasma source (the thickness of the semiconductor layer and electrode layer is limited to that shown in the above example). Furthermore, the formation method is not limited to the sputtering method and the plasma CVD method.As described in detail of the invention, the number of masks used for patterning can be reduced by the nonlinear resistance element and the manufacturing method thereof of the present invention. It is possible to eliminate device defects caused by short circuits or disconnections, and improve yields, and its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非線形抵抗素子の第1の実施例の構成
を示す断面図 第2図は同実施例の非線形抵抗素子の製
造方法を示す工程図 第3図は同実施例の非線形抵抗素
子の製造に用いた積層装置の構成皿 第4図は本発明の
非線形抵抗素子の第2の実施例の構成を示す断面図 第
5図は本発明の非線形抵抗素子の第3の実施例の構成を
示す断面図 第6図は従来の非線形抵抗素子の構成を示
す断面図である。 11・・・ガラス基板、12・・・第一電極胤13・・
・非線形抵抗慰 17・・・絶縁体層 18・・・第二
電極胤代理人の氏名 弁理士 小鍜治 明 ほか2名第
1図 12厘学gLI 第2図 (fL) A 第3図 第4図 47画實霞1 第 !:1 図 第 6 図 18兜二を財 6θコ/タクトホール −z7絶睦伴屓
FIG. 1 is a sectional view showing the configuration of a first embodiment of the nonlinear resistance element of the present invention. FIG. 2 is a process diagram showing a method for manufacturing the nonlinear resistance element of the same embodiment. Figure 4 is a sectional view showing the configuration of the second embodiment of the nonlinear resistance element of the present invention. Figure 5 is a cross-sectional view showing the configuration of the third embodiment of the nonlinear resistance element of the present invention. Cross-sectional view showing the structure FIG. 6 is a cross-sectional view showing the structure of a conventional nonlinear resistance element. 11... Glass substrate, 12... First electrode seed 13...
・Nonlinear resistance comfort 17... Insulator layer 18... Name of second electrode representative Patent attorney Akira Okaji and two others Figure 1 12 Manabu GLI Figure 2 (fL) A Figure 3 Figure 4 Figure 47 Picture Kasumi No. 1! :1 Figure 6 Figure 18 Kabutoji 6θ Ko/Tact Hall-z7 Zetsumutsu Companion

Claims (6)

【特許請求の範囲】[Claims] (1)絶縁性基板上に第一電極層、非線形抵抗層、第二
電極層が順次積層されて構成される非線形抵抗素子であ
って、第一電極層上に形成された非線形抵抗層をその上
面を除いて埋め込む形で、絶縁体層が非線形抵抗層の上
面の高さまで形成され、さらに非線形抵抗層と絶縁体層
の上に第二電極層が形成された非線形抵抗素子。
(1) A nonlinear resistance element configured by sequentially laminating a first electrode layer, a nonlinear resistance layer, and a second electrode layer on an insulating substrate, in which the nonlinear resistance layer formed on the first electrode layer is A nonlinear resistance element in which an insulating layer is buried except for the top surface, and an insulating layer is formed up to the height of the top surface of the nonlinear resistance layer, and a second electrode layer is further formed on the nonlinear resistance layer and the insulating layer.
(2)非線形抵抗層は、N型半導体より成る第一半導体
層、ノンドープのI型半導体より成る第二半導体層、N
型半導体より成る第三半導体層を順次積層して構成した
請求項1記載の非線形抵抗素子。
(2) The nonlinear resistance layer includes a first semiconductor layer made of an N-type semiconductor, a second semiconductor layer made of a non-doped I-type semiconductor, and an N-type semiconductor layer made of a non-doped I-type semiconductor.
2. The nonlinear resistance element according to claim 1, wherein the nonlinear resistance element is constructed by sequentially laminating a third semiconductor layer made of a type semiconductor.
(3)非線形抵抗層は、ノンドープのI型半導体より成
る第一半導体層、N型半導体より成る第一半導体層、ノ
ンドープのI型半導体より成る第三半導体層を順次積層
して構成した請求項1記載の非線形抵抗素子。
(3) A claim in which the nonlinear resistance layer is constructed by sequentially laminating a first semiconductor layer made of a non-doped I-type semiconductor, a first semiconductor layer made of an N-type semiconductor, and a third semiconductor layer made of a non-doped I-type semiconductor. 1. The nonlinear resistance element according to 1.
(4)絶縁性基板上に第一電極層、非線形抵抗層を順次
積層した後、第一電極層とその上に形成した非線形抵抗
層を完全に埋め込み、かつ第一電極層の形成部、未形成
部によらず、絶縁体層を厚さ方向に平坦性を維持して形
成し、その後、絶縁体層をその表面より均等に除去し、
非線形抵抗層の表面を露呈させ、その上に第二電極層を
積層する非線形抵抗素子の製造方法。
(4) After sequentially laminating the first electrode layer and the nonlinear resistance layer on the insulating substrate, completely embed the first electrode layer and the nonlinear resistance layer formed thereon, and leave the area where the first electrode layer is formed Regardless of the formation part, the insulator layer is formed while maintaining flatness in the thickness direction, and then the insulator layer is removed uniformly from the surface,
A method for manufacturing a nonlinear resistance element, in which the surface of a nonlinear resistance layer is exposed and a second electrode layer is laminated thereon.
(5)マイクロ波と磁場とを作用させたECR放電によ
り酸素あるいは窒素を含有するプラズマ流を発生させ、
このプラズマ流をRFパワーを印加した絶縁性基板に照
射し、絶縁性基板の近傍に供給したSiを含有する気体
とプラズマ流内の酸素あるいは窒素と反応させ、SiO
_2あるいはSi_3N_4より成る絶縁体層を絶縁性
基板上に厚さ方向に平滑性を維持して形成する請求項4
記載の非線形抵抗素子の製造方法。
(5) Generate a plasma flow containing oxygen or nitrogen by ECR discharge using microwaves and a magnetic field,
This plasma flow is irradiated onto an insulating substrate to which RF power has been applied, and the Si-containing gas supplied near the insulating substrate is reacted with oxygen or nitrogen in the plasma flow.
Claim 4: An insulating layer made of _2 or Si_3N_4 is formed on an insulating substrate while maintaining smoothness in the thickness direction.
A method of manufacturing the described nonlinear resistance element.
(6)RF電圧によって励起したフッ素を含有したプラ
ズマを作用させて、絶縁体層をその表面より均等に除去
する請求項4記載の非線形抵抗素子の製造方法。
(6) The method of manufacturing a nonlinear resistance element according to claim 4, wherein the insulating layer is uniformly removed from its surface by applying fluorine-containing plasma excited by an RF voltage.
JP2333959A 1990-11-29 1990-11-29 Nonlinear resistor element and its production Pending JPH04199131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2333959A JPH04199131A (en) 1990-11-29 1990-11-29 Nonlinear resistor element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2333959A JPH04199131A (en) 1990-11-29 1990-11-29 Nonlinear resistor element and its production

Publications (1)

Publication Number Publication Date
JPH04199131A true JPH04199131A (en) 1992-07-20

Family

ID=18271903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2333959A Pending JPH04199131A (en) 1990-11-29 1990-11-29 Nonlinear resistor element and its production

Country Status (1)

Country Link
JP (1) JPH04199131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126139A (en) * 2002-10-01 2004-04-22 Hitachi Displays Ltd Display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126139A (en) * 2002-10-01 2004-04-22 Hitachi Displays Ltd Display device

Similar Documents

Publication Publication Date Title
JP2905032B2 (en) Manufacturing method of metal wiring
JPH08236775A (en) Film transistor, and its manufacture
US5486939A (en) Thin-film structure with insulating and smoothing layers between crossing conductive lines
JP3352191B2 (en) Method for manufacturing thin film transistor
KR970006733B1 (en) Thin film transistor manufacturing method
JP2004064048A (en) Contact hole forming method
JPH08184853A (en) Production of active matrix substrate and active matrix substrate
JPH1022508A (en) Manufacturing method of thin film transistor
JPH04199131A (en) Nonlinear resistor element and its production
JPH05190508A (en) Thin film etching method and laminated thin film etching method
JP2737982B2 (en) Method for manufacturing thin film transistor
JP2862737B2 (en) Thin film transistor and method of manufacturing the same
KR100663288B1 (en) Method for fabricating tft-lcd
JP3489751B2 (en) Array substrate for display device and liquid crystal display device
JPS62216369A (en) Manufacture of thin film transistor
JPH06281957A (en) Active matrix liquid crystal display device
JP2011155094A (en) Thin film transistor and method of manufacturing the same
US5523187A (en) Method for the fabrication of liquid crystal display device
JPH05198814A (en) Semiconductor device and manufacturing method thereof
JPH04213427A (en) Production of electrode wiring of multiplayered metal film
JPH05265041A (en) Production of liquid crystal display device
KR100626355B1 (en) Method of forming polysillicon type TFT
JPS62293785A (en) Manufacture of thin film semiconductor element
JPH05267344A (en) Thin-film semiconductor device and manufacture thereof
JPH0254577A (en) Manufacture of thin film transistor