JPH0416537B2 - - Google Patents

Info

Publication number
JPH0416537B2
JPH0416537B2 JP57216099A JP21609982A JPH0416537B2 JP H0416537 B2 JPH0416537 B2 JP H0416537B2 JP 57216099 A JP57216099 A JP 57216099A JP 21609982 A JP21609982 A JP 21609982A JP H0416537 B2 JPH0416537 B2 JP H0416537B2
Authority
JP
Japan
Prior art keywords
sintered body
cbn
solid solution
wbn
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57216099A
Other languages
Japanese (ja)
Other versions
JPS59107060A (en
Inventor
Hiroshi Shimoda
Ryo Yamaya
Masaru Yagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP57216099A priority Critical patent/JPS59107060A/en
Publication of JPS59107060A publication Critical patent/JPS59107060A/en
Publication of JPH0416537B2 publication Critical patent/JPH0416537B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高硬度、耐摩耗性、靭性、耐熱性及
び耐食性に優れ、一般の鋼及び鋳鉄から難削材で
ある焼入れ合金鋼、浸炭材、ステンレス鋼及び高
ニツケル合金等の切削工具並びに軸受、ワークレ
スト及び線引きダイス等の耐摩耗工具に適した高
密度相窒化硼素焼結体及びその製造方法に関す
る。 従来、高密度相窒化硼素焼結体は、CBN(立方
晶形BN)および/またはWBN(ウルツ形BN)
から成る高密度相窒化硼素と結合相とから成る焼
結体と判断したとき、結合相中に金属を添加して
焼結過程において液相を生じさせることによつて
焼結性の促進及び焼結体の緻密化を行なわせるも
のがある。このように結合相中に金属を添加した
高密度相窒化硼素焼結体は、焼結後には合金又は
金属間化合物として焼結体中に存在している場合
がある。焼結体中に合金又は金属間化合物が存在
していると焼結体の靭性が向上し、焼結体と超硬
合金又はサーメツトとの固着結合も優れる傾向に
ある反面耐摩耗性及び耐熱性が低下したり、切削
工具として使用すると被削材との溶着摩耗及び溶
着から生じる溶着性チツピング又は極端な場合に
は刃先が塑性変形を生じる等と云う問題がある。 本発明は、上述のような従来の問題点を除去
し、高硬度、耐熱性、耐食性及び高温強度に優れ
しかも耐摩耗性及び靭性を高めると共に超硬合金
又はサーメツトとの固着結合が強固になつた高密
度相窒化硼素焼結体と超硬合金又はサーメツトと
の複合焼結体及びその製造方法である。即ち、本
発明の複合焼結体は、40〜70体積%のCBNおよ
び/またはWBNと残部が少なくともAl、Si、
Fe、Ni、Co、Mn、Mg、Cr、Cuの1種以上の
金属元素を含有して成る結合相と不可避不純物と
から成る焼結体と超硬合金又はサーメツトとが強
固に固着結合した複合焼結体であつて、この複合
焼結体のCBNおよび/またはWBNを含有した焼
結体の結合相は、1〜20体積%のAl、Si、Fe、
Ni、Co、Mn、Mg、Cr、Cuの1種以上の金属
と、残り(Ti、W、Ta)CN又は(Ti、W、
Ta、Nb)CNのB1型固溶体とTi、Zr、Hf、Ta、
Nb、Vの窒化物、炭窒化物もしくはこれらの相
互固溶体、Tiのホウ化物、Alの窒化物の中の1
種以上と粒界析出した炭化タングステンとでな
り、この金属が焼結体の中で超硬合金又はサーメ
ツトと固着結合した接触面側を最も多くし、接触
面から離れる程少なくなる濃度勾配にした複合焼
結体である。このような結合相を有する高密度相
窒化硼素焼結体部分は、焼結過程において結合相
中のAl、Si、Fe、Ni、Co、Mn、Mg、Cr、Cu
の1種以上の金属が液相状になつて他の各粒子間
中を滲透することによつて焼結体の焼結性を促進
し、緻密化に寄与すると共に焼結後においては焼
結体と超硬合金又はサーメツトとの固着結合した
接触面側に最も多く存在しているAl、Si、Fe、
Ni、Co、Mn、Mg、Cr、Cuの1種以上の金属が
焼結体と超硬合金又はサーメツトとの固着結合に
寄与するため強固に固着するのと接触面近辺の焼
結体の靭性を高める傾向となる。又、焼結体と超
硬合金又はサーメツトとが固着結合した接触面か
ら離れる程焼結体中に存在しているAl、Si、Fe、
Ni、Co、Mn、Mg、Cr、Cuの1種以上の金属量
が少なくなるために切削工具又は耐摩耗工具とし
て使用するときに例えば切削工具の切刃のような
実際の作用部分は非常に硬度が高く、耐摩耗性が
優れたものになり、この切刃を支えている刃先に
は切刃よりも多いAl、Si、Fe、Ni、Co、Mn、
Mg、Cr、Cuの1種以上の金属が存在しているた
めに靭性も優れたものになつている。こゝで使用
するAl、Si、Fe、Ni、Co、Mn、Mg、Cr、Cu
の1種以上の金属は、結合相中の他の添加物によ
つても異なるが高密度相窒化硼素との濡れ性及び
反応性の優れたAlを含有していることが望まし
い。又、結合相は、1〜20体積%のAl、Si、Fe、
Ni、Co、Mn、Mg、Cr、Cuの1種以上の金属以
外に2〜40%の(Ti、W、Ta)CN又は(Ti、
W、Ta、Nb)CNのB1型固溶体と6〜40%の
Ti、Zr、Hf、Ta、Nb、Vの1種以上の窒化物、
炭窒化物もしくはこれらの相互固溶体化合物と
0.1〜20%の粒界析出したWCを含有していると粒
界析出したWCがCBNおよび/またはWBNと結
合相中の他の化合物との各粒子表面に非常に微細
な粒子として存在するために、この粒界析出した
WCと濃度勾配をもつたAl、Si、Fe、Ni、Co、
Mn、Mg、Cr、Cuの1種以上の金属とがCBNお
よび/またはWBNと結合相との結合強度を高め
ると共に結合相内の各粒子間の結合強度も高める
と云つた焼結体内の各粒子間の係合媒介的作用の
ために焼結体の靭性及び強度を著しく向上させた
ものと考えられる。靭性を高める反面硬さを低下
させるAl、Si、Fe、Ni、Co、Mn、Mg、Cr、
Cuの1種以上の金属が焼結体の実際に使用され
る作用部分では非常に少ないのと粒界析出した
WCが非常に微細であるために焼結体の作用部分
は硬度が高く、結合相中のB1型固溶体と他化合
物との高い硬度とにより耐摩耗性が優れたものに
なる。 本発明の複合焼結体の製造方法は、出発原料と
して40〜70体積%のCBNおよび/またはWBNと
残部が結合相と不可避不純物とを混合粉砕して成
形した粉末圧粉体を超硬合金又はサーメツトから
なる塊体に直接接触させてCBNおよび/または
WBNの安定領域である圧力40〜60Kb、温度
1200〜1500℃の超高圧高温下で焼結し、CBNお
よび/またはWBN含有焼結体内に超硬合金又は
サーメツトからFe、Ni、Coの1種以上の金属を
滲透拡散させ、この滲透拡散したFe、Ni、Coの
1種以上の金属が焼結体内で濃度勾配を有し、こ
の濃度勾配を持つ金属は焼結体と超硬合金又はサ
ーメツトとの接触面側が最も多く、接触面から離
れる程少なくする複合焼結体の製造方法でも良
く。又、超硬合金又はサーメツトに含有している
金属ではなく高密度相窒化硼素焼結体の焼結促進
及び緻密化に更に効果の有る金属又はこの金属を
積極的に滲透拡散させるために出発原料として40
〜70体積%のCBNおよび/またはWBNと残部が
結合相と不可避不純物とを混合粉砕して成形した
粉末圧粉体と超硬合金又はサーメツトとの間に1
〜20体積%のAl、Si、Fe、Ni、Co、Mn、Mg、
Cr、Cuの1種以上の金属又は合金から成る板状
物体を設置して圧力4060Kb、温度1200〜1500℃
の超高圧高温下で焼結し、CBNおよび/または
WBN含有焼結体内に板状物体からAl、Si、Fe、
Ni、Co、Mn、Mg、Cr、Cuの1種以上の金属又
は合金を滲透拡散させ、この滲透拡散した金属が
焼結体内で濃度勾配を有し、この濃度勾配を持つ
金属は焼結体と超硬合金又はサーメツトとの接触
面側が最も多く、接触面から離れる程少なくする
複合焼結体の製造方法でも良い。こゝで述べる
Al、Si、Fe、Ni、Co、Mn、Mg、Cr、Cuの1
種以上の金属又は合金から成る板状物体は、薄板
でも良く、メツキ又は蒸著等による方法でも良
い。更に望ましい本発明の複合焼結体の製造方法
は、焼結体の結合相が出発原料として2〜40体積
%の第1図に表わすA,B,C,Dの線上及び
A,B,C,Dで囲まれた内部の組成成分にある
B1型炭化物固溶体(但し、TaCに対して30%以
下はNbCで置換しても焼結体の諸特性が変らな
いので良く、A点は、40モル%TiC−50モル%
WC−10モル%TaC、B点は、55モル%TiC−35
モル%WC−10モル%TaC、C点は、40モル%
TiC−20モル%WC−40モル%TaC、D点は、25
モル%TiC−35モル%WC−40モル%TaC)と6
〜40体積%のTi、Zr、Hf、Ta、Nb、Vの1種
以上の窒化物、炭窒化物もしくはこれらの相互固
溶体と40〜70体積%のCBNおよび/またはWBN
とを混合粉砕して成形した粉末圧粉体を直接超硬
合金又はサーメツトに接触させて、圧力40〜
60Kb、温度1200〜1500℃の超高圧高温下で焼結
することにより超硬合金又はサーメツトに含有し
ているFe、Ni、Coの1種以上の金属をCBNおよ
び/またはWBN含有焼結体中に滲透拡散した
り、又は前述した組成のCBNおよび/または
WBN含有粉末圧粉体と超硬合金又はサーメツト
との間にAl、Si、Fe、Ni、Co、Mn、Mg、Cr、
Cnの1種以上の金属又は合金から成る板状物体
を設置して圧力40〜60Kb、温度1200〜1500℃の
超高圧高温下で焼結することにより板状物体の金
属をCBNおよび/またはWBN含有焼結体中に滲
透拡散する複合焼結体の製造方法が望ましい。以
上の複合焼結体の製造方法で金属元素の滲透拡散
を容易にするためと焼結性の促進と焼結体の緻密
化と焼結体の諸特性を向上させるために出発原料
であるCBNおよび/またはWBNの粉末粒子表面
に化学蒸着法又は物理蒸着法によつてTi、Zr、
Hf、Ta、Nb、Vの1種以上の窒化物、炭窒化
物もしくはこれらの相互固溶体化合物を被覆する
ことが望ましい。CBNおよび/またはWBN含有
焼結体中に滲透拡散させる板状物体が薄板、メツ
キ及び蒸着等の方法にしたり、CBNおよび/ま
たはWBNの出発原料の粉末粒子表面に化合物を
蒸着するのは、粉末粒子表面に吸着している酸素
及び水分を出来るだけ取り除き密閉された超高圧
高温下でガス発生量を少なくするためにもなる。
吸着酸素量を少なくするためと金属元素の滲透拡
散性を良くするためにCBNおよび/またはWBN
の出発原料の粉末粒子表面に蒸着被覆するのは、
Ta、Nb、Vの1種以上の窒化物、炭窒化物もし
くはこれらの相互固溶体化合物がより望ましい。 本発明の複合焼結体の製造方法は、出発原料が
CBNおよび/またはWBNとWCを析出する原料
である(Ti、W、Ta)C又は(Ti、W、Ta、
Nb)CのB1型炭化物固溶体とこのB1型炭化物固
溶体に侵入拡散してWCの析出に寄与するTi、
Zr、Hf、Ta、Nb、Vの1種以上の窒化物、炭
窒化物もしくはこれらの相互固溶体化合物中に焼
結過程でAl、Si、Fe、Ni、Co、Mn、Mg、Cr、
Cuの1種以上の金属が液相状になつて滲透拡散
し、この液相状の金属がCBNおよび/または
WBNとB1型炭化物固溶体とTi、Zr、Hf、Ta、
Nb、Vの1種以上の化合物との濡れ性が良好で
あることから各粒子を取り囲む形で滲透拡散して
各粒子の粒子成長を抑制すると共にこれらの液相
状の金属がB1型炭化物固溶体中のWとTi、Zr、
Hf、Ta、Nb、Vの1種以上の化合物との拡散
移動の媒介をして侵入型元素である窒素及び炭素
の拡散移動を促進させ、B1型炭化物固溶体内に
主として窒素元素が侵入拡散することによつて
B1型炭化物中のWCが微細な粒子として粒界析出
してくると考えられる。 こゝで本発明の複合焼結体で数値限定した理由
について述べる。 (a) CBNおよび/またはWBNの量 CBNおよび/またはWBNが40体積%未満で
は、高硬度なCBNおよび/またはWBNの効果
が弱くて耐摩耗性が低くなり過ぎるため、70体
積%を越えて多くなると作用部分に相当する所
の金属量を少なくする濃度勾配のために強度が
低くなり過ぎて難削材等の断続的切削条件で使
用し難くなるためにCBNおよび/またはWBN
の量は40〜70体積%とした。 (b) B1型固溶体の量 B1型固溶体量が2体積%未満ではWCの粒界
析出が殆んど生じなく、40体積%を越えて多く
なると相対的に他の成分量が少なくなるが特に
CBNおよび/またはWBN量とTi、Zr、Hf、
Ta、Nb、Vの1種以上の化合物量が少なくな
ることから耐摩耗性の低下が生ずる。このため
にB1型固溶体量は、2〜40体積%とした。 又、出発原料におけるB1型固溶体量を第1
図のA,B,C,Dの線上及びA,B,C,D
で取り囲まれた内部の組成成分に限定した理由
は、AD線を外れたWCの多い側ではWCの析出
量が多くなり過ぎるのと出発原料として使用す
るときに完全な固溶体が出来難いためであり、
AB線を外れたTaCの少ない側では焼結体とし
ての耐熱性及び高温での強度低下となり、BC
線を外れたTiCの多い側ではWCが析出し難く
なり、CD線を外れたTaCの多い側では価格が
高くなると共に焼結体の硬さが低下傾向になる
ために出発原料のB1型固溶体は第1図のA,
B,C,Dの線上及びA,B,C,Dで囲まれ
た内部の組成成分にした。 (c) Ti、Zr、Hf、Ta、Nb、Vの1種以上の化
合物量 Ti、Zr、Hf、Ta、Nb、Vの1種以上の窒
化物、炭窒化物もしくはこれらの相互固溶体化
合物量が6体積%未満ではB1型固溶体の中か
らWCを析出させる作用が弱く、40体積%を越
えて多くなると相対的に他の成分量が少なくな
るが特にB1型固溶体とCBNおよび/または
WBNの量が少なくなつて耐摩耗性が低下する
ためにTi、Zr、Hf、Ta、Nb、Vの1種以上
の化合物量は6〜40体積%とした。 (d) Al、Si、Fe、Ni、Co、Mn、Mg、Cr、Cu
の1種以上の金属量 上記量が1体積%未満では、焼結体の緻密化
に支障を生じ、20体積%を越えて多くなると金
属とから成る金属間化合物が多くなり過ぎて焼
結体の硬さ低下と耐熱性の低下となるために上
記量は1〜20体積%とした。 (e) WCの粒界析出量 WCの粒界析出量が0.1体積%未満では0.1μm
以下の非常に微細なWCであつてもWC粒子の
数が少な過ぎて特に靭性及び強度低下の傾向に
なり、20体積%を越えて多くなると出発原料の
B1型炭化物固溶体の調整が困難になるために
WC粒界析出量は0.1〜20体積%とした。 本発明は、ガードル型、ベルト型等の実用さ
れている超高圧装置を使用して焼結することが
できる。 次に、本発明の複合焼結体及びその製造方法に
ついて実施例に従つて詳細に説明する。 実施例 1 平均粒度3μmのCBNを62%と平均粒度1.5μm
の(40%Ti−50%W−10%Ta)C固溶体を10%
と平均粒度2μmのTiNを25%と平均粒度15μmの
Alを3%とから成る混合粉末を外径10mm高さ1.0
mmに型押成形した。この粉末圧粉体をMo製容器
内のWC−10%Co超硬合金塊体の一面に接触させ
て設置し、真空度10-4mmHg温度1000℃で脱ガス
した後、ベルト型高圧装置に装入し、圧力50Kb
温度1320℃で30分保持後更に1450℃で20分保持し
て焼結した。こうして得た複合焼結体を放電切断
し、超硬合金の先端にロウ付けしてTNG332チツ
プに仕上げた。この本発明の複合焼結体がロー付
けされたTNG332と市販のCBN系複合焼結体が
ロー付けされたTNG332を比較にして下記の旋削
試験によつて切削し、平均逃げ面摩耗量を測定し
た結果、本発明品はVB=0.12mmに対し市販品は
VB=0.18mmと本発明の複合焼結体の耐摩耗性が優
れていることが確認できた。 旋削試験条件 被削材 SKD11(HRc56〜58) 切削速度 90m/min 切込み量 0.5mm 送り量 0.1mm/rev 切削時間 10min 切削油 エマルカツトNo.10 本発明の複合焼結体のCBN含有焼結体部分を
X線マイクロアナライザーで解析した所、超硬合
金との接着面近辺はCoが約2%滲透拡散してお
り、切刃部近辺は殆んどCoがなく、Coの濃度勾
配は略直線的になつている傾向にあつた。又、
CBN含有焼結体部分をX線解析した結果、CBN
と(Ti、W、Ta)CNとTiNCとTiB2と析出し
たWCと考えられる回折線が確認できた。顕微鏡
組織観察からも析出したWCが確認できた。 実施例 2 平均粒度3μmのCBNを63%と平均粒度2μmの
(55%Ti−35%W−10%Ta)Cの固溶体を10%
と平均粒度2μmの(90%Ti−10%Ta)Nを20%
とから成る混合粉末を外径10mm高さ1.0mmに型押
成形した。この粉末圧粉体と外径10mm高さ3.0mm
の超硬合金との間に粉末圧粉体の約7%に相当す
るAl薄板を挾んでMo製容器内に設置し、真空度
10-4mmHg、温度1000℃で脱ガス後ベルト型高圧
装置に装入し圧力50Kb温度1450℃で20分保持し
て焼結した。こうして得た複合焼結体を実施例1
と同様にしてTNG332チツプに仕上げた。市販の
CBN系複合焼結体がロー付けされたTNG332を
比較にして下記の旋削試験によつて切削し、平均
逃げ面摩耗量を測定した結果、本発明品はVB
0.21に対し市販品は微少チツピングが生じてい
た。 旋削試験条件 被削材 SCM3(HRc60〜62) 切削速度 150m/min 切込み量 0.2mm 送り量 0.1mm/rev 切削時間 30min 切削油 エマルカツトNo.10 本発明の複合焼結体のCBN含有焼結体部分を
X線マイクロアナライザーで解析した所、超硬合
金との接着面近辺はAlが8.5%と多く、接着面か
ら離れる程CBN含有焼結体の内部の略中心部分
のAlが2.5%と、Alの濃度勾配が略直線的になつ
ている傾向にあつた。又、CBN含有焼結体部分
をX線解析した結果、CBNと(Ti、W、Ta)
CNと(Ti、Ta)NCとTiB2と析出したWCと考
えられる回折線が確認でき、更に接着面近辺は
AlNと考えられる回折線が確認できた。顕微鏡
組織観察からも析出したWCが確認できた。 実施例 3 平均粒度3μmのCBN粒子表面に500℃で反応性
イオンプレーテイング法(Ta原子をイオン化し
てCBN粒子表面に密着させながら同時にN2ガス
を流入させて最終的にはCBN表面にTaNを被覆
する)によりTaNを10%被覆したものを60%と
3μm以下の(50%W−30%Ti−20%Ta)Cを20
%と2μm以下のTaN0.7を15%と2μm以下の
TiN0.7を5%との混合粉末に0.7%のパラフイン
を添加してn−ヘキサン溶媒中で粉砕混合し、乾
燥後Zr製容器中で15mm高さ3mmの超硬合金に混
合粉末の5%に相当するAl薄板を接着させて、
このAl薄板上に混合粉末を充填して900℃、10-4
mmHgの真空中で30分保持することによりパラフ
インを除去した。冷却後NaClでZr製容器を包囲
して超高圧装置内に設置し1万気圧、1000℃で20
分保持後5.5Kb1450℃まで昇圧昇温して25分保持
により複合焼結体を得た。このようにして得た複
合焼結体を実施例1と同様に加工してSNGN432
とTNGN332のチツプに仕上げた。この本発明の
複合焼結体と市販の約60%CBN含有焼結体を比
較にして下記のA及びBの切削試験を行つた。 A連続旋削条件 被削材 SUJ−2(HRc60〜63) 切削速度 100m/min 切込み量 0.5mm 送り量 0.1mm/rev 切削油 エマルカツトNo.10 工具形状 SNGN432 B連続旋削条件 被削材 SKD−11(HRc59〜62) 切削速度 90m/min 切込み量 0.5mm 送り量 0.1mm/rev 切削油 エマルカツトNo.10 工具形状 TNGN332 試験の結果、A条件では切削時間が20分間迄は
本発明の複合焼結体と市販品の平均逃げ面摩耗量
が殆んど同じであつたが30分間切削すると本発明
の複合焼結体の平均逃げ面摩耗量がVB=0.16mmで
あつたのに対し市販品の平均逃げ面摩耗量がVB
=0.24mmであつた。B条件では本発明の複合焼結
体の平均逃げ面摩耗量が20分間の切削でVB=0.11
mm30分間の切削でVB=0.14mmであつたのに対し市
販品の平均逃げ面摩耗量が20分間の切削でVB
0.16mm30分間切削でVB=0.20mmであつた。このこ
とから本発明の複合焼結体が耐摩耗性で優れてい
ることが確認できた。 本発明の複合焼結体のCBN含有焼結体部分を
X線マイクロアナライザーで解析した所、超硬合
金との接着面近辺はAlが6.4%と多く、接着面か
ら離れる程CBN含有焼結体の内部の略中心部分
のAlが1.3%と、Alの濃度勾配が略直線的になつ
ている傾向にあつた。又、CBN含有焼結体部分
をX線解析した結果、CBNと(Ti、W、Ta)
CNと(Ta、Ti)NCとTiB2と析出したWCと考
えられる回折線が確認できた。更に顕微鏡組織観
察からも析出したWCが確認できた。 実施例 4 平均粒度3μmのCBNを30%と平均粒度4μmの
CBN粒子表面に高速マグネトロンスパツタリン
グにより5%のTaNと5%のTiNを被覆したも
のを40%と3μm以下の(50%W−30%Ti−15%
Ta−5%Nb)Cを10%と2μm以下の(50%Ti
−25%Ta−25%Zr)N0.7を20%とパラフインを
3%添加してn−ヘキサン溶媒中、乾燥後Zr製
容器中で外径15mm高さ3mmの超硬合金に混合粉砕
粉末の5%に相当する70%Al−30%Cu合金薄板
を接着させて、このAl−Cu薄板上に混合粉砕粉
末を充填して実施例3と同様に複合焼結体を得
た。このようにして得た複合焼結体と市販の約60
%CBN含有焼結体とを実施例1と同様に加工し
てSNGN432のチツプに仕上げた。 この本発明の複合焼結体と市販のCBN複合焼
結体を下記の条件で断続旋削試験を3回繰り返し
行つた。 断続旋削条件 被削材 SCM−3 浸炭焼入材(HRc60〜62)
(50φ×200の被削材に8mm巾×5mm深さの溝2
本入り) 切削速度 120m/min 切込み量 0.15mm/rev 送り量 0.2mm 切削時間 チツピング又は欠損する迄 試験の結果本発明の複合焼結体は、工具寿命迄
に60分間、52分間、56分間切削出来たのに対し市
販品は、工具寿命迄に15分間、30分間、10分間し
か切削出来なかつた。このことから本発明品は、
耐欠損性が優れておりしかもバラツキ範囲も狭い
安定したものであることが確認できた。 本発明の複合焼結体のCBN含有焼結体部分を
X線マイクロアナライザーで解析した所、超硬合
金との接着面近辺はAlとCuの金属が6.7%と多
く、接着面から離れる程CBN含有焼結体の内部
の略中心部分のAlとCuの金属が1.5%と、Alと
Cuの金属の濃度勾配が略直線的になつている傾
向にあつた。又、CBN含有焼結体部分をX線解
析した結果、CBNと(Ti、W、Ta、Nb)CNと
(Ti、Ta、Zr)NCとTiB2と析出したWCと考え
られる回折線が確認できた。更に顕微鏡組織観察
からも析出したWCが確認できた。 実施例 5 平均粒度3μmのCBNと平均粒度4μmのWBN
と平均粒度3μmのCBN粒子表面にTaNを10%被
覆したものと、平均粒度4μmのWBNの粒子表面
にTaNを10%被覆したものと、平均粒度1〜2μ
mの各種炭化物固溶体及び窒化物化合物と各種の
金属及び合金薄板と外径10mm高さ3mmの超硬合金
及びこの超硬合金の表面に各種金属元素をイオン
プレーテイングによつて被覆したものを準備して
第1表に示した配合組成及び組合せでもつて実施
例1と同一製造条件によつて焼結した。このよう
にして焼結した本発明の複合焼結体の高密度相窒
化硼素含有焼結体部分をX線解析した結果、各試
料共CBN又はWBNとB1型炭窒化物固溶体とTi、
Zr、Hf、Ta、Nb、Vの窒化物窒炭化物及びこ
れらの相互固溶体化合物とTi、Zr、Hfの硼化物
又は硼窒化物と超硬合金との接着面近辺の焼結体
部分には窒化アルミニウムと考えられる回折線と
析出したWCの回折線が確認できた。又、X線マ
イクロアナライザーにて高密度相窒化硼素含有焼
結体部分のAl、Si、Fe、Ni、Co、Mn、Mg、
Cuの金属量を調べた所、超硬合金との接着面近
辺には金属量が多く接着面から離れる程金属量が
少なくなると云つた略直線的な濃度勾配になつて
いることが第2表の如く確認できた。析出した
WCについては顕微鏡組織観察からも確認した。
The present invention provides cutting tools and bearings made of hardened alloy steels, carburized materials, stainless steels, high nickel alloys, etc., which are difficult-to-cut materials that have excellent hardness, wear resistance, toughness, heat resistance, and corrosion resistance. , relates to a high-density phase boron nitride sintered body suitable for wear-resistant tools such as work rests and wire drawing dies, and a method for manufacturing the same. Traditionally, dense phase boron nitride sintered bodies are CBN (cubic BN) and/or WBN (Wurtz BN).
When it is determined that the sintered body consists of boron nitride, a high-density phase consisting of There are things that make the body denser. In this way, a high-density phase boron nitride sintered body in which a metal is added to the binder phase may exist in the sintered body as an alloy or an intermetallic compound after sintering. The presence of an alloy or intermetallic compound in the sintered body improves the toughness of the sintered body and tends to improve the bonding between the sintered body and the cemented carbide or cermet, but it also reduces wear resistance and heat resistance. When used as a cutting tool, there are problems such as welding wear with the workpiece and welding chipping caused by welding, or in extreme cases, plastic deformation of the cutting edge. The present invention eliminates the above-mentioned conventional problems and has excellent hardness, heat resistance, corrosion resistance, and high-temperature strength, as well as improved wear resistance and toughness, as well as strong bonding with cemented carbide or cermet. The present invention provides a composite sintered body of a high-density phase boron nitride sintered body and a cemented carbide or a cermet, and a method for manufacturing the same. That is, the composite sintered body of the present invention contains 40 to 70% by volume of CBN and/or WBN, and the balance is at least Al, Si,
A composite in which a sintered body consisting of a binder phase containing one or more metal elements of Fe, Ni, Co, Mn, Mg, Cr, and Cu and unavoidable impurities and a cemented carbide or a cermet are firmly bonded. The binder phase of the sintered body containing CBN and/or WBN of this composite sintered body contains 1 to 20% by volume of Al, Si, Fe,
One or more metals of Ni, Co, Mn, Mg, Cr, Cu and the rest (Ti, W, Ta) CN or (Ti, W,
Ta, Nb) B1 type solid solution of CN and Ti, Zr, Hf, Ta,
One of Nb, V nitride, carbonitride or mutual solid solution thereof, Ti boride, Al nitride
Tungsten carbide precipitates at the grain boundaries, and the concentration gradient is such that the concentration of this metal is highest on the contact surface side where it is firmly bonded to the cemented carbide or cermet in the sintered body, and decreases as it moves away from the contact surface. It is a composite sintered body. In the high-density boron nitride sintered body part having such a binder phase, Al, Si, Fe, Ni, Co, Mn, Mg, Cr, Cu in the binder phase is removed during the sintering process.
One or more of the metals becomes a liquid phase and permeates between the other particles, promoting the sinterability of the sintered body, contributing to densification, and preventing sintering after sintering. Al, Si, Fe,
One or more metals such as Ni, Co, Mn, Mg, Cr, and Cu contribute to the fixed bond between the sintered body and the cemented carbide or cermet, so they stick firmly and the toughness of the sintered body near the contact surface. There is a tendency to increase In addition, the further away from the contact surface where the sintered body and the cemented carbide or cermet are bonded, the more Al, Si, Fe, and
Because the amount of one or more of Ni, Co, Mn, Mg, Cr, and Cu is reduced, the actual working parts, such as the cutting edge of a cutting tool, are extremely It has high hardness and excellent wear resistance, and the cutting edge supporting this cutting edge contains Al, Si, Fe, Ni, Co, Mn, and more than the cutting edge.
It also has excellent toughness due to the presence of one or more metals such as Mg, Cr, and Cu. Al, Si, Fe, Ni, Co, Mn, Mg, Cr, Cu used here
The one or more metals desirably contain Al, which has excellent wettability and reactivity with the dense boron nitride phase, although this varies depending on other additives in the binder phase. In addition, the binder phase contains 1 to 20% by volume of Al, Si, Fe,
2 to 40% of (Ti, W, Ta)CN or (Ti,
W, Ta, Nb) B1 type solid solution of CN and 6-40%
One or more nitrides of Ti, Zr, Hf, Ta, Nb, V,
with carbonitrides or mutual solid solution compounds of these
Containing 0.1-20% grain-boundary precipitated WC because the grain-boundary precipitated WC exists as very fine particles on each grain surface with CBN and/or WBN and other compounds in the binder phase. This grain boundary precipitated
Al, Si, Fe, Ni, Co, with WC and concentration gradient
One or more metals of Mn, Mg, Cr, and Cu increase the bond strength between CBN and/or WBN and the binder phase, and also increase the bond strength between each particle in the binder phase. It is believed that the toughness and strength of the sintered body were significantly improved due to the engagement-mediated effect between the particles. Al, Si, Fe, Ni, Co, Mn, Mg, Cr, which increase toughness but decrease hardness,
One or more metals such as Cu are very rare in the working parts of the sintered body and precipitate at grain boundaries.
Since the WC is very fine, the working part of the sintered body has high hardness, and the high hardness of the B1 type solid solution and other compounds in the binder phase provides excellent wear resistance. The method for producing a composite sintered body of the present invention involves mixing and pulverizing 40 to 70% by volume of CBN and/or WBN as a starting material, with the remainder being a binder phase and unavoidable impurities, and molding the powder compact into a cemented carbide. Or CBN and/or in direct contact with the cermet mass.
Pressure 40-60Kb, temperature which is stable area of WBN
It is sintered under ultra-high pressure and high temperature of 1200 to 1500℃, and one or more metals such as Fe, Ni, and Co are permeated and diffused from the cemented carbide or cermet into the CBN and/or WBN-containing sintered body. One or more metals such as Fe, Ni, and Co have a concentration gradient within the sintered body, and the metals with this concentration gradient are most often located on the contact surface between the sintered body and the cemented carbide or cermet, and are far away from the contact surface. A method for producing a composite sintered body in which the amount is reduced to a certain degree may be used. Also, instead of metals contained in cemented carbide or cermets, metals that are more effective in promoting sintering and densification of high-density phase boron nitride sintered bodies, or starting materials for actively permeating and diffusing this metal. as 40
1 between a powder green compact formed by mixing and pulverizing ~70% by volume of CBN and/or WBN and the remainder being a binder phase and unavoidable impurities, and a cemented carbide or cermet.
~20% by volume Al, Si, Fe, Ni, Co, Mn, Mg,
A plate-shaped object made of one or more metals or alloys of Cr and Cu is installed at a pressure of 4060Kb and a temperature of 1200 to 1500℃.
Sintered under ultra-high pressure and high temperature, CBN and/or
Al, Si, Fe,
One or more metals or alloys of Ni, Co, Mn, Mg, Cr, and Cu are permeated and diffused, and the permeated and diffused metal has a concentration gradient within the sintered body. A method for manufacturing a composite sintered body may be used in which the amount is greatest on the contact surface side with the cemented carbide or cermet, and decreases as the distance from the contact surface increases. I will explain it here
1 of Al, Si, Fe, Ni, Co, Mn, Mg, Cr, Cu
The plate-shaped object made of one or more metals or alloys may be a thin plate, or may be plated or vaporized. A more desirable method for producing a composite sintered body of the present invention is that the binder phase of the sintered body is on the lines A, B, C, and D shown in FIG. , in the internal composition surrounded by D
B1 type carbide solid solution (however, NbC can replace 30% or less of TaC as the various properties of the sintered body will not change; point A is 40 mol% TiC - 50 mol%)
WC-10 mol% TaC, B point is 55 mol% TiC-35
Mol%WC - 10mol%TaC, C point is 40mol%
TiC - 20 mol% WC - 40 mol% TaC, D point is 25
mol% TiC - 35 mol% WC - 40 mol% TaC) and 6
~40% by volume of one or more nitrides, carbonitrides, or mutual solid solutions of Ti, Zr, Hf, Ta, Nb, and V, and 40-70% by volume of CBN and/or WBN
A powder green body formed by mixing and pulverizing is brought into direct contact with cemented carbide or cermet, and the pressure is 40~
By sintering at ultra-high pressure and high temperature of 60Kb and a temperature of 1200 to 1500℃, one or more metals of Fe, Ni, and Co contained in cemented carbide or cermet are sintered into CBN and/or WBN-containing sintered bodies. CBN and/or
Al, Si, Fe, Ni, Co, Mn, Mg, Cr,
The metal of the plate-shaped object is CBN and/or WBN by installing a plate-shaped object made of one or more metals or alloys of Cn and sintering it under ultra-high pressure and high temperature of 40 to 60 Kb and temperature of 1200 to 1500℃. A method for manufacturing a composite sintered body that permeates and diffuses into the containing sintered body is desirable. In the above method for producing a composite sintered body, CBN is used as a starting material in order to facilitate percolation and diffusion of metal elements, promote sinterability, densify the sintered body, and improve various properties of the sintered body. and/or Ti, Zr,
It is desirable to coat with one or more nitrides, carbonitrides, or mutual solid solution compounds of Hf, Ta, Nb, and V. The plate-like object to be permeated and diffused into the CBN- and/or WBN-containing sintered body is made into a thin plate, plated, vapor-deposited, etc., and the compound is vapor-deposited on the surface of the powder particles of the starting raw material of CBN and/or WBN. It also helps to remove as much oxygen and moisture adsorbed on the particle surface as possible to reduce the amount of gas generated under sealed ultra-high pressure and high temperature conditions.
CBN and/or WBN to reduce the amount of adsorbed oxygen and improve permeability of metal elements.
The vapor deposition coating on the powder particle surface of the starting raw material is
Nitrides, carbonitrides, or mutual solid solution compounds of one or more of Ta, Nb, and V are more desirable. In the method for producing a composite sintered body of the present invention, starting materials are
(Ti, W, Ta)C or (Ti, W, Ta,
Nb) B1 type carbide solid solution of C and Ti which penetrates and diffuses into this B1 type carbide solid solution and contributes to the precipitation of WC;
Al, Si, Fe, Ni, Co, Mn, Mg, Cr,
One or more metals such as Cu become a liquid phase and permeate and diffuse, and this liquid phase metal becomes CBN and/or
WBN and B1 type carbide solid solution and Ti, Zr, Hf, Ta,
Since it has good wettability with one or more compounds of Nb and V, it penetrates and diffuses surrounding each particle, suppressing the particle growth of each particle, and these liquid phase metals form a B1 type carbide solid solution. Inside W, Ti, Zr,
By mediating the diffusion movement with one or more compounds of Hf, Ta, Nb, and V, the diffusion movement of nitrogen and carbon, which are interstitial elements, is promoted, and mainly nitrogen elements penetrate and diffuse into the B1 type carbide solid solution. depending on the matter
It is thought that WC in the B1 type carbide precipitates at grain boundaries as fine particles. The reason why the numerical value is limited in the composite sintered body of the present invention will be described here. (a) Amount of CBN and/or WBN If CBN and/or WBN is less than 40 volume%, the effect of high hardness CBN and/or WBN will be weak and the wear resistance will be too low. If the amount increases, the concentration gradient that reduces the amount of metal in the area corresponding to the active part will cause the strength to become too low, making it difficult to use under intermittent cutting conditions such as difficult-to-cut materials, so CBN and/or WBN
The amount was 40 to 70% by volume. (b) Amount of B1 type solid solution When the amount of B1 type solid solution is less than 2% by volume, grain boundary precipitation of WC hardly occurs, and when it exceeds 40% by volume, the amount of other components becomes relatively small.
CBN and/or WBN amount and Ti, Zr, Hf,
As the amount of one or more of Ta, Nb, and V compounds decreases, wear resistance decreases. For this purpose, the amount of B1 type solid solution was set to 2 to 40% by volume. In addition, the amount of B1 type solid solution in the starting material is
On the lines A, B, C, D in the diagram and A, B, C, D
The reason why we limited the composition to the internal components surrounded by is that the amount of WC precipitated is too large on the side with a lot of WC outside the AD line, and it is difficult to form a complete solid solution when used as a starting material. ,
On the side with less TaC outside the AB line, the heat resistance as a sintered body and strength at high temperatures decrease, and BC
WC is difficult to precipitate on the side with more TiC outside the CD line, and the price increases and the hardness of the sintered body tends to decrease on the side with more TaC outside the CD line. is A in Figure 1,
The composition components are those on the line B, C, and D and within the area surrounded by A, B, C, and D. (c) Amount of one or more compounds of Ti, Zr, Hf, Ta, Nb, and V Amount of one or more nitrides, carbonitrides, or mutual solid solution compounds of Ti, Zr, Hf, Ta, Nb, and V If it is less than 6% by volume, the effect of precipitating WC from the B1 type solid solution is weak, and if it exceeds 40% by volume, the amount of other components will be relatively small, but in particular, the effect of precipitating WC from the B1 type solid solution and CBN and/or
Since the amount of WBN decreases and the wear resistance decreases, the amount of one or more compounds of Ti, Zr, Hf, Ta, Nb, and V was set to 6 to 40% by volume. (d) Al, Si, Fe, Ni, Co, Mn, Mg, Cr, Cu
If the above amount is less than 1% by volume, it will be difficult to densify the sintered body, and if it exceeds 20% by volume, the amount of intermetallic compounds consisting of metals will be too large and the sintered body will be The above amount was set to 1 to 20% by volume to reduce the hardness and heat resistance. (e) Amount of grain boundary precipitation of WC If the amount of grain boundary precipitation of WC is less than 0.1% by volume, it is 0.1μm.
Even with very fine WC as shown below, if the number of WC particles is too small, the toughness and strength tend to decrease, and if the number exceeds 20% by volume, the starting material
Because it becomes difficult to prepare B1 type carbide solid solution
The amount of WC grain boundary precipitation was 0.1 to 20% by volume. In the present invention, sintering can be carried out using a practically used ultra-high pressure device such as a girdle type or a belt type. Next, the composite sintered body of the present invention and its manufacturing method will be described in detail according to Examples. Example 1 62% CBN with an average particle size of 3 μm and an average particle size of 1.5 μm
(40%Ti-50%W-10%Ta)C solid solution of 10%
and 25% TiN with an average particle size of 2 μm and an average particle size of 15 μm.
A mixed powder consisting of 3% Al with an outer diameter of 10 mm and a height of 1.0
Embossed to mm. This powder compact was placed in contact with one side of the WC-10%Co cemented carbide block in a Mo container, degassed at a vacuum level of 10 -4 mmHg and a temperature of 1000°C, and then placed in a belt-type high-pressure device. Charge, pressure 50Kb
The temperature was held at 1320°C for 30 minutes and then further held at 1450°C for 20 minutes for sintering. The composite sintered body thus obtained was electrical discharge cut and brazed to the tip of the cemented carbide to create a TNG332 chip. TNG332 brazed with the composite sintered body of the present invention and TNG332 brazed with a commercially available CBN composite sintered body were cut using the following turning test, and the average amount of flank wear was measured. As a result, the product of the present invention had a V B of 0.12 mm, whereas the commercial product had a
It was confirmed that the composite sintered body of the present invention has excellent wear resistance with V B =0.18 mm. Turning test conditions Work material SKD11 (HRc56-58) Cutting speed 90m/min Depth of cut 0.5mm Feed rate 0.1mm/rev Cutting time 10min Cutting oil Emulcut No.10 CBN-containing sintered body part of the composite sintered body of the present invention When analyzed using an X-ray microanalyzer, it was found that approximately 2% Co permeated and diffused near the bonding surface with the cemented carbide, while there was almost no Co near the cutting edge, and the Co concentration gradient was approximately linear. There was a tendency to become more and more. or,
As a result of X-ray analysis of the CBN-containing sintered body part, CBN
Diffraction lines thought to be WC precipitated with (Ti, W, Ta)CN, TiNC, and TiB2 were confirmed. Precipitated WC was also confirmed by microstructural observation. Example 2 63% CBN with an average particle size of 3 μm and 10% C solid solution (55%Ti-35%W-10%Ta) with an average particle size of 2μm
and 20% (90%Ti-10%Ta)N with an average particle size of 2μm.
A mixed powder consisting of was molded into an outer diameter of 10 mm and a height of 1.0 mm. This powder compact has an outer diameter of 10 mm and a height of 3.0 mm.
An Al thin plate, which is equivalent to about 7% of the powder compact, is sandwiched between the cemented carbide and the powder compact, and placed in a Mo container.
After degassing at 10 -4 mmHg and a temperature of 1000°C, it was charged into a belt-type high-pressure device and sintered at a pressure of 50 Kb and a temperature of 1450°C for 20 minutes. Example 1 The composite sintered body thus obtained
I completed the TNG332 chip in the same way as above. commercially available
In comparison, TNG332 to which a CBN composite sintered body was brazed was cut using the following turning test and the average flank wear amount was measured. As a result, the product of the present invention had V B =
Compared to 0.21, the commercial product had slight chipping. Turning test conditions Work material SCM3 (HRc60~62) Cutting speed 150m/min Depth of cut 0.2mm Feed rate 0.1mm/rev Cutting time 30min Cutting oil Emulcut No.10 CBN-containing sintered body part of the composite sintered body of the present invention When analyzed using an X-ray microanalyzer, it was found that Al was as high as 8.5% near the bonding surface with the cemented carbide, and as it moved away from the bonding surface, Al was 2.5% in the approximate center of the interior of the CBN-containing sintered body. The concentration gradient tended to be approximately linear. In addition, as a result of X-ray analysis of the CBN-containing sintered body part, it was found that CBN and (Ti, W, Ta)
Diffraction lines thought to be WC precipitated with CN, (Ti, Ta) NC, and TiB 2 were confirmed, and furthermore, the area near the bonding surface was
Diffraction lines thought to be AlN were confirmed. Precipitated WC was also confirmed by microstructural observation. Example 3 A reactive ion plating method was applied to the surface of CBN particles with an average particle size of 3 μm at 500°C (Ta atoms were ionized and brought into close contact with the CBN particle surface, while at the same time N 2 gas was flowed in to finally deposit TaN on the CBN surface. 10% of TaN is covered with 60%
20% of (50%W-30%Ti-20%Ta)C less than 3μm
% and 2μm or less TaN 0.7 to 15% and 2μm or less
Add 0.7% paraffin to a mixed powder of 5% TiN 0.7 , grind and mix in n-hexane solvent, and after drying, add 5% of the mixed powder to a cemented carbide with a height of 15 mm and 3 mm in a Zr container. Glue the corresponding Al thin plate,
This Al thin plate was filled with mixed powder and heated to 900℃, 10 -4
Paraffin was removed by holding in vacuum at mmHg for 30 minutes. After cooling, the Zr container was surrounded with NaCl and placed in an ultra-high pressure device and heated at 10,000 atmospheres and 1000℃ for 20 minutes.
After holding for 5.5Kb, the temperature was increased to 1450°C and held for 25 minutes to obtain a composite sintered body. The composite sintered body thus obtained was processed in the same manner as in Example 1 to obtain SNGN432.
And I finished it with a TNGN332 chip. The following cutting tests A and B were conducted to compare the composite sintered body of the present invention and a commercially available sintered body containing approximately 60% CBN. A Continuous turning condition Work material SUJ-2 (HRc60~63) Cutting speed 100m/min Depth of cut 0.5 mm Feed rate 0.1 mm/rev Cutting oil Emulcut No.10 Tool shape SNGN432 B Continuous turning condition Work material SKD-11 ( HRc59~62) Cutting speed 90m/min Depth of cut 0.5mm Feed rate 0.1mm/rev Cutting oil Emercut No. 10 Tool shape TNGN332 As a result of the test, under A condition, the composite sintered body of the present invention did not work until the cutting time was 20 minutes. The average amount of flank wear of the commercial products was almost the same, but after cutting for 30 minutes, the average amount of flank wear of the composite sintered body of the present invention was V B = 0.16 mm, whereas the average amount of flank wear of the commercial products was V B = 0.16 mm. Flank wear amount is V B
= 0.24mm. Under condition B, the average flank wear amount of the composite sintered body of the present invention is V B = 0.11 after 20 minutes of cutting.
mm When cutting for 30 minutes, V B = 0.14 mm, whereas the average flank wear of the commercial product was V B = 0.14 mm after cutting for 20 minutes.
After cutting 0.16 mm for 30 minutes, V B =0.20 mm. This confirms that the composite sintered body of the present invention has excellent wear resistance. When the CBN-containing sintered body part of the composite sintered body of the present invention was analyzed using an X-ray microanalyzer, it was found that the area near the bonding surface with the cemented carbide had a high Al content of 6.4%, and the further away from the bonding surface, the CBN-containing sintered body The concentration gradient of Al was 1.3% in the approximately central part of the interior, and the Al concentration gradient tended to be approximately linear. In addition, as a result of X-ray analysis of the CBN-containing sintered body part, it was found that CBN and (Ti, W, Ta)
Diffraction lines thought to be CN, (Ta, Ti)NC, TiB 2 , and precipitated WC were confirmed. Furthermore, precipitated WC was confirmed by microscopic structure observation. Example 4 CBN with an average particle size of 3 μm was mixed with 30% CBN with an average particle size of 4 μm.
The surface of the CBN particles was coated with 5% TaN and 5% TiN by high-speed magnetron sputtering.
Ta-5%Nb) 10%C and less than 2μm (50%Ti
-25%Ta-25%Zr) N0.7 was added to 20% and paraffin was added to 3%, and after drying in n-hexane solvent, the mixed pulverized powder was placed on a cemented carbide with an outer diameter of 15 mm and a height of 3 mm in a Zr container. A composite sintered body was obtained in the same manner as in Example 3 by adhering a 70% Al-30% Cu alloy thin plate corresponding to 5% Al-Cu thin plate and filling the mixed pulverized powder onto the Al-Cu thin plate. The composite sintered body thus obtained and the commercially available approximately 60
% CBN-containing sintered body was processed in the same manner as in Example 1 and finished into SNGN432 chips. Intermittent turning tests were repeated three times on the composite sintered body of the present invention and the commercially available CBN composite sintered body under the following conditions. Interrupted turning conditions Work material SCM-3 Carburized and quenched material (HRc60~62)
(Groove 2 of 8mm width x 5mm depth in work material of 50φ x 200mm)
Cutting speed: 120m/min Depth of cut: 0.15mm/rev Feed rate: 0.2mm Cutting time: Until chipping or chipping Test results show that the composite sintered body of the present invention can be cut for 60 minutes, 52 minutes, and 56 minutes until tool life. However, commercially available products could only cut for 15, 30, or 10 minutes before the tool life expired. From this, the product of the present invention is
It was confirmed that the fracture resistance was excellent and the variation range was narrow and stable. When the CBN-containing sintered body part of the composite sintered body of the present invention was analyzed using an X-ray microanalyzer, the metals of Al and Cu were as high as 6.7% near the bonding surface with the cemented carbide, and the further away from the bonding surface the CBN The metal content of Al and Cu in the approximate center inside the containing sintered body is 1.5%, and the Al and Cu metals are 1.5%.
The metal concentration gradient of Cu tended to be approximately linear. In addition, as a result of X-ray analysis of the CBN-containing sintered body part, diffraction lines thought to be CBN, (Ti, W, Ta, Nb) CN, (Ti, Ta, Zr) NC, and TiB 2 precipitated WC were confirmed. did it. Furthermore, precipitated WC was confirmed by microscopic structure observation. Example 5 CBN with an average particle size of 3 μm and WBN with an average particle size of 4 μm
and CBN particles with an average particle size of 3 μm coated with 10% TaN on the surface, WBN particles with an average particle size of 4 μm with 10% TaN coated on the surface, and WBN particles with an average particle size of 1 to 2 μm.
Prepare various carbide solid solutions and nitride compounds of m, various metal and alloy thin plates, cemented carbide with an outer diameter of 10 mm and a height of 3 mm, and the surface of this cemented carbide coated with various metal elements by ion plating. The compositions and combinations shown in Table 1 were then sintered under the same manufacturing conditions as in Example 1. As a result of X-ray analysis of the high-density phase boron nitride-containing sintered body part of the composite sintered body of the present invention sintered in this way, it was found that each sample contained CBN or WBN, B1 type carbonitride solid solution, Ti,
Nitride is present in the sintered body near the bonding surface between Zr, Hf, Ta, Nb, and V nitrides and their mutual solid solution compounds and Ti, Zr, and Hf borides or boronitrides and cemented carbide. Diffraction lines thought to be from aluminum and diffraction lines from precipitated WC were confirmed. In addition, using an X-ray microanalyzer, Al, Si, Fe, Ni, Co, Mn, Mg,
When we investigated the amount of Cu metal, we found that there was a nearly linear concentration gradient in which the amount of metal was large near the bonding surface with the cemented carbide, and the amount of metal decreased as we moved away from the bonding surface, as shown in Table 2. I was able to confirm as follows. precipitated
WC was also confirmed by microstructural observation.

【表】【table】

【表】 第1表に示した本発明の複合焼結体の内、試料
番号1、2、3、4、5、6、8、9を実施例1
と同様に加工してSNGN432とTNGN332のチツ
プに仕上げ、これと同形状の市販のCBN系複合
焼結体も比較に加えて切削試験を行つた。 SNGN432は実施例4と同一切削試験で、
TNGN332は実施例2と同一切削試験によつて比
較した。その切削試験の結果を第2表に示した。
第2表の結果本発明の複合焼結体は、市販の
CBN系複合焼結体に比較して耐摩耗性及び耐欠
損性共に優れていることが確認できた。
[Table] Among the composite sintered bodies of the present invention shown in Table 1, sample numbers 1, 2, 3, 4, 5, 6, 8, and 9 were used in Example 1.
Chips of SNGN432 and TNGN332 were processed in the same manner as above, and commercially available CBN-based composite sintered bodies of the same shape were also compared and cutting tests were conducted. SNGN432 was subjected to the same cutting test as Example 4,
TNGN332 was compared with Example 2 by the same cutting test. The results of the cutting test are shown in Table 2.
The results in Table 2 show that the composite sintered body of the present invention is commercially available.
It was confirmed that both wear resistance and fracture resistance are superior to CBN-based composite sintered bodies.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、WCとTiCとTaCの3成分系状態図
を示す。A点は、40モル%TiC50モル%WC−10
モル%TaC、B点は、55モル%TiC−35モル%
WC−10モル%TaC、C点は、40モル%TiC−20
モル%WC−40モル%TaC、D点は、25モル%
TiC−35モル%WC−40モル%TaC。
FIG. 1 shows a three-component system phase diagram of WC, TiC, and TaC. Point A is 40 mol% TiC50 mol% WC-10
Mol% TaC, point B is 55 mol% TiC - 35 mol%
WC-10 mol% TaC, C point is 40 mol% TiC-20
Mol%WC - 40mol%TaC, D point is 25mol%
TiC - 35 mol% WC - 40 mol% TaC.

Claims (1)

【特許請求の範囲】 1 40〜70体積%のCBNおよび/またはWBN
と、残部が少なくともAl、Si、Fe、Ni、Co、
Mn、Mg、Cr、Cuの1種以上の金属を含有して
なる結合相と不可避不純物とから成る焼結体と、
超硬合金又はサーメツトとが強固に固着結合した
複合体において、該焼結体は、該金属を1〜20体
積%と、残り(Ti、W、Ta)CN又は(Ti、W、
Ta、Nb)CNのB1型固溶体とTi、Zr、Hf、Ta、
Nb、Vの窒化物、炭窒化物もしくはこれらの相
互固溶体、Tiのホウ化物、Alの窒化物の中の1
種以上と粒界析出した炭化タングステンとでなる
結合相を含有し、かつ該焼結体中の該金属は該超
硬合金又はサーメツトと固着結合してなる該焼結
体の接触面側が最も多く、該接触面から該焼結体
の内部に入る程少なくなる濃度勾配を有すること
を特徴とする複合焼結体。 2 上記結合相は、上記金属と、残り(Ti、W、
Ta)CN又は(Ti、W、Ta、Nb)CNのB1型固
溶体2〜40%と、Ti、Zr、Hf、Ta、Nb、Vの
窒化物、炭窒化物もしくはこれらの相互固溶体、
Tiのホウ化物、Alの窒化物の中の1種以上6〜
40体積%と粒界析出した炭化タングステン0.1〜
20体積%とからなることを特徴とする特許請求の
範囲第1項記載の複合焼結体。 3 40〜70体積%のCBNおよび/またはWBN、
もしくは化学蒸着法や物理蒸着法によりTi、Zr、
Hf、Ta、Nb、Vの1種以上の窒化物、炭窒化
物およびこれらの相互固溶体化合物を被覆してな
るCBNおよび/またはWBNと、残部がAl、Si、
Fe、Ni、Co、Mn、Mg、Cr、Cuの1種以上の
金属とTi、Zr、Hf、Ta、Nb、Vの窒化物、炭
窒化物、Wの炭化物およびこれらの相互固溶体の
中の1種以上からなる出発原料を混合粉砕および
成形して得た粉末圧粉体を超硬合金またはサーメ
ツトに直接接触させて超高圧高温下で焼結した
CBNおよび/またはWBN含有焼結体内に、該超
硬合金またはサーメツトからFe、Ni、Coの1種
以上の金属を滲透拡散させ、該焼結体内に滲透拡
散した該金属が該超硬合金又はサーメツトとの接
触面が最も多く、該接触面から該焼結体の内部に
入る程少なくなる濃度勾配になるようにすること
を特徴とする複合焼結体の製造方法。 4 上記出発原料は、2〜40体積%の第1図に表
わすA,B,C,Dの線上及び線ABCDで囲ま
れた内部の組成成分にあるB1型炭化物固溶体
(但し、TaCに対して30%以下はNbCで置換可)
と6〜40%のTi、Zr、Hf、Ta、Nb、Vの1種
以上の窒化物、炭窒化物もしくはこれらの相互固
溶体化合物とを含有していることを特徴とする特
許請求の範囲第3項記載の複合焼結体の製造方
法。 5 40〜70体積%のCBNおよび/またはWBN、
もしくは化学蒸着法や物理蒸着法によりTi、Zr、
Hf、Ta、Nb、Vの1種以上の窒化物、炭窒化
物およびこれらの相互固溶体化合物を被覆してな
るCBNおよび/またはWBNと、残部がTi、Zr、
Hf、Ta、Nb、Vの窒化物、炭窒化物Wの炭化
物およびこれらの相互固溶体の中の1種以上から
なる出発原料を混合粉砕および成形して得た粉末
圧粉体と超硬合金またはサーメツトとの間に、該
出発原料に対して1〜20体積%のAl、Si、Fe、
Ni、Co、Mn、Mg、Cr、Cuの1種以上の金属ま
たは合金の板状物体を設置して超高圧高温下で焼
結したCBNおよび/またはWBN含有焼結体内
に、該板状物体の金属を滲透拡散させ、該焼結体
内に滲透拡散した該金属が該超硬合金またはサー
メツトとの接触面で最も多く、該接触面から該焼
結体の内部に入る程少なくなる濃度勾配になるよ
うにすることを特徴とする複合焼結体の製造方
法。 6 上記出発原料は、2〜40体積%の第1図に表
わすA,B,C,Dの線上および線ABCDで囲
まれた内部の組成成分にあるB1型炭化物固溶体
(但し、TaCに対して30%以下はNbCで置換可)
と6〜40%のTi、Zr、Hf、Ta、Nb、Vの1種
以上の窒化物、炭窒化物もしくはこれらの相互固
溶体化合物とを含有していることを特徴とする特
許請求の範囲第5項記載の複合焼結体の製造方
法。
[Claims] 1. 40 to 70% by volume of CBN and/or WBN
and the remainder is at least Al, Si, Fe, Ni, Co,
A sintered body comprising a binder phase containing one or more metals of Mn, Mg, Cr, and Cu and unavoidable impurities;
In a composite in which cemented carbide or cermet is firmly bonded, the sintered body contains 1 to 20% by volume of the metal and the remainder (Ti, W, Ta)CN or (Ti, W, Ta).
Ta, Nb) B1 type solid solution of CN and Ti, Zr, Hf, Ta,
One of Nb, V nitride, carbonitride or mutual solid solution thereof, Ti boride, Al nitride
The sintered body contains a binder phase consisting of tungsten carbide precipitated at the grain boundaries, and the metal in the sintered body is fixedly bonded to the cemented carbide or cermet. A composite sintered body having a concentration gradient that decreases from the contact surface to the inside of the sintered body. 2 The binder phase is composed of the metal and the rest (Ti, W,
2 to 40% of Ta) CN or B1 type solid solution of (Ti, W, Ta, Nb) CN, and nitride, carbonitride of Ti, Zr, Hf, Ta, Nb, V or mutual solid solution thereof,
One or more of Ti borides and Al nitrides6~
40 volume% and grain boundary precipitated tungsten carbide 0.1~
20% by volume of the composite sintered body according to claim 1. 3 40-70% by volume of CBN and/or WBN,
Alternatively, Ti, Zr,
CBN and/or WBN coated with one or more nitrides, carbonitrides, and mutual solid solution compounds of Hf, Ta, Nb, and V, and the balance being Al, Si,
One or more metals of Fe, Ni, Co, Mn, Mg, Cr, Cu and nitrides, carbonitrides of Ti, Zr, Hf, Ta, Nb, V, carbides of W, and mutual solid solutions of these A powder compact obtained by mixing, crushing and molding starting materials consisting of one or more types is brought into direct contact with cemented carbide or cermet and sintered under ultra-high pressure and high temperature.
One or more metals of Fe, Ni, and Co are permeated and diffused from the cemented carbide or cermet into the CBN and/or WBN-containing sintered body, and the metals permeated and diffused into the sintered body are absorbed into the cemented carbide or cermet. A method for manufacturing a composite sintered body, characterized in that the contact surface with cermet is the largest, and the concentration gradient decreases from the contact surface to the inside of the sintered body. 4 The above starting material is a B1 type carbide solid solution (with respect to TaC), which is present in the composition components on the lines A, B, C, and D shown in Figure 1 and within the line ABCD, in an amount of 2 to 40% by volume. 30% or less can be replaced with NbC)
and 6 to 40% of one or more nitrides, carbonitrides, or mutual solid solution compounds of Ti, Zr, Hf, Ta, Nb, and V. A method for producing a composite sintered body according to item 3. 5 40-70% by volume of CBN and/or WBN,
Alternatively, Ti, Zr,
CBN and/or WBN coated with one or more nitrides, carbonitrides, and mutual solid solution compounds of Hf, Ta, Nb, and V, and the remainder being Ti, Zr,
A powder compact obtained by mixing, pulverizing and molding a starting material consisting of nitrides of Hf, Ta, Nb, V, carbides of carbonitride W, and mutual solid solution of these, and a cemented carbide or Between the cermet and the starting material, 1 to 20% by volume of Al, Si, Fe,
A plate-shaped object made of one or more metals or alloys of Ni, Co, Mn, Mg, Cr, and Cu is placed inside a CBN- and/or WBN-containing sintered body that is sintered under ultra-high pressure and high temperature. The metal permeated and diffused into the sintered body is most concentrated at the contact surface with the cemented carbide or cermet, and the concentration gradient decreases as it enters the inside of the sintered body from the contact surface. A method for manufacturing a composite sintered body, characterized in that: 6 The above starting material is a B1 type carbide solid solution (with respect to TaC) that is present on the lines A, B, C, and D shown in Figure 1 and within the composition surrounded by the line ABCD. 30% or less can be replaced with NbC)
and 6 to 40% of one or more nitrides, carbonitrides, or mutual solid solution compounds of Ti, Zr, Hf, Ta, Nb, and V. A method for producing a composite sintered body according to item 5.
JP57216099A 1982-12-09 1982-12-09 Composite sintered body and its production Granted JPS59107060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57216099A JPS59107060A (en) 1982-12-09 1982-12-09 Composite sintered body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57216099A JPS59107060A (en) 1982-12-09 1982-12-09 Composite sintered body and its production

Publications (2)

Publication Number Publication Date
JPS59107060A JPS59107060A (en) 1984-06-21
JPH0416537B2 true JPH0416537B2 (en) 1992-03-24

Family

ID=16683225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57216099A Granted JPS59107060A (en) 1982-12-09 1982-12-09 Composite sintered body and its production

Country Status (1)

Country Link
JP (1) JPS59107060A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294148A (en) * 1986-06-13 1987-12-21 Tatsuro Kuratomi Cubic boron nitride composite sintered compact and its production
US6183687B1 (en) 1995-08-11 2001-02-06 Kennametal Inc. Hard composite and method of making the same
US5623723A (en) * 1995-08-11 1997-04-22 Greenfield; Mark S. Hard composite and method of making the same
US6589602B2 (en) * 2001-04-17 2003-07-08 Toshiba Tungaloy Co., Ltd. Highly adhesive surface-coated cemented carbide and method for producing the same
JP4997561B2 (en) * 2005-08-04 2012-08-08 独立行政法人産業技術総合研究所 Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same
CN107530780B (en) * 2015-05-18 2019-06-28 Tdk株式会社 Assembly
JP7021493B2 (en) * 2017-09-29 2022-02-17 三菱マテリアル株式会社 Composite sintered body
CN110465669B (en) * 2019-09-09 2020-06-26 山东大学 Gradient composite cubic boron nitride material and preparation process and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544543A (en) * 1978-09-22 1980-03-28 Daijietsuto Kogyo Kk Cubic system boron nitride composite sintered body
JPS5672104A (en) * 1979-11-15 1981-06-16 Toshiba Tungaloy Co Ltd Composite cutting body
JPS5672105A (en) * 1979-11-13 1981-06-16 Toshiba Tungaloy Co Ltd Composite cutting body
JPS5672103A (en) * 1979-11-15 1981-06-16 Toshiba Tungaloy Co Ltd Composite cutting body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544543A (en) * 1978-09-22 1980-03-28 Daijietsuto Kogyo Kk Cubic system boron nitride composite sintered body
JPS5672105A (en) * 1979-11-13 1981-06-16 Toshiba Tungaloy Co Ltd Composite cutting body
JPS5672104A (en) * 1979-11-15 1981-06-16 Toshiba Tungaloy Co Ltd Composite cutting body
JPS5672103A (en) * 1979-11-15 1981-06-16 Toshiba Tungaloy Co Ltd Composite cutting body

Also Published As

Publication number Publication date
JPS59107060A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
EP1470879B1 (en) Surface coated cutting tool member having hard coating layer exhibiting excellent abrasion resistance in high-speed cutting, and method for forming said hard coating layer on surface of cutting tool
EP2210692A1 (en) Composite material and coated cutting tool
EP2036997A1 (en) Coated cemented carbide cutting tool inserts
JPH08119774A (en) Combined material having high hardness for tool
US7615185B2 (en) Multicomponent ceramics powder, method of manufacturing multicomponent ceramics powder, sintered body, and method of manufacturing sintered body
JP3743984B2 (en) Composite high hardness material for tools
US5092920A (en) Sintered body for high-accuracy working tools
JPH0416537B2 (en)
JPH0517297B2 (en)
JPS644989B2 (en)
JPS644988B2 (en)
JPH0254300B2 (en)
JPH10237650A (en) Wc base cemented carbide and its production
JPS6246510B2 (en)
JP3611184B2 (en) Ceramic sintered body cutting tool for cast iron machining and coated ceramic sintered body cutting tool for cast iron machining
JPH0332502A (en) Cermet tool
JPH0225870B2 (en)
JP2004223666A (en) Cutting tool for rough machining
JP2000336451A (en) Modified sintered alloy, coated sintered alloy, and their production
JPS61168569A (en) Manufacture of cubic boron nitride sintered body
JP2982359B2 (en) Cemented carbide with excellent wear and fracture resistance
JP4857506B2 (en) WC-based cemented carbide multilayer chip
JP3729463B2 (en) Tough cemented carbide and coated cemented carbide for milling
JPH04294907A (en) Hard layer coated tungsten carbide group sintered hard alloy-made cutting tool
RU2284247C2 (en) Method for producing blank of shock resistant cutting tip on base of cubic boron nitride and shock resistant cutting tip produced by such method